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SECURITY AND OTHER RISKS RELATED TO LLM-BASED SOFTWARE DEVELOPMENT 

Generative Artificial Intelligence (GAI) is a new technology, and even though its capabilities are thoroughly being in-

spected and applied in different industries, it continues to develop intensively bringing in new types of risks in the soft-

ware development domain. The variety of large language models (LLMs) emergency has led to changes at all stages of the

Software Development Life Cycle (SDLC). Thus, the main objectives of the article are to identify and understand the po-

tential risks associated with LLM-based software development and to identify the best approaches to mitigate the risks.

The paper presents observations of common software architectures based on LLM, risks and their impact on traditional

SDLCs, approaches to testing and software quality assessment, and an analysis of how LLM has changed the software de-

velopment industry. The widespread LLM-based application architectures already have a traditional set of components

like a chatbot channel for interaction with users, a knowledge base for providing the appropriate context to LLM, the com-

ponents required for authentication and providing secure knowledge processing during the session and prompt accessibil-

ity, retrieval-augmented generation system (RAG) and evaluation modules. It is shown that integrating LLM into software

generates unique risks that require changes to the already established SDLC at the level of architectural modifications, the

evaluation system, and best practices for risk mitigation. Each component of the LLM-based system can generate specific

risks in each SDLC stage. To more effectively identify and delineate risks, risk naming and its description were consid-

ered, and the traditional risk taxonomy was updated with an LLM-based software taxonomy. It is worth noting that anoth-

er stage has been added to the conventional SDLC, which is related to the selection and management of personnel. This is

because GAI is now a new technology and requires changes to the traditional composition of specialists. The risk exam-

ples, shown in the paper, are presented with risk identifiers that help identify the risk in a specific SDLC and connections

to other related risks. It is an assumption that one risk has a minimum of 8 risk identifiers, what is equal to 8 SDLC stages.

It explained how the risk manifests in different SDLC stages, which were defined by subject matter experts (SMEs) from

IT companies. Finally, some sets and concepts were formalized for future calculations and research of the identified risks.

Keywords: software development life cycle, software risks, security risks, LLM-based software architecture.

Introduction 

Relevance of research. Integrating LLMs into software

development has brought a transformative era, offering

powerful enhancements for natural language processing

(NLP) and automation. However, this advancement requi-

res a critical analysis of the associated risks and challenges

considering key items: the imperative changes in the

Software Development Life Cycle (SDLC) due to LLM

trends; the architectural shifts prompted by LLM applic-

ations; the essential role of evaluation frameworks; the

identification of risks within LLM-based SDLC and their

mitigation frameworks; and additional pertinent consi-

derations.

The object of research is the traditional taxonomy of

software development risks.

The subject of research is the risks associated with the

architectures of applications that incorporate LLMs.

The purpose of the research is to analyse LLM-based

application architectures, aiming to identify the appropriate

risk categories, their samples, and the initial formalization

of risk attributes.

It becomes clear that the integration of LLM into

software brings new challenges and risks; therefore, the

problems related to new risk identification, as well as their

mutual influence on other already known ones. To achieve

this purpose, the following main research objectives are

identified:

1) identify problem areas in the LLM-based application

architecture where new risks are being generated;

2) analyse how new risks manifest in different SDLC

stages of LLM-based applications overview;
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3) clarify the definitions and standardize the namings

for newly discovered risks;

4) analyse and update the traditional taxonomy with

new risk categories related to LLM-based application archi-

tectures and mapping of the risk categories to SDLC stages;

5) define risk indicators for new risks and find out

some samples of risks per each new category;

6) define the possible initial mathematical formali-

zation of risks and steps to mitigation in the case of LLM-

based application development.

Analysis of recent research and publications. Indeed, the

emergence of LLM has significantly impacted the

traditional SDLC, requiring adaptations to accommodate

these models’ unique characteristics. The common SDLC

stages – planning, requirements analysis, design, imple-

mentation, testing, deployment, and maintenance – must

evolve to address the complexities introduced by LLM.

A place of risks in widespread LLM-based application

architectures. An LLM integration into software systems

forces a rethink of traditional architectural models. LLMs,

with their data-intensive and computationally demanding

nature, create unique challenges and opportunities for

system design. The articles [1, 2] have represented the most

comprehensive observation from the fundamental concepts

of the LLM traditional pipeline in the training phase,

through dataset processing and the wide range of LLM-

based applications solving real-world problems, to the

exploration of LLM deployment open issues and challen-

ges in real-world scenarios. In terms of applications, the

paper [1] discusses the deployment of LLMs across various

domains, including NLP tasks like translation, summa-

rization, and question-answering tasks.

LLM is not being implemented into the application as an

extra component, it requires some orchestrators that depend

on application assignments. The open issues and challenges

associated with LLMs, such as ethical concerns, biases in

training data, computational resource demands, LLM

frameworks and orchestrators, RAG architectures, and

effective deployment of LLMs in real-world scenarios were

inspected in [1-4]. Chatbot is one of the most widespread

assignments for LLM-based applications. Thus, in [1-2],

this question was considered and highlighted as prominent

because GAI allows the preparation of intelligent, tailored

assistance solving pretty complex questions. By integrating

Generative Pre-trained Transformer-based models with

Retrieval Augmented Generation (RAG) and Function

Calling features, the described architecture in [2] aims to

provide a co-pilot-like experience, guiding users through

understanding requirements and generating configuration

scripts. LLMs necessitate robust data pipelines to manage

the continuous flow of training and inference data.

Architectures must incorporate components for data

collection, preprocessing, storage, and retrieval, ensuring

data quality and consistency. Efficient data handling is

critical to maintaining the performance and reliability of

LLM applications [2–4].

Based on the architecture described in [1–4], we can

assume that the following software development risks

emerge due to the integration of LLMs as core orchestrated

components rather than as simple add-ons. Thus, we want

to highlight some categories of related risks such as

architectural, integration, data pipeline, content quality,

model-based, ethical and regulatory, deployment, opera-

tional, and human interaction (chatbot use case).

Software architectures are increasingly adopting modular

designs to accommodate LLMs. This approach encapsulates

LLM functionalities within distinct modules or

microservices, promoting scalability and maintainability.

Such modularization allows for independent development

and deployment of LLM components, facilitating updates

and experimentation without disrupting the entire system.

In the works [5–8], agent-based software architecture was

considered.

In [6], SALLMA, a software architecture for multi-agent

LLM-based systems addressing single-agent limitations like

lack of memory and task flexibility, was introduced.

SALLMA is designed as a distributed, modular architecture

to potentially support scalability, adaptability, and

resilience. It uses an Operational and Knowledge Layer to

manage tasks and context. A proof of concept demonstrates

SALLMA’s viability using modern AI and container

technologies in real-world scenarios. This architecture is

interesting for us because it represents a distributed system.

Given the computational demands of LLMs, architectures

must be designed for scalability. This involves leveraging

distributed computing resources, load-balancing optimi-

zation, and implementing caching strategies. Cloud-based

solutions are often employed to provide the necessary

infrastructure, offering flexibility and scalability to meet

varying workloads. Analyzing SALLMA [6] architecture,

we found some risk categories such as agent coordination

failures, memory and context drift, security and privacy,

model bias and validation, system scalability and perfor-

mance, integration complexity, maintainability, and regu-

latory compliance.

LLM applications require some security considerations

because integrating LLMs introduces new security

concerns, including vulnerabilities to adversarial attacks

and data breaches. Architectures must incorporate robust

security measures, such as input validation, output sani-

tization, and access controls, to safeguard against these

threats. Implementation of the required techniques can

generate security risks [8]. Additionally, secure APIs and

endpoints are essential to protect data integrity and

confidentiality.

Deploying LLM-based applications requires a com-

prehensive evaluation framework to assess their perfor-

mance, reliability, and ethical implications. Traditional eva-

luation metrics are insufficient to capture the multifaceted

nature of LLM, which drives the development of

specialized application features. Evaluating LLM program

performance requires metrics that, in addition to accuracy,

include measures of fluency, coherence, and contextual
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relevance. As usual, we can use benchmarking with

standardized data sets and tasks to facilitate comparative

analysis, helping to identify strengths and weaknesses, but

sometimes we should create a golden dataset. Here, we

recognized the next categories of possible risks such as

security, privacy, evaluation, reliability, integration, and

ethical and regulatory.

Risks in SDLC of LLM-based applications overview.

Integrating LLM into the SDLC poses several risks that

must be identified and managed to ensure the successful

deployment of robust and ethical applications [9]. These

risks span different stages of the SDLC, impacting the

overall security, reliability, and ethical integrity of software

systems.

There are a lot of different risk categories related to

SDLC of LLM-based applications and their naming is not

completely standardized. Therefore, created taxonomies

[10–12] are good for starting the research. The paper [12]

presents GUARD-D-LLM, a novel risk assessment engine

for the downstream use of LLMs, which operates the risks

that are being recognized and named by LLMs – it is one of

the ways to standardize the risk taxonomy. In any case, it is

a step ahead. Of course, it is very hard to inspect all

possible related risk categories, thus, we would start from

the most important ones based on some LLM-based

application features such as data poisoning, rapid injection

attacks, model theft, insecure output processing, denial of

service (DoS), supply chain vulnerabilities, sensitive

information disclosure, legal and regulatory compliance,

overreliance on LLMs, SDLC stage-specifics, prompt

engineering, human-agent collaboration, evaluation and

testing of LLMs, tooling and infrastructure, ethical and

societal, concept and knowledge drift, model updating,

model versioning, costs and sustainability.

Data Poisoning – is one of the possible risk categories

because LLMs are susceptible to data poisoning attacks,

where attackers manipulate training data to negatively

affect the behavior of the model. This can lead to the model

producing biased or harmful results, undermining trust and

reliability. Implementing rigorous data validation and

traceability is essential to mitigate this risk [9, 13, 14]. Data

poisoning involves the intentional manipulation of training

data to introduce malicious behavior or biases into an LLM.

Attackers can inject corrupted data into the training set,

causing the model to learn and maintain unwanted patterns.

As a result, LLM creates insecure code that spreads the bias

or disseminates false information [13]. Implementing strict

data validation, traceability, and the use of anomaly

detection techniques is important to mitigate this risk.

Rapid injection attacks occur when attackers create data

designed to manipulate the behavior of an LLM, leading to

unauthorized actions or the disclosure of sensitive infor-

mation. For example, an attacker could introduce a spe-

cially crafted prompt that causes the LLM to generate

malicious code or disclose sensitive data. To protect against

such attacks, it is essential to implement strict input vali-

dation, contextual filtering, and constant monitoring of

model interactions [13, 15–17].

In the case of model theft [18], LLMs represent

significant investments in intellectual property and

computing technology. Unauthorized access or theft of

model parameters can lead to competitive disadvantages

and security breaches. Implementing robust access controls,

encryption, and monitoring unauthorized access attempts is

critical to protecting against model theft.

Insecure output processing refers to inadequate validation

and sanitization of LLM-generated content before it is used

or displayed. This can lead to the execution of malicious

code, the disclosure of sensitive information, or the

distribution of inappropriate content. Ensuring that all

results are thoroughly vetted, implementing content filte-

ring mechanisms, and maintaining human oversight are

critical measures to address this risk [19].

Denial of Service (DoS) risk is related to attacks that aim

to overload the LLM with incoming data that exhausts its

computing resources, leading to reduced performance or

complete unavailability. Such attacks can disrupt services

and impact business operations. Implementing rate limiting,

resource allocation controls, and monitoring for unusual

activity patterns can help mitigate the risks of DoS [20].

Software development is based on complex software

supply chains that offer efficiency and reuse but pose

significant security risks. Attacks on a single link can

impact entire systems, especially through compromised

third-party components [21, 22]. LLM-based applications

often rely on third-party components such as pre-trained

models, datasets, unstructured data, and other libraries.

Compromises in any part of this supply chain can create

vulnerabilities in the system. Conducting thorough

validation of external components, maintaining dependency

inventories, and applying timely updates and patches are

key methods for managing supply chain risk [23]. Paper

[21] proposes a holistic end-to-end risk management

(FARM) framework helping companies to identify, assess,

respond, and monitor security threats in open-source and

third-party software across the SDLC.

Large Language Models (LLMs) offer powerful capa-

bilities for language understanding, generation, and security

applications such as vulnerability detection and privacy

protection. LLMs trained on large datasets may ina-

dvertently remember and disclose confidential information

in the training data. This can lead to privacy breaches and

regulatory non-compliance. Using differentiated privacy

and access control can help prevent unintended disclosure.

However, their human-like mindset also allows them to be

abused in offensive attacks. This study [24] recognizes their

impact as “good,” “bad,” and “ugly,” highlighting both

their cybersecurity potential and the need for deeper

research into new threats and defenses.

The European Data Protection Board (EDPB) represented

the updated document [25], which offers practical

recommendations for developers, users, and decision-

makers to manage privacy and data protection risks in
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Large Language Model (LLM) systems. It supports General

Data Protection Regulation (GDPR) compliance and com-

plements Data Protection Impact Assessment (DPIA)

requirements. The guide covers LLM fundamentals, data

flows, privacy risks, risk assessment, mitigation strategies,

residual risk assessment, and monitoring. It includes real-

world examples and tools for systematic risk management.

Developers receive guidance on integrating risk controls

into system design, and users receive support in assessing

risks before deployment. The methodology helps compa-

nies build secure, confidential LLM-based applications and

make informed and responsible AI decisions because the

usage of LLM must comply with various legal and

regulatory requirements, including those relating to data

protection, intellectual property, and the ethical use of AI

[26]. Non-compliance can lead to legal sanctions and

reputational damage. To manage legal and regulatory

compliance risks, it is necessary to be aware of relevant

regulations, conduct regular compliance audits, and imple-

ment a management system.

The article [26] examines the risks of exposing

confidential data when integrating large language models

(LLMs) into scientific workflows. It introduces “Data

Shield”, a framework designed to detect data leaks, sum-

marize privacy policies, and visualize data flows, ensuring

alignment with organizational policies. Ongoing user

research is aimed at evaluating its effectiveness in real-

world scenarios.

The overreliance on LLMs for critical decision-making

processes can be risky, especially given their limitations

and potential for error. Ensuring that LLM results are used

to augment human judgment, not replace it, and main-

taining mechanisms for human review and intervention are

important to mitigate this risk [27, 28]. The paper [27]

explores the ethical and educational impacts of relying on

Large Language Models (LLMs) for critical thinking. It

highlights risks to human agency, changes in educational

frameworks, and the need to preserve reasoning skills. The

paper [27] proposes models for human-LLM interaction

and calls for ethical guidelines and interdisciplinary re-

search on AI-augmented cognitive processes. In [28],

software engineers have integrated LLMs like ChatGPT

into workflows. With mixed results, they have revealed

failures, causes, and mitigation strategies guiding future

human-AI collaboration in software engineering.

Despite modern tools for building software projects and

several risk management models, software still has high

failure rates [29]. Improper risk assessment during software

development was a major reason behind these unsuccessful

projects as risk analysis was done on overall projects. The

work [29] attempts to identify key risk factors and risk

types for each of the development stages of SDLC, which

would help to identify the risks at a much earlier stage of

development. Empowering the application by GAI, the

SDLC has evolved through agile methods, emphasizing

speed and repeatability. Thus, we should map SDLC Stage-

Specific Risk to software requirements because, with

generative AI like ChatGPT, the software development

process is poised for major transformation, potentially

redefining the SDLC stages and significantly impacting the

roles of software engineers [30].

The article [31] highlights security risks in prompt

engineering during operational design, including instant

implementation, leakage, jailbreaking, and manipulation by

opposing parties. It addresses model poisoning, contextual

drift, and social engineering. The focus is on safeguards

such as input sanitary treatment, rapid isolation, and ethical

constraints to ensure the integrity of the AI system, its

resilience, and ethical operation across applications.

As is known, LLMs have given rise to promptware, a new

paradigm where natural language prompts replace code.

Unlike traditional software, promptware is ambiguous and

non-deterministic, creating unique challenges. Paper [32]

introduces promptware engineering – a structured method-

ology to systematically design, test, and evolve prompts –

bridging software engineering principles with LLM-specific

development needs and prompt engineering. LLMs shift

software paradigms toward operational software, relying on

natural language instead of code. This creates engineering

and security risks, including rapid implementation, context

drift, and ambiguous behavior due to the probabilistic na-

ture of LLMs. Paper [31] proposes a systematic engineering

framework for operational software, while [32] outlines

critical threats and precautions during operational design.

Together, they highlight the urgent need for structured de-

velopment practices and robust security for LLM-based ap-

plications [31, 32].

Both papers [33, 34] discuss the critical role of integrating

human oversight with AI systems to enhance cybersecurity

and AI security. The [33] highlights the importance of

combining AI’s pattern recognition and threat detection ca-

pabilities with human contextual understanding leads to

more effective risk management strategies but the [34]

highlights the limitations of current AI assessments that

lack human interaction components, proposing a framework

for Human Interaction Evaluation (HIE) to assess the im-

pact of AI systems on society. In our opinion, they both ar-

gue for a synergistic approach where human judgment

complements AI’s effectiveness in solving complex tasks,

mitigating the human-AI interaction and oversight risks.

The papers [35–37] represented the results in energy

efficiency, performance, and some metrics. These items are

related to sustainable development and can generate some

environmental and energy efficiency impacts, which are

being recognized as appropriate risk categories, such as

environmental impacts and energy efficiency. The [35, 37]

highlight the importance of optimizing LLM to improve

energy efficiency. Techniques such as quantization and

local inference can significantly reduce energy consum-

ption. The choice of model should take into account the

complexity of the task and energy constraints; smaller

models are suitable for simple tasks, while larger models,

although more powerful, consume more energy. Hardware

configurations also play a crucial role in energy efficiency.
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Research results and their discussion 

Naming clarification of “Risks in Software Develop-

ment” taxonomy. The paper [10] represented the taxonomy

for the “Risks in the Software Development Lifecycle” sub-

ject domain. It was 10 categories in the root. Analyzing the

current state of the problem, using the results of scientific

research in LLM-based applications and communicating

with subject matter experts (SMEs) in the IT industry, we

have updated the namings of those 10 risk categories as:

 Project Governance and Planning. These steps cover

risks associated with poor project scope definition,

unrealistic timelines, unclear objectives, insufficient

stakeholder engagement, and impacts of AI-related

uncertainty in project vision and management.

 Requirements Volatility and Ambiguity. Refers to

unclear, contradictory, or constantly changing requ-

irements, exacerbated by misinterpretation of LLM

business needs when used during discovery.

 Architecture and System Design. Risks are associated

with poor design decisions, failure to address non-

functional requirements, or monolithic LLM integration

without modularity. Includes design issues related to

agent orchestration and context preservation.

 Implementation and Code Quality. The steps cover

coding errors, unsafe practices, and poor technical

support. Code generated by LLM may introduce

syntactical correctness but semantic errors or energy

inefficiency.

 Testing, Validation, and Verification. LLM-based

systems require new testing strategies. Risks include

inadequate assessment of speed, consistency, conte-

xtual alignment, lack of golden datasets, or non-

determinism in results.

 Deployment and Release Management. The steps

eliminate failures in CI/CD pipelines, configure the

issues with containers and untested model behaviour in

production, and include the risk of rapid release cycles

without validation of model performance.

 Operational and Maintenance. Post-deployment risks

include drift monitoring, unforeseen changes to source

data after updates, and the inability to manage model

versions or backward compatibility.

 Team Skills and Capability Gaps. Due to insufficient

knowledge of AI tools, model lifecycle, operational

design, and ethics. Risks from low LLM literacy or

poor interdisciplinary collaboration.

 Stakeholder and Human Interaction. Includes the risk

of over-trusting a human, insufficient analysis of LLM

results, user trust issues, and failed handoffs between

humans and LLM agents.

 External Legal, Regulatory, and Market. Risks related

to GDPR compliance, intellectual property laws, export

controls, and the changing AI regulatory landscape.

Include risks related to changes in global AI policy and

market.

Also, we have defined risk categories of LLM-based

application development. Here we have found 20 crucially

important categories:

 Training Data Poisoning. Malicious manipulation of

training datasets to introduce biases or backdoors,

leading to inappropriate behavior or harm to society.

Includes issues with tracing the origin of training.

 Prompt Injection and Adversarial Inputs. Risks from

crafted inputs alter the behavior of a model to leak

data, create malicious content, or perform

unauthorized actions. Includes jailbreak attacks.

 Model Theft and IP Leakage. Unauthorized access

to LLM weights, configurations, or API keys. It

exposes IP, increases cloning risks, and can lead to

the leak of confidential information.

 Unsafe Output Generation. Risks associated with a

lack of post-processing, verification, human-in-the-

loop filtering, hallucinations, code injection, or

malicious recommendations.

 Denial of Service and Resource Exhaustion. LLM

endpoints are overloaded or GPU/CPU resources are

exhausted, which can lead to performance

degradation, service crashes, or be caused by

complex prompts or scaling bottlenecks.

 Third-Party and Supply Chain Dependencies. Risks

from compromised pre-trained models, datasets, or

external libraries. Includes transitive risks in AI

toolchains and open-source contributions.

 Confidential Information Exposure. Risks from

inadvertent storage and retrieval of personally

identifiable information, trade secrets or training on

improperly prepared data.

 Compliance and Ethical Governance Gaps. Risk of

violating privacy laws, ethical standards, or

principles of fairness, including a lack of AI

governance structures and accountability.

 Overdependence on Automation. Delegating

important LLM decisions without checks. Causes

risks to reliability, accountability, and erosion of

human skills.

 SDLC Stage-Specific Risk Alignment. Unique and

specific risks for each stage of the SDLC encourage

staged risk mitigation planning, service deviations,

data leakage during training, etc.

 Prompt Engineering Risks. Risks from poorly

designed hints that mislead models, degrade

inference quality or reinforce malicious patterns.

Includes security-sensitive hint generation errors.

 Evaluation and Benchmarking Challenges. The risks

of deploying poorly validated models due to weak or

unrepresentative metrics and a lack of industry

standards for assessing LLM performance.

 Toolchain and Infrastructure Risks. Configuration

errors, version mismatches, or orchestration issues

with containers, GPUs, and API limitations. LLMs

often require specialized, evolving information.

 Bias, Toxicity, and Societal Harm. LLMs can rep-

roduce and spread harmful stereotypes, misi-

nformation, or cultural biases, causing reputetional

or societal harm.



$% &(*+-%./ 01 *&3 4*67 9&:4/*.; =>;*737@4/, 2025, =. 7, A 1 (11) 91

 Semantic Drift and Obsolescence. Risks associated

with LLMs producing outdated or irrelevant

outcomes due to the decay or inconsistency of time-

sensitive knowledge.

 Model Update and Retraining Risks. Includes drift

during fine-tuning, version confusion, and inade-

quate regression testing after updates.

 Versioning and Compatibility Management. Difficulty

managing the compatibility of LLM versions and

configurations, APIs, subsequent applications, etc.

 Cost and Computational Resource Constraints. High

financial and environmental costs for inference,

training, and fine-tuning, including excessive usage

of GPUs in the cloud.

 Environmental and Sustainability Concerns. Risks

due to high carbon footprint and energy consumption

during training and inference that conflict with ESG

(Environmental, Social, and Governance) objectives.

 Innovation and Technology Obsolescence. The rapid

evolution of LLMs and frameworks can make

solutions obsolete, increasing the costs of updating,

retraining, and revalidation.

The proposed risk category names are close to termi-

nology in the IT industry, which allows extending the

taxonomy easily with extra appeared categories. Avoiding

the ambiguity in the meaning of the proposed categories,

including risks of LLM-based application development and

combining traditional SDLC risk categories with new AI-

related issues, we suggest the appropriate description for

further recognition.

Mapping of risk categories to SDLC stages. The

paper [10] represented 7 stages of SDLC, but, after

analysis of LLM-based application architectures and

development processes, we added an extra stage related

to staffing, named Team & Management, in the Table 1

below. This depends on the fact that LLM-based

architecture starts with scientific data analysis, unlike

traditional software, for which the technical solution

remains more important.

By the way, the traditional SDLC allows us to work

efficiently with LLM-based applications, but with some

changes. The traditional and LLM-based risk categories

mapping on SDLC stages is shown in Table 1.

Table 1. Risk categories mapping to SDLC stages

No. SDLC stages Risk categories

1
Project Initiation

and Planning

Project governance and planning risks, external legal, regulatory, and market risks, innovation and

technology obsolescence

2
Requirement

Analysis

Requirements volatility and ambiguity, compliance and ethical governance gaps, training data

poisoning, prompt injection and adversarial inputs, bias, toxicity, and societal harm

3
Architectural

Design

Architecture and system design risks, prompt engineering risks, toolchain and infrastructure risks,

semantic drift and obsolescence

4 Development
Implementation and code quality risks, model theft and ip leakage, unsafe output generation, third-party

and supply chain dependencies, confidential information exposure, overdependence on automation

5 Testing
Testing, validation, and verification risks, evaluation and benchmarking challenges, SDLC stages-

specific risk alignment

6 Deployment
Deployment and release management risks, denial of service and resource exhaustion, versioning and

compatibility management, cost and computational resource constraints

7
Maintenance

and Operations

Operational and maintenance risks, model update and retraining risks, environmental and sustainability

concerns

8
Team &

Management

Team skills and capability gaps, stakeholder and human interaction risks

Examples of risks and their indicators. Risk definition

plays an extremely important role, as it is a way to

distinguish risks from each other. Identifying risks, we use

the following rules for risk definition: risk name should

consist of 2 to 10 words extending its context; we detect two

possible types of relationships (“Related to” and “Depends

on”) with other risks; we define a mitigation plan (look at

Table 2).

Table 2. Examples of risks for the category “Project governance and planning risks”

No. Risks Risk description Related to Depends on Mitigation plan

1 2 3 4 5 6

1
Inadequate

risk planning

Failure to identify and plan for

risks early can lead to delayed

mitigation and project failure

Stakeholder and

Human Interaction

Risks

Team Skills

and Capability

Gaps

Perform a comprehensive

risk assessment at the

beginning of the project

2
Misaligned

goals

Different goals of stakeholders

and developers can lead to project

inefficiency or failure

Requirements

volatility and

ambiguity

Stakeholder

and human

interaction risks

Use stakeholder interviews

and alignment workshops

3
Unrealistic

timelines

Deadlines that do not reflect

actual complexity increase the

likelihood of rushed and poor-

quality delivery

Implementation and

code quality risks

Team skills

and capability

gaps

Use historical project data

to inform planning

and provide contingency

reserves
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Continuation !f Table 2

1 2 3 4 5 6

4
Budget under-

estimation

Underestimating the budget

can cause resource shortages

and disruptions

Cost and computa-

tional resource

constraints

External legal,

regulatory, and

market risks

Apply bottom-up cost

estimation and periodic

budget reviews

5

Inadequate

governance

structure

Without a clear governance

structure, decision-making

and accountability suffer

Team skills and

capability gaps

Stakeholder

and human

interaction risks

Establish project charters,

roles, and escalation paths

Also, we have a definition of risk identifier [10] which

consists of 7 to 20 words. This is the manifestation of the

risk in a specific stage of the SDLC, i. e., one risk has a

minimum of 8 identifiers corresponding to the number of

stages in the SDLC. Sometimes, one risk has some indica-

tors, and one risk indicator can point to some risks.

Chosen sets and formulas for risk attribute formaliza-

tion. Risk assessment in LLM-based applications involves a 

systematic approach to identifying, evaluating, and mitigat-

ing potential vulnerabilities. The following steps describe a

comprehensive risk assessment methodology:

 Risk identification. Start by cataloguing all potential

risks associated with using LLM. This includes tech-

nical risks (e. g., data corruption, instant implemen-

tation), operational risks (e. g., model performance

degradation), and compliance risks (e. g., data

privacy breaches). Involving stakeholders and SMEs

from different fields can provide a holistic view of

possible risk factors.

 Risk analysis. Risk potential impact analysis and

probability of occurrence involve assessing the

severity of the consequences if the risk materializes

and estimating the probability based on historical

data, expert judgment, or statistical models.

 Risk assessment. Prioritizing risks helps to focus

resources on addressing the most critical vulnera-

bilities. Creating a risk matrix can help to visualize

and rank risks, facilitating informed decision-making.

 Risk mitigation planning. Developing and imple-

menting strategies for risk mitigation may include

technical measures (e. g., improving input validation

to prevent rapid adoption), process improvements (e.

g., regularly retraining a model to eliminate data

drift), and policy interventions (e. g., creating a data

governance infrastructure).

 Monitoring and review. Risk management is an

ongoing process that continuously monitors the

effecttiveness of mitigation strategies and the

emergence of new risks. Regularly review and

update the risk assessment to adapt to new threats

and changes in the work environment.

 Documentation and reporting. Maintaining compre-

hensive documentation of the risk assessment

process is essential. This includes detailed reports on

identified risks, analysis methodologies, mitigation

strategies, and ongoing monitoring results. Well-

documented risk assessments aid in compliance

reviews, knowledge sharing, and iterative impro-

vement of risk management strategies.

Beyond traditional risks, LLM-based applications intro-

duce additional factors that require attention:

 Explainability and interpretability. LLMs are often

considered black box systems, meaning their

decision-making process is not transparent. This

creates problems with error correction, integrity, and

compliance. Using explanation techniques such as

SHAP (SHapley Additive exPlanations) or LIME

(Local Interpretable Model-Agnostic Explanations),

we interpret the model behavior.

 Ethical and societal implications. LLMs may

unintentionally generate misinformation, biased

results, or harmful content. Companies deploying

LLM-based solutions should be aware of ethical

considerations, such as fairness in AI (preventing

bias in training data); content moderation (ensuring

the safety and relevance of the results produced);

and transparency (clearly stating when AI is used in

decision-making).

 Continuous monitoring and model management.

Unlike traditional software, LLMs degrade over

time as new data trends emerge. Continuous

monitoring is critical to identify performance

deviations because it allows drift detection and

periodic retraining models as requested.

 Cost and computational efficiency. LLMs require

significant computational resources, making them

expensive to train and deploy. Companies must

balance model performance with infrastructure

costs. Optimization of LLM usage through know-

ledge distillation, quantization, and model reduction

allows for to reduction of resource consumption.

LLM-based software development fundamentally

changes our approach to SDLC, architecture, and risk man-

agement. By implementing structured assessment systems,

robust security measures, and ongoing monitoring, devel-

opers can harness the power of LLM while mitigating the

associated risks.

All defined risks are represented in the taxonomy of

risks. Thus, in choosing the best approach for risk calcula-

tions, we should define structured sets and hierarchies. As-

suming we have the sets:
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 SDLC stages:

{ }1 2 8, , ,s s s= ¼S , (1)

where S – is a set of 8 stages.

 Software components per stage:

{ }1 2, , , ic c c= ¼C , (2)

where C – is a set of i components.

 System requirements:

{ }1 2
, , ,

l
q q q= ¼Q , (3)

where Q – is a set of l requirements.

Risks:

{ }1 2
, , ,

m
R r r r= ¼ , (4)

where R – is a set of m risks.
 A dependency graph:

( , ) [0,1]i jD r r Î , (5)

where D – is a set of dependencies between ri risk and rj.
 Traceability Mapping:

2CTrace ® , (6)

where connects requirements to components.
Assume, that each risk has some attributes as shown in

Table 3.

Table 3. Examples of risks attribute to formalisation

No. Attribute Formalisation Description

1 Probability ( , ) [0,1]V c r Î The likelihood that risk r affects component c

2 Impact ( , )I c r +Îℝ Severity of impact of risk r on component c

3 Exposure ( , ) ( , ) ( , )RE c r V c r I c r= ´ The risk exposure of r on c

4 Costs of mitigation ( )C r +Îℝ Estimated effort / cost to mitigate risk r

5 Risk source ( )O r S Q CÎ È È Origin (phase or requirement) of risk

The risk aggregation formulas are shown below:

 Component-level exposure:

( , ) ( , ) ( , )RE c r V c r I c r= ´ . (7)

 Stage-level exposure:

( )

( ) ( , )
i

i

c C s r R

RE s E c r
Î Î

= å å . (8)

 Requirement-level exposure:

Trace( )

( ) ( , )
j

j

c q r R

RE q E c r
Î Î

= å å . (9)

 System-level total risk:

Trace( )

( ) ( , )
j

j

c q r R

RE q E c r
Î Î

= å å . (10)

 Propagate impact through graph:

eff ( ) ( ) ( , ) ( )
j

i i i j j

r R

I r I r D r r I r
Î

= + ´å . (11)

 Contextual sensitivity risks based on domain context:

context
( ) [0,2]W r Î ,

adj context( , ) ( ) ( , ) ( , )RE c r W r V c r I c r= ´ ´ . (12)

 Explainability index:

( , ) [0,1]E c r Î . (13)

Updated (10) system-level total risk:

( )total context eff

( )

( ) ( ) ( ) ( , , ) ( , , ) 1 ( , )
i is S c C s r R

RE t W r D r V c r t I c r t E c r
Î Î Î

= ´ ´ ´ ´ -é ùë ûå å å , (14)

where
total

( )RE t – is a system-level total risk at moment t;

context
( )W r – contextual weight;

eff
( )D r – risk dependency

multiplier, which accounts for cascading risk; ( )1 ( , )E c r- –

explainability penalty, which increases risk if the issue is

poorly explainable; ( , , ) ( , , )V c r t I c r t´ – time-varying fac-

tors, which track risk evolution over time.

The proposed aforementioned formulas for risk assess-

ment define a structured quantitative methodology for risk

assessment in LLM-based software systems. They map

risks to components, requirements, and SDLC stages, cal-

culating risk by combining probability and impact. Risk

propagation through dependency graphs models cascading

effects. The final system-level risk score combines all ad-

justed component-level risks, weighted by dependency,

contextual sensitivity, explainability, and time-varying

risky behavior. These formulas are not stable yet; they just

show our approach to risk calculations and will be updated

during thorough testing.

Discussion of research results. Integrating LLMs re-

quires a deep understanding of their capabilities and limita-

tions. Stakeholders should define clear objectives consider-

ing factors such as data privacy, ethical implications, and

potential biases inherent in LLMs. The planning and re-

quirements analysis stages demand a multidisciplinary ap-

proach, involving data scientists, ethicists, and domain ex-

perts to ensure comprehensive requirement gathering.

The implementation stage involves coding and fine-

tuning LLM, which requires extra expertise and access to

significant computing resources due to LLM computing ca-

pacity. Developers must consider model selection tech-

niques, data channels, integration points, and frameworks

for computing optimization.

Traditional testing methodologies don’t fit the testing

requirements for LLM-based applications because, in addi-

tion to functional testing, emphasis should be placed on in-

formation security, assessing model accuracy, robustness to

competing inputs, and ethical considerations such as bias

detection. Automated testing systems should be comple-



Ukrainian Journal of Information Technology, 2025, vol. 1, No. 194

mented with tools capable of assessing LLM-specific at-

tributes with predefined metrics.

Deploying LLM-based applications requires continuous

monitoring to detect model drift, performance degradation,

and new biases. Maintenance involves regularly updating

the training data and model parameters, ensuring the appli-

cation is up-to-date and reliable.

The relationships between software requirements and

software development risks were established using prede-

fined risk indicators [10]. The proposed risk indicators at

each stage of the SDLC and their connections with the se-

lected software development methodology make it possible

to better structure concepts in the taxonomy of software de-

velopment risks. The proposed taxonomy of SDLC risks in

[10] didn’t consider the specifics of LLM integration in

software architecture.

The scientific novelty of the obtained research results

includes the LLM-based application architecture risk cate-

gories based on the investigation of impacts and changes in

the SDLC stages, mapping of the revealed risk categories

on SDLC stages based on SME assessment, updated tradi-

tional taxonomy of “Risks in Software Development” with

revealed risk categories and their real samples, the approach

for risk identification process by risk identifiers and risk at-

tributes. The risk identifiers allow us to recognize risk man-

ifestations at each SDLC stage, and risk attributes allow the

risk calculation.

The practical significance of the research results con-

sists of the ability to automate monitoring of the software

risks at each stage of SDLC, including LLM-based applica-

tion architectures, with the recognized risk manifestations

per each stage of SDLC, and evaluate the software risks by

simple risk attributes calculations. Also, the updated taxon-

omy allows for allocating or finding out the possible new

software risks in the future.

Conclusions / !#$&')*# 

The integration of LLMs impacts SDLC, generating new

categories of risks. The results of the research sketch an

updated taxonomy of risks in the SDLC, focusing on both

traditional software development and LLM-based appli-

cations. It revises the naming of the ten main risk categories

and introduces twenty additional risks specific to LLM.

These updated categories cover 8 stages of the SDLC,

addressing new risks associated with LLM-based applica-

tions. The proposed mapping of risk categories across SDLC

stages relies on the unique requirements of LLM-based

architectures. This mapping is innovative and highlights

specific risks at each stage using appropriate risk indicators.

The proposed risk assessment methodology uses a

comprehensive set of formulas to calculate and aggregate

risks, including elements such as probability, impact, risk,

and mitigation costs. The methodology includes context-

specific adjustments for cascading effects and explai-

nability penalties, providing a quantitative basis for asse-

ssing risks throughout the SDLC. Especially for LLM-

based applications, the paper emphasizes additional issues

such as explainability, societal implications, context, and

continuous monitoring.
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