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SECURITY AND OTHER RISKS RELATED TO LLM-BASED SOFTWARE DEVELOPMENT

Introduction

Generative Artificial Intelligence (GAI) is a new technology, and even though its capabilities are thoroughly being in-
spected and applied in different industries, it continues to develop intensively bringing in new types of risks in the soft-
ware development domain. The variety of large language models (LLMs) emergency has led to changes at all stages of the
Software Development Life Cycle (SDLC). Thus, the main objectives of the article are to identify and understand the po-
tential risks associated with LLM-based software development and to identify the best approaches to mitigate the risks.
The paper presents observations of common software architectures based on LLM, risks and their impact on traditional
SDLCs, approaches to testing and software quality assessment, and an analysis of how LLM has changed the software de-
velopment industry. The widespread LLM-based application architectures already have a traditional set of components
like a chatbot channel for interaction with users, a knowledge base for providing the appropriate context to LLM, the com-
ponents required for authentication and providing secure knowledge processing during the session and prompt accessibil-
ity, retrieval-augmented generation system (RAG) and evaluation modules. It is shown that integrating LLM into software
generates unique risks that require changes to the already established SDLC at the level of architectural modifications, the
evaluation system, and best practices for risk mitigation. Each component of the LLM-based system can generate specific
risks in each SDLC stage. To more effectively identify and delineate risks, risk naming and its description were consid-
ered, and the traditional risk taxonomy was updated with an LLM-based software taxonomy. It is worth noting that anoth-
er stage has been added to the conventional SDLC, which is related to the selection and management of personnel. This is
because GAI is now a new technology and requires changes to the traditional composition of specialists. The risk exam-
ples, shown in the paper, are presented with risk identifiers that help identify the risk in a specific SDLC and connections
to other related risks. It is an assumption that one risk has a minimum of 8 risk identifiers, what is equal to 8 SDLC stages.
It explained how the risk manifests in different SDLC stages, which were defined by subject matter experts (SMEs) from
IT companies. Finally, some sets and concepts were formalized for future calculations and research of the identified risks.

Keywords: software development life cycle, software risks, security risks, LLM-based software architecture.

. . architectures of applications that incorporate LLMs.
Relevance of research. Integrating LLMs into software

The subject of research is the risks associated with the

development has brought a transformative era, offering
powerful enhancements for natural language processing
(NLP) and automation. However, this advancement requi-
res a critical analysis of the associated risks and challenges
considering key items: the imperative changes in the
Software Development Life Cycle (SDLC) due to LLM
trends; the architectural shifts prompted by LLM applic-
ations; the essential role of evaluation frameworks; the
identification of risks within LLM-based SDLC and their
mitigation frameworks; and additional pertinent consi-
derations.

The object of research is the traditional taxonomy of
software development risks.

The purpose of the research is to analyse LLM-based
application architectures, aiming to identify the appropriate
risk categories, their samples, and the initial formalization
of risk attributes.

It becomes clear that the integration of LLM into
software brings new challenges and risks; therefore, the
problems related to new risk identification, as well as their
mutual influence on other already known ones. To achieve
this purpose, the following main research objectives are
identified:

1) identify problem areas in the LLM-based application
architecture where new risks are being generated;

2) analyse how new risks manifest in different SDLC
stages of LLM-based applications overview;
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3) clarify the definitions and standardize the namings
for newly discovered risks;

4) analyse and update the traditional taxonomy with
new risk categories related to LLM-based application archi-
tectures and mapping of the risk categories to SDLC stages;

5) define risk indicators for new risks and find out
some samples of risks per each new category;

6) define the possible initial mathematical formali-
zation of risks and steps to mitigation in the case of LLM-
based application development.

Analysis of recent research and publications. Indeed, the
emergence of LLM has significantly impacted the
traditional SDLC, requiring adaptations to accommodate
these models’ unique characteristics. The common SDLC
stages — planning, requirements analysis, design, imple-
mentation, testing, deployment, and maintenance — must
evolve to address the complexities introduced by LLM.

A place of risks in widespread LLM-based application
architectures. An LLM integration into software systems
forces a rethink of traditional architectural models. LLMs,
with their data-intensive and computationally demanding
nature, create unique challenges and opportunities for
system design. The articles [1, 2] have represented the most
comprehensive observation from the fundamental concepts
of the LLM traditional pipeline in the training phase,
through dataset processing and the wide range of LLM-
based applications solving real-world problems, to the
exploration of LLM deployment open issues and challen-
ges in real-world scenarios. In terms of applications, the
paper [1] discusses the deployment of LLMs across various
domains, including NLP tasks like translation, summa-
rization, and question-answering tasks.

LLM is not being implemented into the application as an
extra component, it requires some orchestrators that depend
on application assignments. The open issues and challenges
associated with LLMs, such as ethical concerns, biases in
training data, computational resource demands, LLM
frameworks and orchestrators, RAG architectures, and
effective deployment of LLMs in real-world scenarios were
inspected in [1-4]. Chatbot is one of the most widespread
assignments for LLM-based applications. Thus, in [1-2],
this question was considered and highlighted as prominent
because GAI allows the preparation of intelligent, tailored
assistance solving pretty complex questions. By integrating
Generative Pre-trained Transformer-based models with
Retrieval Augmented Generation (RAG) and Function
Calling features, the described architecture in [2] aims to
provide a co-pilot-like experience, guiding users through
understanding requirements and generating configuration
scripts. LLMs necessitate robust data pipelines to manage
the continuous flow of training and inference data.
Architectures incorporate components for data
collection, preprocessing, storage, and retrieval, ensuring
data quality and consistency. Efficient data handling is
critical to maintaining the performance and reliability of
LLM applications [2—4].

must

Based on the architecture described in [1-4], we can
assume that the following software development risks
emerge due to the integration of LLMs as core orchestrated
components rather than as simple add-ons. Thus, we want
to highlight some categories of related risks such as
architectural, integration, data pipeline, content quality,
model-based, ethical and regulatory, deployment, opera-
tional, and human interaction (chatbot use case).

Software architectures are increasingly adopting modular
designs to accommodate LLMs. This approach encapsulates
LLM functionalities within  distinct modules or
microservices, promoting scalability and maintainability.
Such modularization allows for independent development
and deployment of LLM components, facilitating updates
and experimentation without disrupting the entire system.
In the works [5-8], agent-based software architecture was
considered.

In [6], SALLMA, a software architecture for multi-agent
LLM-based systems addressing single-agent limitations like
lack of memory and task flexibility, was introduced.
SALLMA is designed as a distributed, modular architecture
to potentially support scalability, adaptability, and
resilience. It uses an Operational and Knowledge Layer to
manage tasks and context. A proof of concept demonstrates
SALLMA’s viability using modern Al and container
technologies in real-world scenarios. This architecture is
interesting for us because it represents a distributed system.
Given the computational demands of LLMs, architectures
must be designed for scalability. This involves leveraging
distributed computing resources, load-balancing optimi-
zation, and implementing caching strategies. Cloud-based
solutions are often employed to provide the necessary
infrastructure, offering flexibility and scalability to meet
varying workloads. Analyzing SALLMA [6] architecture,
we found some risk categories such as agent coordination
failures, memory and context drift, security and privacy,
model bias and validation, system scalability and perfor-
mance, integration complexity, maintainability, and regu-
latory compliance.

LLM applications require some security considerations
because integrating LLMs introduces new security
concerns, including vulnerabilities to adversarial attacks
and data breaches. Architectures must incorporate robust
security measures, such as input validation, output sani-
tization, and access controls, to safeguard against these
threats. Implementation of the required techniques can
generate security risks [8]. Additionally, secure APIs and
endpoints are essential to protect data integrity and
confidentiality.

Deploying LLM-based applications requires a com-
prehensive evaluation framework to assess their perfor-
mance, reliability, and ethical implications. Traditional eva-
luation metrics are insufficient to capture the multifaceted
nature of LLM, which drives the development of
specialized application features. Evaluating LLM program
performance requires metrics that, in addition to accuracy,
include measures of fluency, coherence, and contextual
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relevance. As usual, we can use benchmarking with
standardized data sets and tasks to facilitate comparative
analysis, helping to identify strengths and weaknesses, but
sometimes we should create a golden dataset. Here, we
recognized the next categories of possible risks such as
security, privacy, evaluation, reliability, integration, and
ethical and regulatory.

Risks in SDLC of LLM-based applications overview.
Integrating LLM into the SDLC poses several risks that
must be identified and managed to ensure the successful
deployment of robust and ethical applications [9]. These
risks span different stages of the SDLC, impacting the
overall security, reliability, and ethical integrity of software
systems.

There are a lot of different risk categories related to
SDLC of LLM-based applications and their naming is not
completely standardized. Therefore, created taxonomies
[10-12] are good for starting the research. The paper [12]
presents GUARD-D-LLM, a novel risk assessment engine
for the downstream use of LLMs, which operates the risks
that are being recognized and named by LLMs — it is one of
the ways to standardize the risk taxonomy. In any case, it is
a step ahead. Of course, it is very hard to inspect all
possible related risk categories, thus, we would start from
the most important ones based on some LLM-based
application features such as data poisoning, rapid injection
attacks, model theft, insecure output processing, denial of
service (DoS), supply chain vulnerabilities,
information disclosure, legal and regulatory compliance,
overreliance on LLMs, SDLC stage-specifics, prompt
engineering, human-agent collaboration, evaluation and
testing of LLMs, tooling and infrastructure, ethical and
societal, concept and knowledge drift, model updating,
model versioning, costs and sustainability.

Data Poisoning — is one of the possible risk categories
because LLMs are susceptible to data poisoning attacks,
where attackers manipulate training data to negatively
affect the behavior of the model. This can lead to the model
producing biased or harmful results, undermining trust and
reliability. Implementing rigorous data validation and
traceability is essential to mitigate this risk [9, 13, 14]. Data
poisoning involves the intentional manipulation of training
data to introduce malicious behavior or biases into an LLM.
Attackers can inject corrupted data into the training set,
causing the model to learn and maintain unwanted patterns.
As aresult, LLM creates insecure code that spreads the bias
or disseminates false information [13]. Implementing strict
data wvalidation, traceability, and the use of anomaly
detection techniques is important to mitigate this risk.

Rapid injection attacks occur when attackers create data
designed to manipulate the behavior of an LLM, leading to
unauthorized actions or the disclosure of sensitive infor-
mation. For example, an attacker could introduce a spe-
cially crafted prompt that causes the LLM to generate
malicious code or disclose sensitive data. To protect against
such attacks, it is essential to implement strict input vali-

sensitive

dation, contextual filtering, and constant monitoring of
model interactions [13, 15-17].

In the case of model theft [18], LLMs represent
significant investments in intellectual property and
computing technology. Unauthorized access or theft of
model parameters can lead to competitive disadvantages
and security breaches. Implementing robust access controls,
encryption, and monitoring unauthorized access attempts is
critical to protecting against model theft.

Insecure output processing refers to inadequate validation
and sanitization of LLM-generated content before it is used
or displayed. This can lead to the execution of malicious
code, the disclosure of sensitive information, or the
distribution of inappropriate content. Ensuring that all
results are thoroughly vetted, implementing content filte-
ring mechanisms, and maintaining human oversight are
critical measures to address this risk [19].

Denial of Service (DoS) risk is related to attacks that aim
to overload the LLM with incoming data that exhausts its
computing resources, leading to reduced performance or
complete unavailability. Such attacks can disrupt services
and impact business operations. Implementing rate limiting,
resource allocation controls, and monitoring for unusual
activity patterns can help mitigate the risks of DoS [20].

Software development is based on complex software
supply chains that offer efficiency and reuse but pose
significant security risks. Attacks on a single link can
impact entire systems, especially through compromised
third-party components [21, 22]. LLM-based applications
often rely on third-party components such as pre-trained
models, datasets, unstructured data, and other libraries.
Compromises in any part of this supply chain can create
vulnerabilities in the system. Conducting thorough
validation of external components, maintaining dependency
inventories, and applying timely updates and patches are
key methods for managing supply chain risk [23]. Paper
[21] proposes a holistic end-to-end risk management
(FARM) framework helping companies to identify, assess,
respond, and monitor security threats in open-source and
third-party software across the SDLC.

Large Language Models (LLMs) offer powerful capa-
bilities for language understanding, generation, and security
applications such as vulnerability detection and privacy
protection. LLMs trained on large datasets may ina-
dvertently remember and disclose confidential information
in the training data. This can lead to privacy breaches and
regulatory non-compliance. Using differentiated privacy
and access control can help prevent unintended disclosure.
However, their human-like mindset also allows them to be
abused in offensive attacks. This study [24] recognizes their
impact as “good,” “bad,” and “ugly,” highlighting both
their cybersecurity potential and the need for deeper
research into new threats and defenses.

The European Data Protection Board (EDPB) represented
the updated document [25], which offers practical
recommendations for developers, users, and decision-
makers to manage privacy and data protection risks in
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Large Language Model (LLM) systems. It supports General
Data Protection Regulation (GDPR) compliance and com-
plements Data Protection Impact Assessment (DPIA)
requirements. The guide covers LLM fundamentals, data
flows, privacy risks, risk assessment, mitigation strategies,
residual risk assessment, and monitoring. It includes real-
world examples and tools for systematic risk management.
Developers receive guidance on integrating risk controls
into system design, and users receive support in assessing
risks before deployment. The methodology helps compa-
nies build secure, confidential LLM-based applications and
make informed and responsible Al decisions because the
usage of LLM must comply with various legal and
regulatory requirements, including those relating to data
protection, intellectual property, and the ethical use of Al
[26]. Non-compliance can lead to legal sanctions and
reputational damage. To manage legal and regulatory
compliance risks, it is necessary to be aware of relevant
regulations, conduct regular compliance audits, and imple-
ment a management system.

The article [26] examines the risks of exposing
confidential data when integrating large language models
(LLMs) into scientific workflows. It introduces “Data
Shield”, a framework designed to detect data leaks, sum-
marize privacy policies, and visualize data flows, ensuring
alignment with organizational policies. Ongoing user
research is aimed at evaluating its effectiveness in real-
world scenarios.

The overreliance on LLMs for critical decision-making
processes can be risky, especially given their limitations
and potential for error. Ensuring that LLM results are used
to augment human judgment, not replace it, and main-
taining mechanisms for human review and intervention are
important to mitigate this risk [27, 28]. The paper [27]
explores the ethical and educational impacts of relying on
Large Language Models (LLMs) for critical thinking. It
highlights risks to human agency, changes in educational
frameworks, and the need to preserve reasoning skills. The
paper [27] proposes models for human-LLM interaction
and calls for ethical guidelines and interdisciplinary re-
search on Al-augmented cognitive processes. In [28],
software engineers have integrated LLMs like ChatGPT
into workflows. With mixed results, they have revealed
failures, causes, and mitigation strategies guiding future
human-AI collaboration in software engineering.

Despite modern tools for building software projects and
several risk management models, software still has high
failure rates [29]. Improper risk assessment during software
development was a major reason behind these unsuccessful
projects as risk analysis was done on overall projects. The
work [29] attempts to identify key risk factors and risk
types for each of the development stages of SDLC, which
would help to identify the risks at a much earlier stage of
development. Empowering the application by GAI, the
SDLC has evolved through agile methods, emphasizing
speed and repeatability. Thus, we should map SDLC Stage-
Specific Risk to software requirements because, with

generative Al like ChatGPT, the software development
process is poised for major transformation, potentially
redefining the SDLC stages and significantly impacting the
roles of software engineers [30].

The article [31] highlights security risks in prompt
engineering during operational design, including instant
implementation, leakage, jailbreaking, and manipulation by
opposing parties. It addresses model poisoning, contextual
drift, and social engineering. The focus is on safeguards
such as input sanitary treatment, rapid isolation, and ethical
constraints to ensure the integrity of the Al system, its
resilience, and ethical operation across applications.

As is known, LLMs have given rise to promptware, a new
paradigm where natural language prompts replace code.
Unlike traditional software, promptware is ambiguous and
non-deterministic, creating unique challenges. Paper [32]
introduces promptware engineering — a structured method-
ology to systematically design, test, and evolve prompts —
bridging software engineering principles with LLM-specific
development needs and prompt engineering. LLMs shift
software paradigms toward operational software, relying on
natural language instead of code. This creates engineering
and security risks, including rapid implementation, context
drift, and ambiguous behavior due to the probabilistic na-
ture of LLMs. Paper [31] proposes a systematic engineering
framework for operational software, while [32] outlines
critical threats and precautions during operational design.
Together, they highlight the urgent need for structured de-
velopment practices and robust security for LLM-based ap-
plications [31, 32].

Both papers [33, 34] discuss the critical role of integrating
human oversight with Al systems to enhance cybersecurity
and Al security. The [33] highlights the importance of
combining Al’s pattern recognition and threat detection ca-
pabilities with human contextual understanding leads to
more effective risk management strategies but the [34]
highlights the limitations of current Al assessments that
lack human interaction components, proposing a framework
for Human Interaction Evaluation (HIE) to assess the im-
pact of Al systems on society. In our opinion, they both ar-
gue for a synergistic approach where human judgment
complements Al’s effectiveness in solving complex tasks,
mitigating the human-Al interaction and oversight risks.

The papers [35-37] represented the results in energy
efficiency, performance, and some metrics. These items are
related to sustainable development and can generate some
environmental and energy efficiency impacts, which are
being recognized as appropriate risk categories, such as
environmental impacts and energy efficiency. The [35, 37]
highlight the importance of optimizing LLM to improve
energy efficiency. Techniques such as quantization and
local inference can significantly reduce energy consum-
ption. The choice of model should take into account the
complexity of the task and energy constraints; smaller
models are suitable for simple tasks, while larger models,
although more powerful, consume more energy. Hardware
configurations also play a crucial role in energy efficiency.
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Research results and their discussion

Naming clarification of “Risks in Software Develop-
ment” taxonomy. The paper [10] represented the taxonomy
for the “Risks in the Software Development Lifecycle” sub-
ject domain. It was 10 categories in the root. Analyzing the
current state of the problem, using the results of scientific
research in LLM-based applications and communicating
with subject matter experts (SMEs) in the IT industry, we
have updated the namings of those 10 risk categories as:

Project Governance and Planning. These steps cover
risks associated with poor project scope definition,
unrealistic timelines, unclear objectives, insufficient
stakeholder engagement, and impacts of Al-related
uncertainty in project vision and management.
Requirements Volatility and Ambiguity. Refers to
unclear, contradictory, or constantly changing requ-
irements, exacerbated by misinterpretation of LLM
business needs when used during discovery.
Architecture and System Design. Risks are associated
with poor design decisions, failure to address non-
functional requirements, or monolithic LLM integration
without modularity. Includes design issues related to
agent orchestration and context preservation.
Implementation and Code Quality. The steps cover
coding errors, unsafe practices, and poor technical
support. Code generated by LLM may introduce
syntactical correctness but semantic errors or energy
inefficiency.

Testing, Validation, and Verification. LLM-based
systems require new testing strategies. Risks include
inadequate assessment of speed, consistency, conte-
xtual alignment, lack of golden datasets, or non-
determinism in results.

Deployment and Release Management. The steps
eliminate failures in CI/CD pipelines, configure the
issues with containers and untested model behaviour in
production, and include the risk of rapid release cycles
without validation of model performance.

Operational and Maintenance. Post-deployment risks
include drift monitoring, unforeseen changes to source
data after updates, and the inability to manage model
versions or backward compatibility.

Team Skills and Capability Gaps. Due to insufficient
knowledge of AI tools, model lifecycle, operational
design, and ethics. Risks from low LLM literacy or
poor interdisciplinary collaboration.

Stakeholder and Human Interaction. Includes the risk
of over-trusting a human, insufficient analysis of LLM
results, user trust issues, and failed handoffs between
humans and LLM agents.

External Legal, Regulatory, and Market. Risks related
to GDPR compliance, intellectual property laws, export
controls, and the changing Al regulatory landscape.
Include risks related to changes in global Al policy and
market.

Also, we have defined risk categories of LLM-based
application development. Here we have found 20 crucially
important categories:

Training Data Poisoning. Malicious manipulation of
training datasets to introduce biases or backdoors,
leading to inappropriate behavior or harm to society.
Includes issues with tracing the origin of training.
Prompt Injection and Adversarial Inputs. Risks from
crafted inputs alter the behavior of a model to leak
data, create malicious content, or perform
unauthorized actions. Includes jailbreak attacks.
Model Theft and IP Leakage. Unauthorized access
to LLM weights, configurations, or API keys. It
exposes IP, increases cloning risks, and can lead to
the leak of confidential information.

Unsafe Output Generation. Risks associated with a
lack of post-processing, verification, human-in-the-
loop filtering, hallucinations, code injection, or
malicious recommendations.

Denial of Service and Resource Exhaustion. LLM
endpoints are overloaded or GPU/CPU resources are
exhausted, which can lead to performance
degradation, service crashes, or be caused by
complex prompts or scaling bottlenecks.

Third-Party and Supply Chain Dependencies. Risks
from compromised pre-trained models, datasets, or
external libraries. Includes transitive risks in Al
toolchains and open-source contributions.
Confidential Information Exposure. Risks from
inadvertent storage and retrieval of personally
identifiable information, trade secrets or training on
improperly prepared data.

Compliance and Ethical Governance Gaps. Risk of
violating privacy laws, ethical standards, or
principles of fairness, including a lack of Al
governance structures and accountability.
Overdependence on  Automation. Delegating
important LLM decisions without checks. Causes
risks to reliability, accountability, and erosion of
human skills.

SDLC Stage-Specific Risk Alignment. Unique and
specific risks for each stage of the SDLC encourage
staged risk mitigation planning, service deviations,
data leakage during training, etc.

Prompt Engineering Risks. Risks from poorly
designed hints that mislead models, degrade
inference quality or reinforce malicious patterns.
Includes security-sensitive hint generation errors.
Evaluation and Benchmarking Challenges. The risks
of deploying poorly validated models due to weak or
unrepresentative metrics and a lack of industry
standards for assessing LLM performance.
Toolchain and Infrastructure Risks. Configuration
errors, version mismatches, or orchestration issues
with containers, GPUs, and API limitations. LLMs
often require specialized, evolving information.
Bias, Toxicity, and Societal Harm. LLMs can rep-
roduce and spread harmful stereotypes, misi-
nformation, or cultural biases, causing reputetional
or societal harm.
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e Semantic Drift and Obsolescence. Risks associated
with LLMs producing outdated or irrelevant
outcomes due to the decay or inconsistency of time-
sensitive knowledge.

e Model Update and Retraining Risks. Includes drift
during fine-tuning, version confusion, and inade-
quate regression testing after updates.

e Versioning and Compatibility Management. Difficulty
managing the compatibility of LLM versions and
configurations, APIs, subsequent applications, etc.

e Cost and Computational Resource Constraints. High
financial and environmental costs for inference,
training, and fine-tuning, including excessive usage
of GPUs in the cloud.

e Environmental and Sustainability Concerns. Risks
due to high carbon footprint and energy consumption
during training and inference that conflict with ESG
(Environmental, Social, and Governance) objectives.

e Innovation and Technology Obsolescence. The rapid
evolution of LLMs and frameworks can make
solutions obsolete, increasing the costs of updating,
retraining, and revalidation.

The proposed risk category names are close to termi-
nology in the IT industry, which allows extending the
taxonomy easily with extra appeared categories. Avoiding
the ambiguity in the meaning of the proposed categories,
including risks of LLM-based application development and
combining traditional SDLC risk categories with new Al-
related issues, we suggest the appropriate description for
further recognition.

Mapping of risk categories to SDLC stages. The
paper [10] represented 7 stages of SDLC, but, after
analysis of LLM-based application architectures and
development processes, we added an extra stage related
to staffing, named Team & Management, in the Table 1
below. This depends on the fact that LLM-based
architecture starts with scientific data analysis, unlike
traditional software, for which the technical solution
remains more important.

By the way, the traditional SDLC allows us to work
efficiently with LLM-based applications, but with some
changes. The traditional and LLM-based risk categories
mapping on SDLC stages is shown in Table 1.

Table 1. Risk categories mapping to SDLC stages

No. SDLC stages

Risk categories

Project Initiation

and Planning technology obsolescence

Project governance and planning risks, external legal, regulatory, and market risks, innovation and

) Requirement Requirements volatility and ambiguity, compliance and ethical governance gaps, training data
Analysis poisoning, prompt injection and adversarial inputs, bias, toxicity, and societal harm

3 Architectural Architecture and system design risks, prompt engineering risks, toolchain and infrastructure risks,
Design semantic drift and obsolescence

4 Development

Implementation and code quality risks, model theft and ip leakage, unsafe output generation, third-party
and supply chain dependencies, confidential information exposure, overdependence on automation

3 Testing specific risk alignment

Testing, validation, and verification risks, evaluation and benchmarking challenges, SDLC stages-

6 Deployment

Deployment and release management risks, denial of service and resource exhaustion, versioning and
compatibility management, cost and computational resource constraints

7 Maintenance Operational and maintenance risks, model update and retraining risks, environmental and sustainability
and Operations concerns

3 Team & Team skills and capability gaps, stakeholder and human interaction risks
Management

Examples of risks and their indicators. Risk definition
plays an extremely important role, as it is a way to
distinguish risks from each other. Identifying risks, we use
the following rules for risk definition: risk name should

consist of 2 to 10 words extending its context; we detect two
possible types of relationships (“Related to” and “Depends
on”) with other risks; we define a mitigation plan (look at
Table 2).

Table 2. Examples of risks for the category “Project governance and planning risks”

No. Risks Risk description Related to Depends on Mitigation plan
1 2 3 4 5 6
Failure to identify and plan for Stakeholder and Team Skills Perform a comprehensive
Inadequate . . o .
1 . . risks early can lead to delayed Human Interaction | and Capability risk assessment at the
risk planning e . . . . .
mitigation and project failure Risks Gaps beginning of the project
Misaligned Different goals of stakeholders. Requllr-ements Stakeholder Use stakeholder interviews
2 and developers can lead to project | volatility and and human .
goals . . . . . . and alignment workshops
inefficiency or failure ambiguity interaction risks
Deadlines that do not reflect . Use historical project data
L. o . Team skills . .
Unrealistic actual complexity increase the Implementation and e to inform planning
3 L S - and capability . .
timelines likelihood of rushed and poor- code quality risks aDs and provide contingency
quality delivery £ap reserves
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Continuation of Table 2

1 2 3 4 5 6
Budeet under Underestimating the budget Cost and computa- | External legal, Apply bottom-up cost
4 aeet can cause resource shortages tional resource regulatory, and estimation and periodic
estimation . . . . .
and disruptions constraints market risks budget reviews
Inadequate Without a clear governance . Stakeholder . .
d ar g . Team skills and Establish project charters,
5 governance structure, decision-making - and human .
. capability gaps . . roles, and escalation paths
structure and accountability suffer interaction risks

Also, we have a definition of risk identifier [10] which
consists of 7 to 20 words. This is the manifestation of the
risk in a specific stage of the SDLC, i. e., one risk has a
minimum of § identifiers corresponding to the number of
stages in the SDLC. Sometimes, one risk has some indica-
tors, and one risk indicator can point to some risks.

Chosen sets and formulas for risk attribute formaliza-
tion. Risk assessment in LLM-based applications involves a
systematic approach to identifying, evaluating, and mitigat-
ing potential vulnerabilities. The following steps describe a
comprehensive risk assessment methodology:

e Risk identification. Start by cataloguing all potential
risks associated with using LLM. This includes tech-
nical risks (e. g., data corruption, instant implemen-
tation), operational risks (e. g., model performance
degradation), and compliance risks (e. g., data
privacy breaches). Involving stakeholders and SMEs
from different fields can provide a holistic view of
possible risk factors.

e Risk analysis. Risk potential impact analysis and
probability of occurrence involve assessing the
severity of the consequences if the risk materializes
and estimating the probability based on historical
data, expert judgment, or statistical models.

e Risk assessment. Prioritizing risks helps to focus
resources on addressing the most critical vulnera-
bilities. Creating a risk matrix can help to visualize
and rank risks, facilitating informed decision-making.

e Risk mitigation planning. Developing and imple-
menting strategies for risk mitigation may include
technical measures (e. g., improving input validation
to prevent rapid adoption), process improvements (e.
g., regularly retraining a model to eliminate data
drift), and policy interventions (e. g., creating a data
governance infrastructure).

e Monitoring and review. Risk management is an
ongoing process that continuously monitors the
effecttiveness of mitigation strategies and the
emergence of new risks. Regularly review and
update the risk assessment to adapt to new threats
and changes in the work environment.

e Documentation and reporting. Maintaining compre-
hensive documentation of the risk assessment
process is essential. This includes detailed reports on
identified risks, analysis methodologies, mitigation
strategies, and ongoing monitoring results. Well-

documented risk assessments aid in compliance
reviews, knowledge sharing, and iterative impro-
vement of risk management strategies.
Beyond traditional risks, LLM-based applications intro-
duce additional factors that require attention:
e Explainability and interpretability. LLMs are often
considered black box systems, meaning their
decision-making process is not transparent. This
creates problems with error correction, integrity, and
compliance. Using explanation techniques such as
SHAP (SHapley Additive exPlanations) or LIME
(Local Interpretable Model-Agnostic Explanations),
we interpret the model behavior.
e FEthical and societal implications. LLMs may
biased
results, or harmful content. Companies deploying

LLM-based solutions should be aware of ethical

unintentionally generate misinformation,

considerations, such as fairness in Al (preventing
bias in training data); content moderation (ensuring
the safety and relevance of the results produced);
and transparency (clearly stating when Al is used in
decision-making).

o Continuous monitoring and model management.
Unlike traditional software, LLMs degrade over

Continuous

time as new data trends emerge.

monitoring is critical to identify performance
deviations because it allows drift detection and
periodic retraining models as requested.

e Cost and computational efficiency. LLMs require
significant computational resources, making them
expensive to train and deploy. Companies must
balance model performance with infrastructure
costs. Optimization of LLM usage through know-
ledge distillation, quantization, and model reduction
allows for to reduction of resource consumption.

LLM-based

changes our approach to SDLC, architecture, and risk man-

software  development fundamentally
agement. By implementing structured assessment systems,
robust security measures, and ongoing monitoring, devel-
opers can harness the power of LLM while mitigating the
associated risks.

All defined risks are represented in the taxonomy of
risks. Thus, in choosing the best approach for risk calcula-
tions, we should define structured sets and hierarchies. As-

suming we have the sets:
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e SDLC stages:

Sz{sl,sz,...,ss}, (D
where S — is a set of 8 stages.
e Software components per stage:
Cz{cl,cz,...,c,.}, 2)
where C — is a set of i components.
e System requirements:
Q:{ql’qz""’ql}: (3)

where O — is a set of / requirements.

Risks:

R:{rl,rz,...,rm} s “4)
where R — is a set of m risks.
e A dependency graph:
D(r,r;) €[0,1], Q)

where D — is a set of dependencies between 7; risk and r;.
e Traceability Mapping:
Trace — 2°,
where /raceconnects requirements to components.

Assume, that each risk has some attributes as shown in
Table 3.

(6)

Table 3. Examples of risks attribute to formalisation

No. Attribute Formalisation Description
1 Probability Ve,r)e[0,1] The likelihood that risk r affects component ¢
2 Impact I(c,r)eR" Severity of impact of risk 7 on component ¢
3 Exposure RE(c,r) =V (c,r)x1(c,r) The risk exposure of 7 on ¢
4 Costs of mitigation C(r)eR’ Estimated effort / cost to mitigate risk
5 Risk source O(ryeSuQucC Origin (phase or requirement) of risk

The risk aggregation formulas are shown below:
e Component-level exposure:

RE(c,r)=V(c,r)x1(c,r). @)
e Stage-level exposure:
RE(s)= Y. Y E(c.r). (8)
ceC(s;) reR
e Requirement-level exposure:
RE(g)= Y, D Er). (€)]
oeTrace(q/ ) reR
e System-level total risk:
RE(g)= 2. Y E(er). (10)
ceTrace(q;) reR
e Propagate impact through graph:
Lo () =1(r)+ Y. D(r,r) < I(r)) (11)

r;€R

e (Contextual sensitivity risks based on domain context:
VVCOl'lleXI (r) € [03 2] ’

REadj(C’r) = I/Vcamext(r)xI/(C’ r)X[(C,r) . (12)
e Explainability index:
E(c,r) €[0,1]. (13)

Updated (10) system-level total risk:
RE()= Y 3 [ W (% Dy (0 V (e x L) x (1= E(er) ], (14)
5,€8 ceC(s;) rek

where RE,,(t)— is a system-level total risk at moment #;

W e () — contextual weight; D . (r) — risk dependency

context
multiplier, which accounts for cascading risk; (1 -E (c,r)) -
explainability penalty, which increases risk if the issue is
poorly explainable; V(c,r,t)xI(c,r,t)— time-varying fac-

tors, which track risk evolution over time.

The proposed aforementioned formulas for risk assess-
ment define a structured quantitative methodology for risk
assessment in LLM-based software systems. They map
risks to components, requirements, and SDLC stages, cal-
culating risk by combining probability and impact. Risk
propagation through dependency graphs models cascading
effects. The final system-level risk score combines all ad-
justed component-level risks, weighted by dependency,
contextual sensitivity, explainability, and time-varying
risky behavior. These formulas are not stable yet; they just
show our approach to risk calculations and will be updated
during thorough testing.

Discussion of research results. Integrating LLMs re-
quires a deep understanding of their capabilities and limita-
tions. Stakeholders should define clear objectives consider-
ing factors such as data privacy, ethical implications, and
potential biases inherent in LLMs. The planning and re-
quirements analysis stages demand a multidisciplinary ap-
proach, involving data scientists, ethicists, and domain ex-
perts to ensure comprehensive requirement gathering.

The implementation stage involves coding and fine-
tuning LLM, which requires extra expertise and access to
significant computing resources due to LLM computing ca-
pacity. Developers must consider model selection tech-
niques, data channels, integration points, and frameworks
for computing optimization.

Traditional testing methodologies don’t fit the testing
requirements for LLM-based applications because, in addi-
tion to functional testing, emphasis should be placed on in-
formation security, assessing model accuracy, robustness to
competing inputs, and ethical considerations such as bias
detection. Automated testing systems should be comple-
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mented with tools capable of assessing LLM-specific at-
tributes with predefined metrics.

Deploying LLM-based applications requires continuous
monitoring to detect model drift, performance degradation,
and new biases. Maintenance involves regularly updating
the training data and model parameters, ensuring the appli-
cation is up-to-date and reliable.

The relationships between software requirements and
software development risks were established using prede-
fined risk indicators [10]. The proposed risk indicators at
each stage of the SDLC and their connections with the se-
lected software development methodology make it possible
to better structure concepts in the taxonomy of software de-
velopment risks. The proposed taxonomy of SDLC risks in
[10] didn’t consider the specifics of LLM integration in
software architecture.

The scientific novelty of the obtained research results
includes the LLM-based application architecture risk cate-
gories based on the investigation of impacts and changes in
the SDLC stages, mapping of the revealed risk categories
on SDLC stages based on SME assessment, updated tradi-
tional taxonomy of “Risks in Software Development” with
revealed risk categories and their real samples, the approach
for risk identification process by risk identifiers and risk at-
tributes. The risk identifiers allow us to recognize risk man-
ifestations at each SDLC stage, and risk attributes allow the
risk calculation.

The practical significance of the research results con-
sists of the ability to automate monitoring of the software
risks at each stage of SDLC, including LLM-based applica-
tion architectures, with the recognized risk manifestations
per each stage of SDLC, and evaluate the software risks by
simple risk attributes calculations. Also, the updated taxon-
omy allows for allocating or finding out the possible new
software risks in the future.

Conclusions / BucHOBKu

The integration of LLMs impacts SDLC, generating new
categories of risks. The results of the research sketch an
updated taxonomy of risks in the SDLC, focusing on both
traditional software development and LLM-based appli-
cations. It revises the naming of the ten main risk categories
and introduces twenty additional risks specific to LLM.
These updated categories cover 8 stages of the SDLC,
addressing new risks associated with LLM-based applica-
tions. The proposed mapping of risk categories across SDLC
stages relies on the unique requirements of LLM-based
architectures. This mapping is innovative and highlights
specific risks at each stage using appropriate risk indicators.

The proposed risk assessment methodology uses a
comprehensive set of formulas to calculate and aggregate
risks, including elements such as probability, impact, risk,
and mitigation costs. The methodology includes context-
specific adjustments for cascading effects and explai-
nability penalties, providing a quantitative basis for asse-
ssing risks throughout the SDLC. Especially for LLM-
based applications, the paper emphasizes additional issues

such as explainability, societal implications, context, and
continuous monitoring.
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Jlvsisecokuti Hayionanvuutl ynisepcumem imeni leana @panka, Jlveis, Yrpaina

BE3IEKA TA IHIII PU3UKH, IOB’AA3AHI 3 PO3POBJIEHHAM [IPOTPAMHOTIO
3ABE3INEYEHHS HA OCHOBI BEJIMKUX MOBHUX MOJIEJIEM

T'eneparuBuuii mwtyunnii iHrenekt (GAI) — e HOBa TEXHOJIOTIS, i HABITh HE3BAKAKOYHM HA TE, IO ii MOYIJIMBOCTI

PETENBbHO NMEPEBIPSAIOTH Ta 3aCTOCOBYIOTh Y PI3HHUX Taiy3siX, BOHA MPOJIOBXKYE IHTECHCHBHO PO3BUBATHCS, CTBOPIOIOYN HOBI
TANM PU3MKIB Yy cepi po3poOiieHHsT NporpaMHOro 3ade3neueHHs. Pi3HOMaHITHICTh BelMMKUX MOBHUX Mojeneit (LLM)

MpHBENa JI0 3MiH Ha BCIX eranax >KUTTEBOTO IMKIY po3pobieHHs mporpamuoro 3abesnedenHs: (SDLC). OcHoBHI 1l
CTaTTi — BU3HAUCHHS Ta PO3YMiHHS NOTEHIIMHUX PU3UKIB, OB’ SI3aHUX 13 PO3POOIEHHIM IIPOrPAMHOr0O 3a0€3MEeUEHHs Ha
6a3i LLM, i BusIBIEHHs HallKpalux MiAXOoAiB IS IIOM SIKIICHHS TAKUX PU3HUKIB. 3iIICHEHO CIIOCTEPEKEHHS 3 PUBUKAMU

Ta IXHIM BIUIMBOM Ha Tpaauiiiiai SDLC, momaHo 3araibHi apXiTEKTypH MpPOrpaMHOro 3abe3rneucHHs Ha OcHOBI LLM,
MiAXOAW A0 TECTYBaHHS Ta OLIHIOBAHHS SKOCTI MporpaMHOro 3a0esrnedeHHs, aHami3 Toro, sk LLM sMminwm chepy
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JUSUTBHOCTI 3 PO3pOOJICHHsT MporpaMHoro 3abesnedeHHs. [lokaszaHo, 1o iHterpamis LLM y mporpamue 3a0e3mnedeHHs
HOPOJUKYE YHIKAIbHI PU3UKH, SIKi TOTPEOYIOTH 3MiH B yxe ycraHoBIeHOMY SDLC Ha piBHI apXiTeKTypHUX MoJgudiKalii,
CHCTEMH OI[IHFOBAHHS Ta HAWKPAIMX METO/IIB ITOM SKIICHHS PU3HKIB. 3 METOK ()EKTUBHIIIOTO BHSBICHHS PH3HKIB Ta 1X
PO3MEXKYBAHHS PO3IIISTHYTO MMTAHHS HAWMEHYBAaHHS i OIIMCAHHS PH3MKIB, OHOBJICHO TPAIUIIHHY TAKCOHOMIIO PU3HKIB 32
PaxyHOK TaKCOHOMii pU3UKiB IporpaMHoro 3abesneueHHs Ha ocHoBi LLM. ITinkpeciumo, mo JoAaHO Lie OJHY CTalilo 10
tpamuniiHoro SDLC, sika moB’si3aHa i3 miI00poM Ta KEpYBaHHSAM NepcoHaoM. Lle 3yMOBICHO THM, 1110 ChOTO/IHI 1I¢ HOBA
TEXHOJIOTisl 1 MmoTpedye 3MiH y TpaguuiiiHoMy ckiazi crnemianicriB. HaBeneHi B poOOTi MpUKIagu PU3UKIB IOAAHO 3
ineHTudikaropaMu pU3UKIB, sKi JomoMaraioTh ineHTU(iKyBaTH pH3UK Yy KOHKpeTHiH SDLC, 3B’S3KM 3 i1HIIMMHU
MOB’sI3aHUMH pu3nKaMu. DOpMaii30BaHO JIEAKI MHOXKHHH Ta TOHATTS Uil MaHOyTHIX OOYHCIIEHb Ta OCHIJKCHb
BUSIBIICHUX PH3UKIB.

Kniwouosi cnoea: XUTT€BUH LUKI PO3POOKH IPOrPAMHOTO 3a0€3MEUCHHS, PU3UKU IPOTrPaMHOrO 3a0e3MEUEHHS,
apxiTeKTypa MpOrpamMHOTO 3a0€3ICUCHHST Ha OCHOBI BEJIMKUX MOBHHX MOJICIICH, PH3UKH OC3MEKH.
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