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RECOVERY OF LOST NAVIGATION DATA IN MOBILE ROBOTIC PLATFORMS

Mobile robotic platforms (MRP) are increasingly used in various areas of human activity. When using them, an important
task is to determine the spatial orientation, measure the parameters of the movement of the MRP, etc. One of the problems
that arises in determining navigation data and other measured parameters is their loss at a specific period, for example, due
to interference or the temporary loss of visibility of GNSS navigation satellites. However, the functioning of navigation
components of onboard radio-electronic devices for measuring movement parameters and determining the spatial orientation
of the MRP requires the availability of primary navigation information without loss and in real time. Therefore, it is
necessary to recover lost navigation data, especially in the case of MRPs, using onboard facilities with limited computing
performance. Modern algorithms for recovering lost navigation data are analyzed, and it is determined that the publications
do not pay enough attention to implementing these algorithms, taking into account the limitations of embedded systems. For
implementation in mobile robotic platforms, an algorithm using the principal component analysis (PCA) method was
selected, which, with low computational complexity, provides sufficient accuracy of data recovery. Using the developed
algorithm in mobile robotic platforms provides data processing on a computing platform with limited resources. It allows
streaming data to be processed on the MRP"s coordinates in real-time. Modern microcontrollers and systems on a chip (SoC)
will enable you to solve the problem of recovering lost navigation data, taking into account restrictions on weight,
dimensions, power consumption, etc. A structural diagram of a means for measuring motion parameters and determining
spatial orientation for ground MRP has been developed. It is determined that the main components of the tool are a set of
navigation sensors using a GPS/GNSS-based coordinate determination module. Data recovery tools have been created using
the ESP32-C3 microcontroller, GNSS module type M10Q-5883, which contains a digital compass module QMC5883L and
an accelerometer and gyroscope module MPU-6050. Debugging and testing the developed tools for recovering lost
navigation data for MRPs have been performed. Analysis of the test results shows that the platform using the ESP32-C3
microcontroller provides data processing in 43 milliseconds. For the rate of GNSS data arrival at one measurement per
second, this is enough to provide real-time mode.

Keywords: navigation sensors, motion parameters, measurement accuracy, microcontroller platform.

Introduction and in real time. Therefore, it is necessary to recover lost
navigation data, especially in the case of MRP, using on-
board facilities that have limited computing performance.
Modern microcontrollers and systems on a chip (SoC) allow
you to solve the problem of recovering lost navigation data,
taking into account restrictions on weight, dimensions,
power consumption, etc.

Therefore, an urgent task is to study methods and means

Mobile robotic platforms (MRPs) are increasingly used
in various areas of human activity. When using them, an
important task is determining the spatial orientation,
measuring the parameters of the MRP movement, etc. One
of the problems that arises in determining navigation data
and other measured parameters is their loss at a specific time
period, for example, due to interference, temporary loss of
visibility of GNSS navigation satellites, etc. However, the
functioning of navigation components of onboard radio-
electronic means for measuring movement parameters and
determining the spatial orientation of the MRP requires the  cific application and provide high technical and operational
availability of primary navigation information without loss  characteristics.

for restoring lost navigation data for use in onboard radio-
electronic systems for measuring MRP movement para-
meters, which take into account the requirements of a spe-
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The object of research is the process of recovering lost
navigation data for use in onboard radio-electronic means to
determine the spatial orientation of MRP.

The subject of the study is methods and means of
restoring lost navigation data for the implementation of
onboard radio-electronic means for determining the spatial
orientation of the MRP.

The purpose of the work is to develop means of
recovering lost navigation data for the implementation of
onboard radio-electronic systems to determine the spatial
orientation of MRP in real time, taking into account
limitations on computing performance.

To achieve this goal, the following main objectives of the
study are defined:

e to analyze the structure of means for determining the

spatial orientation of the MRP;

e to analyze modern algorithms for recovering lost
navigation data in mobile robotic platforms;

e perform the choice of algorithms for implementation,
which provides sufficient accuracy of data recovery
and can be implemented on a computing platform
with limited resources;

e to develop a structural diagram of a means for
measuring motion parameters and determining
spatial orientation for ground MRPs;

e determine the components of the lost navigation data
recovery tool for the MRP;

e test the developed tools, evaluate their performance
for lost data recovery tasks.

Analysis of recent research and publications. In mobile
robotic platforms [1-3], one essential element is providing
navigation and obtaining navigation data in real time.
Analysis of recent publications demonstrates attention to
methods and means of recovering lost data. The papers show
that measurement data is affected by several factors: unstable
communication, environmental factors, synchronization
problems, and unreliable nodes. For streaming data, the
following are often used: Kalman filters for smoothing and
prediction, interpolation methods based on the last known
values, variants of the PCA method (streaming, incre-
mental), and regression methods. Statistical methods
(averaging, interpolation); regression models; CHM-based
method, PCA method, or other methods with recovery based
on correlation structure are used to recover missing data in
batch data. [4] proposes a regression approach to solving the
problem of missing data recovery based on Ito deco-
mposition and the AdaBoost algorithm. Increasing the
dimensionality of the input space due to the use of the
second-degree Ito decomposition scheme and its high
approximation properties made it possible to improve the
accuracy of filling in the missing values.

The study [5] proposes an approach to recovering
missing data based on the spatiotemporal correlation
between nodes in the network, and missing data can be
recovered using neighboring nodes using the ST-
Hierarchical Long-Term Memory (ST-HLSTM) algorithm.
[6] uses complete tensor-based data recovery models such as

Canonical Bayes Gaussian Polyadic Decomposition
(BGCP), Extended Bayesian Tensor Factorization (BATF),
and High-Precision Low-Rank Tensor Termination
(HaLRTC) to recover missing data. In [7], the algorithm of
Sobolev reconstruction in wireless sensor networks was
investigated, which consistently recovers missing data even
in situations of mass loss. A data recovery algorithm [8]
based on attribute correlation and extremely randomized
trees (ACET) is considered, in which the Spearman
correlation coefficient is used to construct a correlation
model between different attributes. The correlation model is
used to select other attributes that have a strong correlation
with that attribute, and then uses them to train highly
randomized trees, and the lost data can be recovered by the
trained model.

A modified stochastic gradient descent (SGD) algorithm
for training linear models in the presence of missing data is
discussed in the paper [9]. The algorithm does not require
modeling of data distribution and works without assumptions
about the distribution of input data. This makes it more
versatile in application. The algorithm adapts to a different
number of missing values in different features, ensuring
correct model training and achieving the optimal
convergence rate. When implementing the batch mode of the
learning algorithm, new values of the weighting factors are
calculated at each iteration, and in the stochastic mode, one
training vector is randomly selected from the training sample
at each iteration.

The paper [10] proposes a method for filling in the
missing air pollution monitoring data, based on a neural
network approach. After training the ANN with the selected
architecture, the missing data is predicted in the network’s
operating mode. For this purpose, a non-iterative neural
network [11] based on a model of geometric transformations
was chosen. This neural-like neural network can operate in
autoassociative (without a supervisor) and supervisor mode.
In the autoassociative mode, learning is carried out using
geometric Gramm — Schmidt transformations in n-
dimensional space, where 7 is the number of features of the
model. As a result of the transformations, an intermediate
coordinate system is formed. Its direction coincides with the
longest axis of the dispersion ellipsoid.

The paper [12] investigates the problems associated with
the incremental principal component analysis method
(PCA). PCA updates are performed in real time and do not
require all measurement (observation) data to be stored in
memory. In real time, the values of the main components can
change by leaps and bounds due to a change in the basis
when new measurements are added, which complicates the
interpretation of the results. To achieve smoothness of
changes in the main components, a correction method is
proposed, which takes into account changes in the matrix of
transformations when adding new measurements. This is
especially important for principal components with close
eigenvalues. The correction method allows you to reduce
jumps in the values of the main components, although it can
affect the accuracy of calculations.
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A detailed review of the methods of robust principal
component analysis (RPCA) and its dynamic variant, robust
subspace tracking (RST), is discussed in the paper [13].
RPCA aims to separate data into a low-level matrix (valid
data) and a sparse matrix (outliers). This allows you to
process data that contains anomalies or outliers efficiently.
Methods enabling you to effectively track the variable
subspace in streaming data in conditions of limited compu-
ting resources are considered. The paper presents the con-
ditions under which the RPCA and RST algorithms provide
accurate recovery of subspace and outliers, as well as their
computational efficiency. An overview of the advantages
and disadvantages of different approaches is provided, which
helps choose the appropriate method for working with data
containing emissions or having a variable structure.

The paper [14] discusses estimating parameters in linear
dynamical systems with incomplete measurements or in the
presence of missed measurement data. These parameters are
the transition matrix of states A, the observation matrix C,
the noise covariances Q and R, and the initial values. To
solve this problem, combining the Kalman filter (for
processing hidden states) with the EM algorithm (for
evaluating parameters) is proposed. The Kalman filter very
naturally recovers missed data. A forecast is performed for a
specific time step. If there are no measurements for this step,
the measurement correction step is skipped.

Paper [15] shows that the choice of the element base and
navigation components for onboard equipment for measu-
ring movement parameters and determining the spatial
orientation of the MRP should be based on an integrated
approach, which includes measurement methods and modern
methods for evaluating the effectiveness of the use of the
element base. However, as the analysis shows, the public-
cations do not pay enough attention to the issues of reco-
vering lost data from sensors, taking into account the
limitations of embedded systems. Therefore, the problem of
recovering lost navigation data in mobile robotic platforms
remains relevant.

Research results and their discussion

Causes of missing data in datasets. The loss of
navigation data in mobile robotic platforms at specific time
intervals is due to the temporary lack of visibility of GNSS
navigation satellites, deliberate interference from electronic
warfare (EW), etc. This complicates processing on navi-
gation data only, since the accuracy of analysis, modeling,
and interpretation of results can significantly reduce dis-
tortion of results.

The causes of missing data can vary and depend on
technical and human factors. The main ones are:

1. Technical malfunctions. Malfunctions or failures of
measuring instruments, communication breaks, or errors
during data reading can lead to the loss of part of the
measurement results. For example, sensors on the MRP may
stop recording coordinates or acceleration due to the
influence of electronic warfare equipment.

2. Physical conditions. Data collected in the field
(meteorological, environmental, or biomedical observations)
can be lost due to difficult operating conditions —
precipitation, dust, electromagnetic interference, etc.

3.  Limitations in software or data collection pro-
tocols. Incorrectly configured algorithms for reading,
storing, or transmitting information may not provide for
situations in which specific parameters have a null or non-
standard value, resulting in ignoring or losing this data.

Depending on the nature and scale of such losses, missed
values can significantly affect the quality of the analysis. The
results may be inaccurate or even false if appropriate
measures are not taken to detect, process, or recover them.
This, in turn, can negatively affect decision-making and the
effectiveness of systems based on this data.

Basic methods for recovering missing data. For many
modern applications in science and technology, data is
collected by streaming or batch methods. Streaming data is
continuously received in real time and requires instant or
sequential processing. Data may not be fully stored, but it is
processed in real time with minimal latency and used for
real-time monitoring and analysis. Examples of streaming
data: data from the GPS module on the vehicle; data from an
accelerometer or gyroscope on an autonomous robotic plat-
form; real-time data from medical sensors (pulse, tem-
perature, ECQG).

Stream data is collected and processed in portions
(batches). Processing is performed intermittently, or data is
often stored before processing. Most often, batch data is used
for statistical analysis and model training. Examples of batch
data: files with recorded historical GPS tracks; log files
stored hourly / daily and processed together; the results of a
monthly survey or collection of electricity consumption
indicators.

Streaming data carries information that changes over
time and must be processed in a timely manner using devices
with limited memory and hardware resources for decision-
making. This is often combined with the problem of missing
data, when not all data is measured (observed). To reveal
these problems, the paper considers an example of the
movement of an autonomous robotic platform, which recei-
ves data from the GPS module for orientation on the ground.
GPS data is received with a specific error and may not be
received due to the loss of signal from satellites. The task is
to implement algorithms for recovering missed data from the
GPS module, and their implementation on the ESP-32
microcontroller with limited memory. The paper discusses
the algorithms of batch and incremental PCA, as well as the
Kalman filter for recovering missed data.

Method of the principal components analysis. The
PCA method with sliding window involves processing a
fixed set of recent measurements with dimension N. At each
time step, the window is updated: all measurement vectors
are shifted (the 2nd measurement vector becomes the first,
.., the Nth vector becomes the N-lst) and a new
measurement vector is added to the end of the window. Let’s
assume that each of the measurement vectors has a
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dimension m and the measurement data from the sensors
arrive at a constant time interval. After N measurements, we
get a matrix of measurements

X11  X11 X1m
x x X2m

p i ey
Xn1 Xn2 XNm

Step 1. Calculate the average for each of the columns of

the X matrix.
_ 1
X = ;ZL Xij- (2)
Wherej=1, ..., m.
Step 2. Centering the measurement matrix X. Subtract the

average values from each row of the measurement matrix.

x11 - fl x11 - fz xlm - fm
X, = X21 = X1 X2 T X3 Xoam — Xm 3)
le - fl xN2 - fz me - fm
Step 3. Obtaining a covariance matrix:
__t t mxm
Q—N_lXC-XCER . 4

Step 4. Calculation of eigenvalues and eigenvectors
of the covariance matrix Q. Let's denote the eigenvalues
A;, and through w; the orthogonal eigenvectors
w; = (W1, Wig, ..., W;y,) of the matrix Q, which are related
to each other by a dependence:

Q- wy=A4-w;,i=1, .., m. (5)

The eigenvalues of the symmetric non-negative matrix Q
are real and positive numbers. Let's order them in descending
order 44 > 4, > > A,. Similarly, we will place the
eigenvectors corresponding to A;. Then the matrix W
determines the linear transformation

y=W-x, (6)
where ¥ is the vector of the main components of the PCA. In
other words, the PCA method performs the conversion of an
input vector X € R™ into an output vector y € R™.

The first principal component ¥, is associated with 1, by
the eigenvector w;, defines the direction in the m-
dimensional space in which the variance of the data is
maximum. While the smallest principal component ¥,
indicates the direction in which the variance is minimal.
Each of the eigenvalues 4; corresponds to the variance of the
i-th principal component. To determine the eigenvalues and
eigenvectors of the autocovariance matrix O, the Jacobi
method was used in this work.

Step 5. Recovery of missed data. Let's assume that at the
beginning of the algorithm for recovering missing data, N
measurements are known, i.e. the sliding window is
completely filled. In this case, the missed data may appear
only in the last line of the sliding window of dimension N
and only the input vector x, will need to be restored.

To recover missing data, you can use not all eigenvectors,
but only the first k£ with the maximum fraction of variance.
The contribution of each of the main components to the
overall variation of the data is determined by the expression:

A
5 (7

The inverse transformation consists of finding the vector
X from the expression

m; =

Xx=w'y. ()

Let us assume that the vector xy lies in the subspace
described by the matrix W of eigenvectors. To restore it, we
will use the expression

Xy = X + Wiy, 9)
where W is the matrix k of eigenvectors corresponding to
the largest eigenvalues. Also, in the expression (9)
decentration is performed when obtaining a vector Xxy.
Therefore, to restore the missing vector x, it is necessary to
evaluate the vector of the principal components yy. Let us
define it as the mean of the vectors of the principal
components Y, ¥z, ..., Yn—1-

Algorithm for recovering missed data based on the
Kalman filter. The Kalman filter is the theoretical basis for
various recursive methods used in stochastic linear
dynamical systems. The algorithm is based on the idea that
the unknown state of a system can be estimated based on
measurements obtained over time. The Kalman filter
evaluates the state of a system in the format of a state space
based on dynamical systems. The change of state from a
point in time %1 to a moment in time # is described by a
discrete equation (equation of dynamics)

X = Axp_q + Buy + wy, (10)
where x;, € R™ is the vector of the state of the system;
A € R™™ _ state transition matrix; u, € R! — input control
vector; B € R™! — input control matrix; w;, € R*~N(0, Q) —
process noise vector; Q € R™"™ — process noise covariance
matrix (determines the noise of the system and simulates
perturbations that are not taken into account in the equation
of motion).

Equation of measurement of a system (equation of
statics)

z = Hxy, + vy, 11
defines the relationship between the state of the system
and the measurement at time tj. In the expression (11)

R™ ™ _ matrix

Z, € R™ —the vector of measurements; H €
of observations; v, € R™~N(0,R) — measurement noise
vector; R € R™* ™
(determines sensor measurement errors).

Each iteration of the Kalman filter algorithm consists of
two  steps: extrapolation During

extrapolation, the estimate of the state X, based on the

— measurement noise covariance matrix

and  correction.
estimate X;_; and the covariance matrix of the estimate of
errors P, are calculated according to the expressions:
X = ARj_, + Buy_q, (12)
P; = AP} A* + Q. (13)
During the correction step, the Kalman matrix (gain
matrix) is calculated
K, = PfH'(HP;H* + R)™1, (14)
The updated state of the system and the updated error
estimation covariance matrix are calculated according to the
expressions:
Xg =% + Ky
P¢ = (E - K)P,
where E is the identity matrix.

(15)
(16)

100
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Consider a mathematical model that describes the
movement of the MRP. The state vector at the step t; looks
like:

t
X = [xk,yk; Z» vx,k; vy_k: vz,k] 5 (17)
where X, y, z are the MRP coordinates, vy, Uy, x, U, are
the components of the MRP velocity.
State transition matrix A:

1 00T, 00
[0100T50

4=|0 0100 7 (18)
00 0100
00 0010
lo 0 0 0 o 1

where T is the sampling time. Measurement vector in step
ty:

2 = [y 2 (19)
where x', i, zpt are the coordinates of the object
(longitude, latitude, altitude) obtained by GPS measurement.
Observation matrix:

1000 0 0
H=|0 1 0 0 0 ol (20)
001000

At the beginning of the Kalman filter algorithm, you need
to perform the initialization of system state variables X, state
error estimation covariance matrix Py, process noise
covariance matrix @, measurement noise covariance matrix R.

System state initialization: the first coordinate mea-
surement is assigned to state variables Xy, Yy, 2z, and the
velocity components vy, Uy, x, Uk are set to zero. Since the
measurement of GPS coordinates is carried out with an error
of 2-5 m, the diagonal elements of the matrix Pj
corresponding to the coordinates are given by values from
this range, and the diagonal elements associated with the
components of the velocity are given equal to zero (MRP is
not movable). All non-diagonal elements of the matrix Py
are set to zero.

The initialization of the process noise covariance matrix
0 and the measurement noise matrix R is performed based
on data on the accuracy of the mathematical model of the
system and measurement errors obtained from the sensors.

After that, a step-by-step algorithm for recovering
measurement data based on the Kalman filter is performed:

1. Extrapolation of the MRP state taking into account the
velocity.

2. If GPS measurement data is available, a correction
based on the Kalman filter is performed, and the current
assessment of the state variables is stored. If there are no
measurement data, the correction is not performed, but only
the results of the extrapolation of state variables are stored as
their current estimate.

Implementation of an algorithm for recovering lost
navigation data for MRP. Based on the PCA algorithm
with a sliding window, the program Restore Missing
Data PCA is developed. The program is written in C for the
ESP32 microcontroller. The specified microcontroller has
sufficient computing resources for streaming processing
(recovery) of data in real time.

The steps of the algorithm are as follows:

e receives the input sequence of GPS data (altitude,
longitude, latitude);

e for each time step 7, forms a sliding window of a
given size N,
calculates the covariance matrix for this window;

e calculates eigenvalues and eigenvectors of a sym-
metric covariance matrix using the Jacobi method;

e for a specified number of main components (this
parameter is specified) recovers the lost data. It is
executed if no input vector is received at the current
time step.

To check the functioning of the program, measurement
numbers with missing data were randomly generated. These
data were restored and the error was calculated for them
according to the expression

2
— 3 t
Err; = \/ijl(x{fs -x5) (21)
where is the restored x7¢°‘i-th input vector, the index x{7}j
indicates the values of height, longitude, latitude,

respectively, is the i-¢h input vector obtained from GPS. The
study was performed to recover 6 input vectors from the
N _Point=50 sample for different sliding window sizes
N _Ww=10, 20, 30, 40.

Below are the results of the program execution for the
specified values and the obtained error values for the
recovery of missed GPS data.

For a sliding window measuring 10 samples, the sliding
window was formed 40 times, and the main components
were found.

-- WINDOW_SIZE =10 --
Index | Altitude| Longitude | Latitude | Error

11| 353.6124.022163 |49.827764 | 0.322
14| 353.4]24.022201 | 49.827757| 0.714
17| 353.2124.022238 149.827749 | 0.915
24| 352.4124.022353149.827723 | 1.302
29| 351.924.022427149.827705| 1.200
36| 352.5]24.022533 |49.827679| 0.322

For a sliding window measuring 20 samples, the sliding
window was formed 30 times, and the main components
were found.

-- WINDOW_SIZE =20 --
Index | Altitude| Longitude | Latitude | Error

11] 353.3|24.022205|49.827754| 0.018
14| 353.3|24.022205|49.827754| 0.618
17| 353.3|24.022205|49.827754| 1.018
24| 352.924.02227449.827740 | 1.819
29| 352.5|24.022341]49.827725 | 0.628
36| 352.4|24.022443 149.827701 | 0.200

For a sliding window measuring 30 samples, the sliding
window was formed 20 times, and the main components
were found.

-- WINDOW_SIZE =30 --
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Index | Altitude| Longitude | Latitude | Error

11| 352.824.022279 |49.827738 | 0.456
14| 352.824.022279|49.827738 | 0.144
17| 352.824.022279|49.827738 | 0.544
24| 352.8]24.022279 |49.827738 | 1.744
29| 352.8]24.022279 |49.827738 | 0.256
36| 352.6]24.022378 | 49.827716| 0.442

For a sliding window with a size of 40 samples, the
sliding window was formed 10 times, and the main
components were found.

-- WINDOW _SIZE =40 --
Index | Altitude| Longitude | Latitude | Error

11| 352.8124.022362149.827718 | 0.526
14| 352.8124.022362149.827718 | 0.074
17| 352.8|24.022362149.827718 | 0.474
24| 352.8|24.022362149.827718 | 1.674

29| 352.8|24.022362149.827718 | 0.326
36| 352.8124.022362|49.827718| 0.574

As the analysis shows, the errors in the recovery of
missing GPS data for different sliding window sizes for the
same input vectors differ insignificantly and range from
1.302 to 1.819 for maximum values.

Table 1 summarizes the test results.

Two computing platforms were used in the testing
process: platform 1, based on the ESP32-C3/ESP32-
WROOM microcontroller, and platform 2, Intel i7 7700. A
total of 100 consecutive calculations were performed for
each parameter value. As the analysis shows, even in the
worst case, the recovery time of lost data using the ESP32-
C3 microcontroller is 43 msec, which, in the case of one
measurement per second for the real rate of GNSS data
arrival, is enough to provide a real-time mode. The ESP32-
WROOM-based computing platform has more than a
twofold performance advantage.

Table 1. Results of testing the algorithm for recovering lost navigation data

Parameters Minimum error Maximum error Processing Time Processing Time
(window size) (Platform 1), msec (Platform 2), msec
10 0.322 1.302 3704 /1457 12
20 0.018 1.819 4309 /1654 15
30 0.144 1.744 4009 /1519 14
40 0.326 1.674 2839 /1065 11

Development and testing of tools for recovering lost
navigation data in mobile robotic platforms. To solve the
problems of intelligent measurement of motion parameters
and determination of the spatial orientation of ground MRPs,
it is necessary to use a set of sensors, each of which measures
a separate parameter of the MRP movement, and additional
qualitative and quantitative values of motion parameters can
be obtained by taking into account their change. Thus, each
sensor must have separate computing tools for processing the
received data, which, on the one hand, have the appropriate
interfaces (SPI, 12C, Serial), and on the other hand, sufficient
computing power to ensure interaction with sensors and
implement the necessary data pre-processing in real time. To
provide complex intelligent processing, computing resources
of modern SoCs can be used.

The structural diagram of the means for measuring
motion parameters and determining spatial orientation for
ground MRPs is shown in Fig. 1. Its main components are:

e ESP32-C3 microcontroller;

e GNSS module type M10Q-5883;

e accelerometer and gyroscope module MPU-6050;

e QMCS5883L digital compass module.

A 32-bit ESP32-C3 microcontroller developed by
Espressif Systems is used for the collection and preliminary
processing of navigation data. The main components are: a
single-core RISC-V core operating at a frequency of up to
160 MHz; memory — 400 KB RAM, 4 MB flash memory;
wired interfaces — GPIO, UART, SPI, 12C, I12S, PWM, ADC;
wireless interfaces — Wi-Fi (2.4GHz 802.11 b/g/n) and
Bluetooth 5.0 (LE). The specified microcontroller is used to

process data from the specified navigation sensors, since it
has the necessary [2C and UART interfaces.

Fig. 1. Structural diagram of a means of measuring motion
parameters and determining spatial orientation
for ground-based MRPs

GNSS satellite positioning systems are used today to
obtain operational information about the location of the
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MRP. Several alternative systems are now actively used:
GPS, BeiDou, Galileo, and Glonass. The M10Q-5883 GPS
module adopts a GNSS module based on the u-blox M10
series chip and provides high sensitivity and data acquisition
frequency for all L1 GNSS signals. It supports simultaneous
reception of four GNSS (GPS, GLONASS, Galileo, and
BeiDou). The large number of visible satellites allows the
receiver to select the best signals to receive positioning data,
which ensures the availability of positioning data, especially
in challenging environments such as “urban canyons”. A u-
blox Super-S (Super-Signal) technology provides high radio
sensitivity and can improve dynamic positioning accuracy
without line-of-sight conditions. The 15x15 mm square
high-gain patch antenna provides the best balance between
performance and small size. The 12C interface is used to
operate the magnetometer QMCS5883L. The direction and
orientation in the MRP space are determined using a digital
compass QMC5883L — 3-axis module for magnetic sensing
at a low field level.

The GY-521 module has an integrated combined sensor
that integrates a gyroscope and accelerometer with high-
accuracy measurement of angular velocity and acceleration
of the MPU-6050 type. High measurement accuracy is
realized using a 16-bit ADC and built-in 1024-byte FIFO
memory. An [2C interface is used for communication. Based
on the MPU-6050, effective systems for stabilizing and
tracking the movement of MRP are being built.

The general view of the means for measuring motion
parameters and determining spatial orientation for ground-
based MRP is shown in Fig. 2. The use of these modules and
the ESP32 microcontroller ensured the possibility of its
implementation in compact dimensions of 40x40 mm.
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Fig. 2. General view of the means for measuring motion
parameters and determining spatial orientation
for ground-based MRCs

The module outputs a data stream via the NMEA-0183
protocol to the built-in UART. However, only geospatial
coordinates are needed to position the MRP. Positioning tags
$GPGGA from the received NMEA data stream processed
by the ESP32-C3 microcontroller to obtain longitude,
latitude and altitude parameters. At the same time, data from
the gyroscope / accelerometer is read. The obtained positi-
oning data is transmitted to the MRP control microcomputer.

The developed module was used in real movement
conditions to test the process of reproducing lost data. The
Google Earth visualization of the resulting tracks is shown
in Fig. 3.

Image © 2025 Maxar Technologies
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Fig. 3. Visualization of a track fragment in Google Earth using the developed module
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The data received by the module was recorded by the
smartphone using a specialized Serial USB Terminal
application through a USB-UART adapter. This data has
been converted to a KML file format for rendering in the
Google Earth app on PC.

The data was stored in CSV format and then visualized
using a Python program using the plotly, pandas, and scipy
libraries. The altitude measurement data was further filtered
to eliminate emissions (Fig. 4).

Visualization of data from the magnetometer module
QMCS5883L for one fragment of the track (Fig. 3) is shown
in Fig. 5, and from the MPU-6050 gyroscope / accelerometer
in Fig. 6. The measurement data was further filtered to
eliminate emissions.

The data obtained from the M10Q-5883 GPS module, an
electronic compass based on the QMC5883L magnetometer,
and an accelerometer based on the MPU-6050 are pre-
processed by the ESP32-C3 microcontroller and transmitted
to the microcomputer through the UART interface for further
processing in the MRP control system.

Magnetometer Uncalibrated

W
3
o 2,

O:f’

o

“

2,

o
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Fig. 4. Visualization in longitude-latitude-height
coordinates of the received track using
the developed module
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Fig. 5. Visualization of QMC5883L magnetometer data
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Fig. 6. Visualization of MPU-6050 gyroscope/accelerometer data

104

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1



Additionally, the speed of execution of the developed
algorithm for recovering lost data on various computing
platforms was tested. Implementing the algorithm in the C

language provided a prompt transfer to several micro-
controller and SoC platforms. Table 2 shows the results of
testing the algorithm execution speed on different platforms.

Table 2. Execution speed of the developed algorithm on computing platforms

Computing platform Calculation time, msec Processor frequency, MHz Performance indicator, sec'MHz

Arduino UNO 9679 16 154.864

ESP8266 1458 80 116.64
ESP32-WROOM 381 160 60.96

ESP32-C3 968 160 154.88

Orange Pi Zero 78 1000 78

Raspberry Pi 4 Model B 23 1800 414
Intel 17 7700 13 3600 46.8

To compare the results, a total of 100 cycles of recovery
of lost data were performed. The values of the recovery
algorithm parameters and the data for processing on all
platforms were the same. The algorithm was executed in one
thread; parallelization was not used.

The efficiency indicator of the computing platform was
calculated as the product of the calculation time by the
frequency of the processor, taking into account the fact that
the number of operations of the executed algorithm on each
platform did not change, and the execution time is inversely
proportional to the frequency of a particular processor. That

Intel i7

Raspberry Pi 4 Model B
Orange Pi Zero
ESP32-C3
ESP32-WROOM
ESPB266

Arduino UNO

Fig. 7. Conditional platform productivity factor

Discussion of the results obtained. Analysis of the
problems of recovering lost navigation data in mobile robotic
platforms requires solving the issue of choosing the
appropriate algorithm and element base and components for
such implementation. Based on the analysis, it is proposed to
use the PCA main component analysis algorithm to
implement the problem of recovering lost navigation data in
the case of a mobile MRP, which involves processing a fixed
set of last measurements with N samples with a sliding
window and using only & eigenvectors that correspond to the
largest eigenvalues. The use of the algorithm based on the
Kalman filter for the recovery of missing data is promising,
but further implementation on the microcontroller platform
is required.

is, the indicator compares platforms’ efficiency at the
architecture level, or the number of cycles the processor
needs to execute the algorithm.

For these reasons, the conditional performance factor of
the platform was calculated (Fig. 7).

The conditional performance factor of the platform was
calculated taking into account the data in Table 2 as the ratio
of the efficiency indicator to the same indicator for the
Arduino UNO platform. Obviously, for platforms using
modern processors, such a conditional performance factor is
higher, but not to such a large extent as one might hope.

Components for creating tools for recovering lost navi-
gation data for MRP are considered, and a set of navigation
sensors using a GPS/GNSS-based coordinate determination
module is defined. The created tools are implemented using
the ESP32-C3 microcontroller, GNSS module type M10Q-
5883, which contains a digital compass module QMC5883L
and an accelerometer / gyroscope module MPU-6050.
Software tools for the visualization of the accumulated data
have been developed.

The development of tools for recovering lost navigation
data for the MRP has been carried out. For the construction
of hardware, the ESP32 microcontroller was used, and the
performance of individual implementations of computing
platforms was compared.
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It is determined that the ESP32-WROOM platform has a
more than twofold performance advantage over ESP32-C3.
Testing the developed tools for recovering lost navigation data
for MRP has been performed. Analysis of the test data shows
that even in the worst case, the recovery time of lost data using
the ESP32-C3 microcontroller is 43 msec, which, in the case of
one measurement per second for the real rate of GNSS data
arrival, is enough to provide a real-time mode.

The scientific novelty of the research results is that the
algorithm for the recovery of lost navigation data, which is
focused on use in mobile robotic platforms, which uses the
method of principal components analysis PCA, which
involves the processing of a fixed set of last measurements
with N samples with a sliding window, has been improved
and thus ensures the processing of data on a computing
platform with limited resources.

The practical significance of the research results is the use
of the developed algorithm for recovering lost navigation data
in mobile robotic platforms, based on the principal components
analysis PCA method, which provides data processing on a
computing platform with limited resources and allows
processing streaming data of MRP coordinates in real time.

Conclusions

Modern algorithms for recovering lost navigation data in
mobile robotic platforms have been analyzed, and an
algorithm based on the principal component analysis method
PCA has been selected for implementation, which, with low
computational complexity, provides sufficient accuracy of
data recovery and can be implemented on a computing
platform with limited resources.

A structural diagram of a means for measuring motion
parameters and determining spatial orientation for ground
MRP has been developed. It is determined that the main
components of recovering lost navigation data for MRP are
a set of navigation sensors using a GPS/GNSS-based
coordinate determination module. Data recovery tools have
been created using the ESP32-C3 microcontroller, GNSS
module type M10Q-5883, which contains a digital compass
module QMCS5883L and an accelerometer / gyroscope
module MPU-6050.

Debugging and testing the developed tools for recovering
lost navigation data for MRP have been performed. Analysis
of the test results shows that the platform using the ESP32-C3
microcontroller provides data processing in 43 milliseconds.
For the GNSS data arrival rate of one measurement / sec, this
is sufficient to provide real-time mode.
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BIIHOBJIEHHA BTPAYEHUX HABITALIIMHUX JIAHUX
Y MOBIVIbHUX POBOTOTEXHIYHUX IIVJIAT®OPMAX

MoGinbHi poboruzoBani minardgopmu (MPII) Bce mmpiie 3acTOCOBYIOTH y pi3HHUX cdepax JIIOIACHKOI JisIbHOCTI.
BaxJIMBUM 3aBIAHHSM I1iJ] 9ac iX BUKOPHCTAHHS € BH3HAUCHHS [TPOCTOPOBOI OPIEHTAIl, BUMIPIOBAHHS MapaMeTPiB pyxy
MPII rtomo. OpnHiero i3 mpoOieM, MO0 BUHHUKAE TiJl 4aC BH3HAYCHHS HABIraliMHUX JaHUX Ta IHIIMX BUMIPIOBAaHHX
napameTpiB, € iX BTpaTa Ha IEBHOMY YaCOBOMY iHTEPBaJIi, HAPHUKIIA], Yepe3 MEePEeIIKoI1 a00 THMYACOBY BTPATY BUAUMOCTI
Hapirauiiiuux cynytHukiB GNSS. OnHak uis (GyHKIIOHYBaHHs HaBiraliifHUX KOMIIOHEHTIB OOPTOBUX PaJiOeleKTPOHHUX
MPUCTPOTB /ISl BUMIPIOBAHHS IapaMeTpiB pPyXy Ta BHU3HAYCHHsS MpocTopoBoi opieHTanii MPII moTpiOHa HasBHICTH
MEPBUHHOI HaBiraminHoi iHpopmallii 6e3 BTpaT Ta y pexuMi peabHOro yacy. ToMy HEOOXiJHO BiJHOBIIOBATH BTpaveHI
HaBiraIiitai gaxi, ocodauBo y Bunaaky MPII, BukoprcToByroun OOpTOBI 3aCO0H, SIKi MArOTh OOMEXKEHY OOUHCITIOBATIBHY
MPOAYKTHBHICTh. [TpoaHai3oBaHO CydacHi alrOPUTMH BiJTHOBJICHHS BTPAYCHHUX HABITAI[IHUX TaHUX 1 BU3HAYCHO, IO Y
myOJTiKaIisaX HeOCTAaTHRO YBAard 3BEPHEHO HA peai3allifo BKa3aHUX aJTOPUTMIB 3 ypaxyBaHHSIM OOMEKeHb BOYIOBaHHX
cucteM. Y MOOIIIBHUX POOOTOTEXHIUHHUX MIaT(GopMax Ha OCHOBI BUKOHAHOTO aHaJi3y BUOPAHO IS peastizaliii alropuTM i3
BUKOPUCTAHHSIM METOJy aHamizy ronoBHUX KommoHeHT (PCA), skuii 3a HeBequKoi OOYHCIIOBAIBLHOI CKJIIAJHOCTI
3a0e3rneyye JOCTATHIO TOYHICTh BiJJHOBJICHHS JaHUX. BHKOPUCTaHHS pPO3POOJCHOTO alrOpUTMy y MOOUTBHHX
pobororexHiyHUX IU1aTopmax 3abesnedye ONpalfOBaHHS JaHUX Ha OOYHMCHIOBaIBHIN miuardopmi 3 oOMEKEHHMMHU
pecypcamu 1 jgae 3Mory oOpoOisTu MOTOKOBI gaHi mpo koopauHatu MPIT y pexumi peanbHoro uacy. CydacHi
MIKpOKOHTpOJIepY Ta cucTeMu Ha kpuctami (SoC) [aioTh MOXKIMBICTb BUPILIMTH 3aBJAHHS BIAHOBIECHHS BTPAuyeHUX
HaBiraiifHUX JaHUX 3 ypaxyBaHHSM OOMEXEHb WHIOAO0 MacH, raGapuTiB, €HEpProCIOKMBAHHSA TOIIO. Po3polbieHo
CTPYKTYPHY CXeMy 3ac00y BUMIpIOBAHHS MapaMeTpiB pyXy Ta BU3HAUCHHS MPOCTOPOBOI opieHTaril s Hazemuux MPIIL.
Bu3HaueHo, 1110 OCHOBHUMHU KOMIIOHEHTaMH 3ac0o0y € HaOip HaBirauiiHUX JaBaviB i3 BUKOPUCTAHHSIM MOJIYJISl BUSHAYCHHS
koopauHat Ha ocHOBi GPS/GNSS. CTBopeHo 3aco0u /uist BiIHOBIICHHS TaHKX 13 BAKOPUCTAHHAM MiKpokoHTposiepa ESP32-
C3, moaynss GNSS tunmy M10Q-5883, sikuii 101aTKOBO MICTHTh MOAYJb IdpoBoro kommaca QMCS883L ta momyns
akcenepomerpa i ripockona MPU-6050. BukoHaHO Hallaro/KEHHS Ta TECTYBaHHS pO3pPOOJICHUX 3acO0iB BiIHOBICHHS
BTpPAauYCHUX HaBiramiitHux nanux it MPII. AHani3 pe3ynabTariB TeCTyBaHHS MOKa3ye, 10 MIaTGopMa 3 BUKOPHUCTAHHIM
MikpokoHTposiepa ESP32-C3 3abe3neuye ompairoBanss qanux 3a 43 mc. s Temny HaaxojpkeHHs naHux GNSS ojHe
BUMIPIOBAaHHS 32 CEKYH/Y LILOTO JOCTATHBO ISl 3a0€3MeUEeHHsI PeXKUMY PeaJbHOTO acy.

Kntouosi cnoea: Hagirauiiiti 1apaudi, mapaMeTpu pyxy, TOUHICTh BUMIPIOBAHHS, MIKPOKOHTpOJIEpHA 11ardopma.
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