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RECOVERY OF LOST NAVIGATION DATA IN MOBILE ROBOTIC PLATFORMS 

Mobile robotic platforms (MRP) are increasingly used in various areas of human activity. When using them, an important

task is to determine the spatial orientation, measure the parameters of the movement of the MRP, etc. One of the problems

that arises in determining navigation data and other measured parameters is their loss at a specific period, for example, due

to interference or the temporary loss of visibility of GNSS navigation satellites. However, the functioning of navigation

components of onboard radio-electronic devices for measuring movement parameters and determining the spatial orientation

of the MRP requires the availability of primary navigation information without loss and in real time. Therefore, it is

necessary to recover lost navigation data, especially in the case of MRPs, using onboard facilities with limited computing

performance. Modern algorithms for recovering lost navigation data are analyzed, and it is determined that the publications

do not pay enough attention to implementing these algorithms, taking into account the limitations of embedded systems. For

implementation in mobile robotic platforms, an algorithm using the principal component analysis (PCA) method was

selected, which, with low computational complexity, provides sufficient accuracy of data recovery. Using the developed

algorithm in mobile robotic platforms provides data processing on a computing platform with limited resources. It allows

streaming data to be processed on the MRP`s coordinates in real-time. Modern microcontrollers and systems on a chip (SoC)

will enable you to solve the problem of recovering lost navigation data, taking into account restrictions on weight,

dimensions, power consumption, etc. A structural diagram of a means for measuring motion parameters and determining

spatial orientation for ground MRP has been developed. It is determined that the main components of the tool are a set of

navigation sensors using a GPS/GNSS-based coordinate determination module. Data recovery tools have been created using

the ESP32-C3 microcontroller, GNSS module type M10Q-5883, which contains a digital compass module QMC5883L and

an accelerometer and gyroscope module MPU-6050. Debugging and testing the developed tools for recovering lost

navigation data for MRPs have been performed. Analysis of the test results shows that the platform using the ESP32-C3

microcontroller provides data processing in 43 milliseconds. For the rate of GNSS data arrival at one measurement per

second, this is enough to provide real-time mode.

Keywords: navigation sensors, motion parameters, measurement accuracy, microcontroller platform.

Introduction 

Mobile robotic platforms (MRPs) are increasingly used

in various areas of human activity. When using them, an

important task is determining the spatial orientation,

measuring the parameters of the MRP movement, etc. One

of the problems that arises in determining navigation data

and other measured parameters is their loss at a specific time

period, for example, due to interference, temporary loss of

visibility of GNSS navigation satellites, etc. However, the

functioning of navigation components of onboard radio-

electronic means for measuring movement parameters and

determining the spatial orientation of the MRP requires the

availability of primary navigation information without loss

and in real time. Therefore, it is necessary to recover lost

navigation data, especially in the case of MRP, using on-

board facilities that have limited computing performance.

Modern microcontrollers and systems on a chip (SoC) allow

you to solve the problem of recovering lost navigation data,

taking into account restrictions on weight, dimensions,

power consumption, etc.

Therefore, an urgent task is to study methods and means

for restoring lost navigation data for use in onboard radio-

electronic systems for measuring MRP movement para-

meters, which take into account the requirements of a spe-

cific application and provide high technical and operational

characteristics.
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The object of research is the process of recovering lost

navigation data for use in onboard radio-electronic means to

determine the spatial orientation of MRP.

The subject of the study is methods and means of

restoring lost navigation data for the implementation of

onboard radio-electronic means for determining the spatial

orientation of the MRP.

The purpose of the work is to develop means of

recovering lost navigation data for the implementation of

onboard radio-electronic systems to determine the spatial

orientation of MRP in real time, taking into account

limitations on computing performance.

To achieve this goal, the following main objectives of the

study are defined:

 to analyze the structure of means for determining the

spatial orientation of the MRP;

 to analyze modern algorithms for recovering lost

navigation data in mobile robotic platforms;

 perform the choice of algorithms for implementation,

which provides sufficient accuracy of data recovery

and can be implemented on a computing platform

with limited resources;

 to develop a structural diagram of a means for

measuring motion parameters and determining

spatial orientation for ground MRPs;

 determine the components of the lost navigation data

recovery tool for the MRP;

 test the developed tools, evaluate their performance

for lost data recovery tasks.

Analysis of recent research and publications. In mobile

robotic platforms [1–3], one essential element is providing

navigation and obtaining navigation data in real time.

Analysis of recent publications demonstrates attention to

methods and means of recovering lost data. The papers show

that measurement data is affected by several factors: unstable

communication, environmental factors, synchronization

problems, and unreliable nodes. For streaming data, the

following are often used: Kalman filters for smoothing and

prediction, interpolation methods based on the last known

values, variants of the PCA method (streaming, incre-

mental), and regression methods. Statistical methods

(averaging, interpolation); regression models; CHM-based

method, PCA method, or other methods with recovery based

on correlation structure are used to recover missing data in

batch data. [4] proposes a regression approach to solving the

problem of missing data recovery based on Ito deco-

mposition and the AdaBoost algorithm. Increasing the

dimensionality of the input space due to the use of the

second-degree Ito decomposition scheme and its high

approximation properties made it possible to improve the

accuracy of filling in the missing values.

The study [5] proposes an approach to recovering

missing data based on the spatiotemporal correlation

between nodes in the network, and missing data can be

recovered using neighboring nodes using the ST-

Hierarchical Long-Term Memory (ST-HLSTM) algorithm.

[6] uses complete tensor-based data recovery models such as

Canonical Bayes Gaussian Polyadic Decomposition

(BGCP), Extended Bayesian Tensor Factorization (BATF),

and High-Precision Low-Rank Tensor Termination

(HaLRTC) to recover missing data. In [7], the algorithm of

Sobolev reconstruction in wireless sensor networks was

investigated, which consistently recovers missing data even

in situations of mass loss. A data recovery algorithm [8]

based on attribute correlation and extremely randomized

trees (ACET) is considered, in which the Spearman

correlation coefficient is used to construct a correlation

model between different attributes. The correlation model is

used to select other attributes that have a strong correlation

with that attribute, and then uses them to train highly

randomized trees, and the lost data can be recovered by the

trained model.

A modified stochastic gradient descent (SGD) algorithm

for training linear models in the presence of missing data is

discussed in the paper [9]. The algorithm does not require

modeling of data distribution and works without assumptions

about the distribution of input data. This makes it more

versatile in application. The algorithm adapts to a different

number of missing values in different features, ensuring

correct model training and achieving the optimal

convergence rate. When implementing the batch mode of the

learning algorithm, new values of the weighting factors are

calculated at each iteration, and in the stochastic mode, one

training vector is randomly selected from the training sample

at each iteration.

The paper [10] proposes a method for filling in the

missing air pollution monitoring data, based on a neural

network approach. After training the ANN with the selected

architecture, the missing data is predicted in the network’s

operating mode. For this purpose, a non-iterative neural

network [11] based on a model of geometric transformations

was chosen. This neural-like neural network can operate in

autoassociative (without a supervisor) and supervisor mode.

In the autoassociative mode, learning is carried out using

geometric Gramm – Schmidt transformations in n-

dimensional space, where n is the number of features of the

model. As a result of the transformations, an intermediate

coordinate system is formed. Its direction coincides with the

longest axis of the dispersion ellipsoid.

The paper [12] investigates the problems associated with

the incremental principal component analysis method

(PCA). PCA updates are performed in real time and do not

require all measurement (observation) data to be stored in

memory. In real time, the values of the main components can

change by leaps and bounds due to a change in the basis

when new measurements are added, which complicates the

interpretation of the results. To achieve smoothness of

changes in the main components, a correction method is

proposed, which takes into account changes in the matrix of

transformations when adding new measurements. This is

especially important for principal components with close

eigenvalues. The correction method allows you to reduce

jumps in the values of the main components, although it can

affect the accuracy of calculations.
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A detailed review of the methods of robust principal

component analysis (RPCA) and its dynamic variant, robust

subspace tracking (RST), is discussed in the paper [13].

RPCA aims to separate data into a low-level matrix (valid

data) and a sparse matrix (outliers). This allows you to

process data that contains anomalies or outliers efficiently.

Methods enabling you to effectively track the variable

subspace in streaming data in conditions of limited compu-

ting resources are considered. The paper presents the con-

ditions under which the RPCA and RST algorithms provide

accurate recovery of subspace and outliers, as well as their

computational efficiency. An overview of the advantages

and disadvantages of different approaches is provided, which

helps choose the appropriate method for working with data

containing emissions or having a variable structure.

The paper [14] discusses estimating parameters in linear

dynamical systems with incomplete measurements or in the

presence of missed measurement data. These parameters are

the transition matrix of states A, the observation matrix C,

the noise covariances Q and R, and the initial values. To

solve this problem, combining the Kalman filter (for

processing hidden states) with the EM algorithm (for

evaluating parameters) is proposed. The Kalman filter very

naturally recovers missed data. A forecast is performed for a

specific time step. If there are no measurements for this step,

the measurement correction step is skipped.

Paper [15] shows that the choice of the element base and

navigation components for onboard equipment for measu-

ring movement parameters and determining the spatial

orientation of the MRP should be based on an integrated

approach, which includes measurement methods and modern

methods for evaluating the effectiveness of the use of the

element base. However, as the analysis shows, the public-

cations do not pay enough attention to the issues of reco-

vering lost data from sensors, taking into account the

limitations of embedded systems. Therefore, the problem of

recovering lost navigation data in mobile robotic platforms

remains relevant.

 Research results and their discussion 

Causes of missing data in datasets. The loss of

navigation data in mobile robotic platforms at specific time

intervals is due to the temporary lack of visibility of GNSS

navigation satellites, deliberate interference from electronic

warfare (EW), etc. This complicates processing on navi-

gation data only, since the accuracy of analysis, modeling,

and interpretation of results can significantly reduce dis-

tortion of results.

The causes of missing data can vary and depend on

technical and human factors. The main ones are:

1. Technical malfunctions. Malfunctions or failures of

measuring instruments, communication breaks, or errors

during data reading can lead to the loss of part of the

measurement results. For example, sensors on the MRP may

stop recording coordinates or acceleration due to the

influence of electronic warfare equipment.

2. Physical conditions. Data collected in the field

(meteorological, environmental, or biomedical observations)

can be lost due to difficult operating conditions –

precipitation, dust, electromagnetic interference, etc.

3. Limitations in software or data collection pro-

tocols. Incorrectly configured algorithms for reading,

storing, or transmitting information may not provide for

situations in which specific parameters have a null or non-

standard value, resulting in ignoring or losing this data.

Depending on the nature and scale of such losses, missed

values can significantly affect the quality of the analysis. The

results may be inaccurate or even false if appropriate

measures are not taken to detect, process, or recover them.

This, in turn, can negatively affect decision-making and the

effectiveness of systems based on this data.

Basic methods for recovering missing data. For many

modern applications in science and technology, data is

collected by streaming or batch methods. Streaming data is

continuously received in real time and requires instant or

sequential processing. Data may not be fully stored, but it is

processed in real time with minimal latency and used for

real-time monitoring and analysis. Examples of streaming

data: data from the GPS module on the vehicle; data from an

accelerometer or gyroscope on an autonomous robotic plat-

form; real-time data from medical sensors (pulse, tem-

perature, ECG).

Stream data is collected and processed in portions

(batches). Processing is performed intermittently, or data is

often stored before processing. Most often, batch data is used

for statistical analysis and model training. Examples of batch

data: files with recorded historical GPS tracks; log files

stored hourly / daily and processed together; the results of a

monthly survey or collection of electricity consumption

indicators.

Streaming data carries information that changes over

time and must be processed in a timely manner using devices

with limited memory and hardware resources for decision-

making. This is often combined with the problem of missing

data, when not all data is measured (observed). To reveal

these problems, the paper considers an example of the

movement of an autonomous robotic platform, which recei-

ves data from the GPS module for orientation on the ground.

GPS data is received with a specific error and may not be

received due to the loss of signal from satellites. The task is

to implement algorithms for recovering missed data from the

GPS module, and their implementation on the ESP-32

microcontroller with limited memory. The paper discusses

the algorithms of batch and incremental PCA, as well as the

Kalman filter for recovering missed data.

Method of the principal components analysis. The

PCA method with sliding window involves processing a

fixed set of recent measurements with dimension N. At each

time step, the window is updated: all measurement vectors

are shifted (the 2nd measurement vector becomes the first,

..., the Nth vector becomes the N–1st) and a new

measurement vector is added to the end of the window. Let’s

assume that each of the measurement vectors has a
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dimension m and the measurement data from the sensors

arrive at a constant time interval. After N measurements, we

get a matrix of measurements

 = ! "#$ %&' … ()*+,- ./0 … 1234 4 4 4567 89: … ;<=> ? @ABC. (1)

Step 1. Calculate the average for each of the columns of

the X matrix. DEF =
GHI JKLMNOP . (2)

Where j = 1, …, m.

Step 2. Centering the measurement matrix X. Subtract the

average values from each row of the measurement matrix.

QR = S TUV W XEY Z[\ W ]E^ … _`a W bEcdef W gEh ijk W lEm … nop W qEr4 4 4 4stu W vEw xyz W {E| … }~� W  E!". (3)

Step 3. Obtaining a covariance matrix:# =
$%&'()* + ,- ? @.B/.   (4)

Step 4. Calculation of eigenvalues and eigenvectors

of the covariance matrix Q. Let's denote the eigenvalues01, and through 234 – the orthogonal eigenvectors567 = (89:, ;<= ,  … , >?@) of the matrix Q, which are related

to each other by a dependence:A + BCD = EF + GHI, J = 1, … , K .  (5)

The eigenvalues of the symmetric non-negative matrix Q

are real and positive numbers. Let's order them in descending

order LM > NO > …  > PQ. Similarly, we will place the

eigenvectors corresponding to RS. Then the matrix W

determines the linear transformationTU = V + WE,  (6)

where XY is the vector of the main components of the PCA. In

other words, the PCA method performs the conversion of an

input vector ZE ? [\ into an output vector ]̂ ? _`.

The first principal component abc is associated with de by

the eigenvector fgh, defines the direction in the m-

dimensional space in which the variance of the data is

maximum. While the smallest principal component ijk
indicates the direction in which the variance is minimal.

Each of the eigenvalues lm corresponds to the variance of the

i-th principal component. To determine the eigenvalues and

eigenvectors of the autocovariance matrix Q, the Jacobi

method was used in this work.

Step 5. Recovery of missed data. Let's assume that at the

beginning of the algorithm for recovering missing data, N

measurements are known, i.e. the sliding window is

completely filled. In this case, the missed data may appear

only in the last line of the sliding window of dimension N

and only the input vector no will need to be restored.

To recover missing data, you can use not all eigenvectors,

but only the first k with the maximum fraction of variance.

The contribution of each of the main components to the

overall variation of the data is determined by the expression:pq =
rsI tuvwxy  .  (7)

The inverse transformation consists of finding the vectorz{ from the expression

|} = ~� ! . (8)

Let us assume that the vector "# lies in the subspace

described by the matrix $ of eigenvectors. To restore it, we

will use the expression

%& ' (E + )*
+,-, (9)

where ./
0 is the matrix k of eigenvectors corresponding to

the largest eigenvalues. Also, in the expression (9)

decentration is performed when obtaining a vector 12.

Therefore, to restore the missing vector 34, it is necessary to

evaluate the vector of the principal components 56. Let us

define it as the mean of the vectors of the principal

components 78, 9:, ..., ;<=>.

Algorithm for recovering missed data based on the

Kalman filter. The Kalman filter is the theoretical basis for

various recursive methods used in stochastic linear

dynamical systems. The algorithm is based on the idea that

the unknown state of a system can be estimated based on

measurements obtained over time. The Kalman filter

evaluates the state of a system in the format of a state space

based on dynamical systems. The change of state from a

point in time tk–1 to a moment in time tk is described by a

discrete equation (equation of dynamics)

?@ = ABCDE + FGH + IJ, (10)

where KL ? @M is the vector of the state of the system;

N ? @OPQ – state transition matrix; RS ? @T – input control

vector; U ? @VPW – input control matrix; XY ? @Z~[(0,\) –

process noise vector; ] ? @^P_ – process noise covariance

matrix (determines the noise of the system and simulates

perturbations that are not taken into account in the equation

of motion).

Equation of measurement of a system (equation of

statics)

`a = bcd + ef,  (11)

defines the relationship between the state of the system

and the measurement at time gh. In the expression (11)

ij ? @k – the vector of measurements; l ? @mPn – matrix

of observations; op ? @q~r(0,s) – measurement noise

vector; t ? @uPv – measurement noise covariance matrix

(determines sensor measurement errors).

Each iteration of the Kalman filter algorithm consists of

two steps: extrapolation and correction. During

extrapolation, the estimate of the state wxy
z based on the

estimate {|}~�
 and the covariance matrix of the estimate of

errors !"
# are calculated according to the expressions:

$%&
' = ()*+,-

. + /0123, (12)

45
6 = 789:;

< => + ?. (13)

During the correction step, the Kalman matrix (gain

matrix) is calculated

@A = BC
DEF(GHI

JKL + M)NO, (14)

The updated state of the system and the updated error

estimation covariance matrix are calculated according to the

expressions:

PQR
S = TUV

W + XYZ[, (15)

\]
^ = (_ W à)bc

d, (16)

where e is the identity matrix.
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Consider a mathematical model that describes the

movement of the MRP. The state vector at the step fg looks

like:

hi = jkl , mn , op , qr,s , tu,v, wx,yz
{
, (17)

where |} , ~� ,  ! are the MRP coordinates, "#,$, %&,' , (),* are

the components of the MRP velocity.

State transition matrix +:

, =

-.
..
./
1 0 0 01 0 0

0 1 0 0 23 0

0

0
0

0

0

0
0

0

1 0 0 45
0 1 0 0
0

0

0

0

1

0

0

1 67
77
78
,  (18)

where 9: is the sampling time. Measurement vector in step;<: => = [?@A, BCD , EFG]H, (19)

where IJK, LMN , OPQ are the coordinates of the object

(longitude, latitude, altitude) obtained by GPS measurement.

Observation matrix:

R = S1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

T. (20)

At the beginning of the Kalman filter algorithm, you need

to perform the initialization of system state variables UVWX, state

error estimation covariance matrix YZ[, process noise

covariance matrix \, measurement noise covariance matrix ].

System state initialization: the first coordinate mea-

surement is assigned to state variables ^_ , `a , bc and the

velocity components de,f , gh,i, jk,l are set to zero. Since the

measurement of GPS coordinates is carried out with an error

of 2–5 m, the diagonal elements of the matrix mno
corresponding to the coordinates are given by values from

this range, and the diagonal elements associated with the

components of the velocity are given equal to zero (MRP is

not movable). All non-diagonal elements of the matrix pqr
are set to zero.

The initialization of the process noise covariance matrix

Q and the measurement noise matrix R is performed based

on data on the accuracy of the mathematical model of the

system and measurement errors obtained from the sensors.

After that, a step-by-step algorithm for recovering

measurement data based on the Kalman filter is performed:

1. Extrapolation of the MRP state taking into account the

velocity.

2. If GPS measurement data is available, a correction

based on the Kalman filter is performed, and the current

assessment of the state variables is stored. If there are no

measurement data, the correction is not performed, but only

the results of the extrapolation of state variables are stored as

their current estimate.

Implementation of an algorithm for recovering lost

navigation data for MRP. Based on the PCA algorithm

with a sliding window, the program Restore_Missing_

Data_PCA is developed. The program is written in C for the

ESP32 microcontroller. The specified microcontroller has

sufficient computing resources for streaming processing

(recovery) of data in real time.

The steps of the algorithm are as follows:

 receives the input sequence of GPS data (altitude,

longitude, latitude);

 for each time step Ts forms a sliding window of a

given size N;

 calculates the covariance matrix for this window;

 calculates eigenvalues and eigenvectors of a sym-

metric covariance matrix using the Jacobi method;

 for a specified number of main components (this

parameter is specified) recovers the lost data. It is

executed if no input vector is received at the current

time step.

To check the functioning of the program, measurement

numbers with missing data were randomly generated. These

data were restored and the error was calculated for them

according to the expression

stuv = wI xyz,{|}~� W  !,"
#$

%&
'() , (21)

where is the restored *+,,
-./0i-th input vector, the index 12,3

4 j

indicates the values of height, longitude, latitude,

respectively, is the i-th input vector obtained from GPS. The

study was performed to recover 6 input vectors from the

N_Point=50 sample for different sliding window sizes

N_W=10, 20, 30, 40.

Below are the results of the program execution for the

specified values and the obtained error values for the

recovery of missed GPS data.

For a sliding window measuring 10 samples, the sliding

window was formed 40 times, and the main components

were found.

-- WINDOW_SIZE   = 10 --

Index | Altitude| Longitude | Latitude |  Error

-----------------------------------------------------

11 | 353.6 | 24.022163 | 49.827764 | 0.322

14 | 353.4 | 24.022201 | 49.827757 | 0.714

17 | 353.2 | 24.022238 | 49.827749 | 0.915

24 | 352.4 | 24.022353 | 49.827723 | 1.302

29 | 351.9 | 24.022427 | 49.827705 | 1.200

36 | 352.5 | 24.022533 | 49.827679 | 0.322

For a sliding window measuring 20 samples, the sliding

window was formed 30 times, and the main components

were found.

-- WINDOW_SIZE   = 20 --

Index | Altitude| Longitude | Latitude |  Error

-----------------------------------------------------

11 | 353.3 | 24.022205 | 49.827754 | 0.018

14 | 353.3 | 24.022205 | 49.827754 | 0.618

17 | 353.3 | 24.022205 | 49.827754 | 1.018

24 | 352.9 | 24.022274 | 49.827740 | 1.819

29 | 352.5 | 24.022341 | 49.827725 | 0.628

36 | 352.4 | 24.022443 | 49.827701 | 0.200

For a sliding window measuring 30 samples, the sliding

window was formed 20 times, and the main components

were found.

-- WINDOW_SIZE   = 30 --
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Index | Altitude| Longitude | Latitude |  Error

-----------------------------------------------------

11 | 352.8 | 24.022279 | 49.827738 | 0.456

14 | 352.8 | 24.022279 | 49.827738 | 0.144

17 | 352.8 | 24.022279 | 49.827738 | 0.544

24 | 352.8 | 24.022279 | 49.827738 | 1.744

29 | 352.8 | 24.022279 | 49.827738 | 0.256

36 | 352.6 | 24.022378 | 49.827716 | 0.442

For a sliding window with a size of 40 samples, the

sliding window was formed 10 times, and the main

components were found.

-- WINDOW_SIZE   = 40 --

Index | Altitude| Longitude | Latitude |  Error

-----------------------------------------------------

11 | 352.8 | 24.022362 | 49.827718 | 0.526

14 | 352.8 | 24.022362 | 49.827718 | 0.074

17 | 352.8 | 24.022362 | 49.827718 | 0.474

24 | 352.8 | 24.022362 | 49.827718 | 1.674

29 | 352.8 | 24.022362 | 49.827718 | 0.326

36 | 352.8 | 24.022362 | 49.827718 | 0.574

As the analysis shows, the errors in the recovery of

missing GPS data for different sliding window sizes for the

same input vectors differ insignificantly and range from

1.302 to 1.819 for maximum values.

Table 1 summarizes the test results.

Two computing platforms were used in the testing

process: platform 1, based on the ESP32-C3/ESP32-

WROOM microcontroller, and platform 2, Intel i7 7700. A

total of 100 consecutive calculations were performed for

each parameter value. As the analysis shows, even in the

worst case, the recovery time of lost data using the ESP32-

C3 microcontroller is 43 msec, which, in the case of one

measurement per second for the real rate of GNSS data

arrival, is enough to provide a real-time mode. The ESP32-

WROOM-based computing platform has more than a

twofold performance advantage.

Table 1. Results of testing the algorithm for recovering lost navigation data

Parameters
(window size)

Minimum error Maximum error
Processing Time

(Platform 1), msec
Processing Time

(Platform 2), msec

10 0.322 1.302 3704 / 1457 12

20 0.018 1.819 4309 / 1654 15

30 0.144 1.744 4009 / 1519 14

40 0.326 1.674 2839 / 1065 11

Development and testing of tools for recovering lost

navigation data in mobile robotic platforms. To solve the

problems of intelligent measurement of motion parameters

and determination of the spatial orientation of ground MRPs,

it is necessary to use a set of sensors, each of which measures

a separate parameter of the MRP movement, and additional

qualitative and quantitative values of motion parameters can

be obtained by taking into account their change. Thus, each

sensor must have separate computing tools for processing the

received data, which, on the one hand, have the appropriate

interfaces (SPI, I2C, Serial), and on the other hand, sufficient

computing power to ensure interaction with sensors and

implement the necessary data pre-processing in real time. To

provide complex intelligent processing, computing resources

of modern SoCs can be used.

The structural diagram of the means for measuring

motion parameters and determining spatial orientation for

ground MRPs is shown in Fig. 1. Its main components are:

 ESP32-C3 microcontroller;

 GNSS module type M10Q-5883;

 accelerometer and gyroscope module MPU-6050;

 QMC5883L digital compass module.

A 32-bit ESP32-C3 microcontroller developed by

Espressif Systems is used for the collection and preliminary

processing of navigation data. The main components are: a

single-core RISC-V core operating at a frequency of up to

160 MHz; memory – 400 KB RAM, 4 MB flash memory;

wired interfaces – GPIO, UART, SPI, I2C, I2S, PWM, ADC;

wireless interfaces – Wi-Fi (2.4GHz 802.11 b/g/n) and

Bluetooth 5.0 (LE). The specified microcontroller is used to

process data from the specified navigation sensors, since it

has the necessary I2C and UART interfaces.

Fig. 1. Structural diagram of a means of measuring motion

parameters and determining spatial orientation

for ground-based MRPs

GNSS satellite positioning systems are used today to

obtain operational information about the location of the
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MRP. Several alternative systems are now actively used:

GPS, BeiDou, Galileo, and Glonass. The M10Q-5883 GPS

module adopts a GNSS module based on the u-blox M10

series chip and provides high sensitivity and data acquisition

frequency for all L1 GNSS signals. It supports simultaneous

reception of four GNSS (GPS, GLONASS, Galileo, and

BeiDou). The large number of visible satellites allows the

receiver to select the best signals to receive positioning data,

which ensures the availability of positioning data, especially

in challenging environments such as “urban canyons”. A u-

blox Super-S (Super-Signal) technology provides high radio

sensitivity and can improve dynamic positioning accuracy

without line-of-sight conditions. The 15!15 mm square

high-gain patch antenna provides the best balance between

performance and small size. The I2C interface is used to

operate the magnetometer QMC5883L. The direction and

orientation in the MRP space are determined using a digital

compass QMC5883L – 3-axis module for magnetic sensing

at a low field level.

The GY-521 module has an integrated combined sensor

that integrates a gyroscope and accelerometer with high-

accuracy measurement of angular velocity and acceleration

of the MPU-6050 type. High measurement accuracy is

realized using a 16-bit ADC and built-in 1024-byte FIFO

memory. An I2C interface is used for communication. Based

on the MPU-6050, effective systems for stabilizing and

tracking the movement of MRP are being built.

The general view of the means for measuring motion

parameters and determining spatial orientation for ground-

based MRP is shown in Fig. 2. The use of these modules and

the ESP32 microcontroller ensured the possibility of its

implementation in compact dimensions of 40!40 mm.

Fig. 2. General view of the means for measuring motion

parameters and determining spatial orientation

for ground-based MRCs

The module outputs a data stream via the NMEA-0183

protocol to the built-in UART. However, only geospatial

coordinates are needed to position the MRP. Positioning tags

$GPGGA from the received NMEA data stream processed

by the ESP32-C3 microcontroller to obtain longitude,

latitude and altitude parameters. At the same time, data from

the gyroscope / accelerometer is read. The obtained positi-

oning data is transmitted to the MRP control microcomputer.

The developed module was used in real movement

conditions to test the process of reproducing lost data. The

Google Earth visualization of the resulting tracks is shown

in Fig. 3.

Fig. 3. Visualization of a track fragment in Google Earth using the developed module
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The data received by the module was recorded by the

smartphone using a specialized Serial USB Terminal

application through a USB-UART adapter. This data has

been converted to a KML file format for rendering in the

Google Earth app on PC.

The data was stored in CSV format and then visualized

using a Python program using the plotly, pandas, and scipy

libraries. The altitude measurement data was further filtered

to eliminate emissions (Fig. 4).

Visualization of data from the magnetometer module

QMC5883L for one fragment of the track (Fig. 3) is shown

in Fig. 5, and from the MPU-6050 gyroscope / accelerometer

in Fig. 6. The measurement data was further filtered to

eliminate emissions.

The data obtained from the M10Q-5883 GPS module, an

electronic compass based on the QMC5883L magnetometer,

and an accelerometer based on the MPU-6050 are pre-

processed by the ESP32-C3 microcontroller and transmitted

to the microcomputer through the UART interface for further

processing in the MRP control system.

Fig. 4. Visualization in longitude-latitude-height

coordinates of the received track using

the developed module

Fig. 5. Visualization of QMC5883L magnetometer data

Fig. 6. Visualization of MPU-6050 gyroscope/accelerometer data
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Additionally, the speed of execution of the developed

algorithm for recovering lost data on various computing

platforms was tested. Implementing the algorithm in the C

language provided a prompt transfer to several micro-

controller and SoC platforms. Table 2 shows the results of

testing the algorithm execution speed on different platforms.

Table 2. Execution speed of the developed algorithm on computing platforms

Computing platform Calculation time, msec Processor frequency, MHz Performance indicator, sec"MHz

Arduino UNO 9679 16 154.864

ESP8266 1458 80 116.64

ESP32-WROOM 381 160 60.96

ESP32-C3 968 160 154.88

Orange Pi Zero 78 1000 78

Raspberry Pi 4 Model B 23 1800 41.4

Intel i7 7700 13 3600 46.8

To compare the results, a total of 100 cycles of recovery

of lost data were performed. The values of the recovery

algorithm parameters and the data for processing on all

platforms were the same. The algorithm was executed in one

thread; parallelization was not used.

The efficiency indicator of the computing platform was

calculated as the product of the calculation time by the

frequency of the processor, taking into account the fact that

the number of operations of the executed algorithm on each

platform did not change, and the execution time is inversely

proportional to the frequency of a particular processor. That

is, the indicator compares platforms’ efficiency at the

architecture level, or the number of cycles the processor

needs to execute the algorithm.

For these reasons, the conditional performance factor of

the platform was calculated (Fig. 7).

The conditional performance factor of the platform was

calculated taking into account the data in Table 2 as the ratio

of the efficiency indicator to the same indicator for the

Arduino UNO platform. Obviously, for platforms using

modern processors, such a conditional performance factor is

higher, but not to such a large extent as one might hope.

Fig. 7. Conditional platform productivity factor

Discussion of the results obtained. Analysis of the

problems of recovering lost navigation data in mobile robotic

platforms requires solving the issue of choosing the

appropriate algorithm and element base and components for

such implementation. Based on the analysis, it is proposed to

use the PCA main component analysis algorithm to

implement the problem of recovering lost navigation data in

the case of a mobile MRP, which involves processing a fixed

set of last measurements with N samples with a sliding

window and using only k eigenvectors that correspond to the

largest eigenvalues. The use of the algorithm based on the

Kalman filter for the recovery of missing data is promising,

but further implementation on the microcontroller platform

is required.

Components for creating tools for recovering lost navi-

gation data for MRP are considered, and a set of navigation

sensors using a GPS/GNSS-based coordinate determination

module is defined. The created tools are implemented using

the ESP32-C3 microcontroller, GNSS module type M10Q-

5883, which contains a digital compass module QMC5883L

and an accelerometer / gyroscope module MPU-6050.

Software tools for the visualization of the accumulated data

have been developed.

The development of tools for recovering lost navigation

data for the MRP has been carried out. For the construction

of hardware, the ESP32 microcontroller was used, and the

performance of individual implementations of computing

platforms was compared.
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It is determined that the ESP32-WROOM platform has a

more than twofold performance advantage over ESP32-C3.

Testing the developed tools for recovering lost navigation data

for MRP has been performed. Analysis of the test data shows

that even in the worst case, the recovery time of lost data using

the ESP32-C3 microcontroller is 43 msec, which, in the case of

one measurement per second for the real rate of GNSS data

arrival, is enough to provide a real-time mode.

The scientific novelty of the research results is that the

algorithm for the recovery of lost navigation data, which is

focused on use in mobile robotic platforms, which uses the

method of principal components analysis PCA, which

involves the processing of a fixed set of last measurements

with N samples with a sliding window, has been improved

and thus ensures the processing of data on a computing

platform with limited resources.

The practical significance of the research results is the use

of the developed algorithm for recovering lost navigation data

in mobile robotic platforms, based on the principal components

analysis PCA method, which provides data processing on a

computing platform with limited resources and allows

processing streaming data of MRP coordinates in real time.

Conclusions  

Modern algorithms for recovering lost navigation data in

mobile robotic platforms have been analyzed, and an

algorithm based on the principal component analysis method

PCA has been selected for implementation, which, with low

computational complexity, provides sufficient accuracy of

data recovery and can be implemented on a computing

platform with limited resources.

A structural diagram of a means for measuring motion

parameters and determining spatial orientation for ground

MRP has been developed. It is determined that the main

components of recovering lost navigation data for MRP are

a set of navigation sensors using a GPS/GNSS-based

coordinate determination module. Data recovery tools have

been created using the ESP32-C3 microcontroller, GNSS

module type M10Q-5883, which contains a digital compass

module QMC5883L and an accelerometer / gyroscope

module MPU-6050.

Debugging and testing the developed tools for recovering

lost navigation data for MRP have been performed. Analysis

of the test results shows that the platform using the ESP32-C3

microcontroller provides data processing in 43 milliseconds.

For the GNSS data arrival rate of one measurement / sec, this

is sufficient to provide real-time mode.
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