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METHODOLOGY FOR COMPARATIVE ANALYSIS OF MAXIMAL  
EXTRACTABLE VALUE (MEV) IN DECENTRALIZED EXCHANGE PROTOCOLS 

The development of smart contracts in blockchain networks has enabled the creation of sophisticated decentralized

finance (DeFi) protocols, encompassing decentralized exchanges, lending platforms, and algorithmic crypto-assets. Despite

decentralization and transparency, blockchain networks do not guarantee a predictable transaction execution order, leading

to the emergence of the phenomenon known as Maximal Extractable Value (MEV) – an additional profit extracted by certain

network participants who influence transaction ordering.

This study focuses on the empirical analysis of MEV extraction across various DeFi protocols to identify critical factors

influencing the frequency and extent of MEV attacks. The research introduces a comparative methodology for evaluating

MEV extraction based on a modified version of the MEV Inspect Py software suite, enhanced by newly developed

components: a Price Resolver for collecting and correcting cryptocurrency price data, and a Jupyter Notebook module for

detailed data analysis, comparison and visualization. An evaluation of the total volume of sandwich and arbitrage-type MEV

attacks was also developed, and a method for correcting cryptocurrency price data was implemented, which improved the

quality of the obtained results.

The obtained results demonstrate that Uniswap V2 and Uniswap V3 are the primary targets for MEV extraction;

however, their operational mechanisms create distinct conditions for attacks. A clear correlation was identified between

concentrated liquidity, pricing algorithms, and the scale of MEV exploitation. Furthermore, the findings confirm that the

architectural features of DeFi protocols significantly affect their vulnerability to MEV.

These results can be employed to enhance the resilience of decentralized exchange algorithms against MEV extraction

and to develop mechanisms that minimize its negative impacts on both protocol efficiency and user fairness. Moreover, the

insights from this research provide valuable guidance to DeFi protocol users seeking to reduce their exposure to MEV-

related risks and make more informed decisions. Future research directions include extending the analysis to MEV

exploitation in blockchain networks other than Ethereum and evaluating the effectiveness of existing and emerging

protective strategies.
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Introduction  

Over time, blockchain networks have evolved to support

programmable logic through smart contracts, which laid the

foundation for the emergence of decentralized finance (DeFi)

protocols – decentralized cryptocurrency exchanges, lending

platforms, automated portfolio management systems, and

algorithmic crypto-assets such as stablecoins and derivatives

[1]. These protocols serve as decentralized analogues to

traditional centralized financial services, which has rendered

them susceptible to transaction ordering manipulation, similar

to those observed in traditional finance, particularly in high-

frequency trading (HFT) environments [2].

Such manipulations, or in fact attacks, have gained

significant traction and were first formalized in [3] under the

term Maximal Extractable Value (MEV) – the maximum

value that network participants can extract by gaining

preferential access to transaction ordering.

Researchers typically distinguish four primary categories

of MEV attacks in blockchain systems [4]:

- frontrunning;

- backrunning;

- sandwich attacks;

- liquidations in decentralized lending protocols.

The exploitation of MEV has reached significant scale,

initially started through uncoordinated priority gas auctions

(PGAs), which eventually threatened the stability of the

Ethereum network by incentivizing miners to rewrite block-

chain history for additional profit. Later, after many blockchain

networks including Ethereum transitioned to Proof-of-Stake

(PoS) consensus, the MEV phenomenon influenced the role

separation between network participants into Searchers, Block

Builders, and Validators, alongside the introduction of the

Protocol Builder Separation (PBS) scheme [5].

Consequently, MEV extraction must be recognized as a

substantial systemic risk impacting the efficiency, fairness,

and security of blockchain networks. Investigating this issue

is particularly relevant amid the rapid growth of DeFi

protocols, which demonstrate varying degrees of suscepti



 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2025, ;. 7, ? 1 (11) 109

bility to MEV attacks. This necessitates the use of empirical

research methods capable of identifying and comparing

vulnerabilities across different architectural models. The

goal of this study is to formalize a methodology for

comparative analysis of MEV exploitation in DeFi protocols

and to identify the key factors that influence their resilience

to such attacks.

The relevance of the MEV problem is driven by the range

of risks it introduces: user profit loss within DeFi operations,

increased network load due to surplus transactions,

exploitation of consensus vulnerabilities, heightened cen-

sorship of on-chain activity, and broader centralization

trends within blockchain infrastructure.

Researching MEV is non-trivial task due to the decen-

tralized and dynamic nature of blockchain systems, the

pseudonymity of participants, and the overall fragmentation

of on-chain data. One of the most promising directions of

inquiry is the empirical analysis of public blockchain data to

assess the nature and scale of such attacks. Prior studies have

focused either on live block monitoring or retrospective

analysis of specific block ranges using a variety of methods

and tools, such as those presented in [6], [7] (graph-

theoretical approaches), [8], [9], [10] and [11].

Nevertheless, a gap remains in assessing the relationship

between the implementation details of DeFi protocols and

the extent of MEV exploitation. Our study focuses on

comparing MEV extraction across DEX protocols and

identifying potential correlations between their architectural

design and their resilience or susceptibility to such attacks.

The object of this study is the process of MEV extraction

within DeFi protocols and the architectural details of those

protocols, specifically within the Ethereum blockchain.

The subject of this study is the set of algorithms,

analytical techniques, and tooling used to evaluate MEV

extraction, as well as the operational mechanics underlying

DeFi protocol implementations.

The purpose of the study is to formulate and implement a

methodology for comparative analysis of MEV exploitation

across decentralized exchange protocols, with the goal of

identifying key factors that affect their susceptibility or

resistance to such attacks.

In order to achieve this goal, the following research

objectives were defined:

To review existing empirical studies on MEV and its

impact on DeFi protocols;

To modify and extend the MEV Inspect Py software

framework to adapt it for comparative analysis of MEV

extraction;

To develop additional components of the methodology,

including a Jupyter Notebook analytics module and a Price

Resolver component for retrieving and correcting crypto

asset pricing data;

To collect and process MEV extraction data using the

extended toolkit;

To investigate differences in MEV activity across the

most popular DeFi protocols within selected categories;

To identify correlations between MEV extraction and

other protocol metrics such as total value locked (TVL),

trading volume, and liquidity distribution;

To summarize the findings and outline directions for

further research.

Materials and methods. To collect and identify instances

of MEV exploitation, this study employed the open-source

project MEV Inspect Py (MIP) [12]. MIP is an Extract-

Transform-Load (ETL) software framework that, based on a

defined configuration, collects data from the Ethereum

blockchain, decodes smart contract calls to DeFi protocols

within transactions, classifies those calls, and detects MEV

attacks using built-in patterns.

The MIP framework consists of the following

components: a launcher container, a worker container, a

PostgreSQL database [13], and a Redis caching layer

configured in a master-slave setup [14]. The system is

deployed using container orchestration tools based on

Kubernetes [15], in conjunction with a local development

cluster powered by Minikube [16] (Fig. 1).

Fig. 1. Architecture of MEV Insepct Py

One of the main challenges in working with MIP is

retrieving up-to-date prices for cryptocurrencies and tokens

(hereafter referred to as crypto-assets). The built-in

capabilities rely on paid external services such as Coingecko

[17], which can be costly and may not always guarantee

sufficient data accuracy. To address this issue, a set of custom

Python scripts was implemented to fetch prices using the

decentralized exchange API provided by Geckoterminal [18].

The analysis of differences in MEV extraction across

various DeFi protocols and the generation of corresponding
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analytical reports was carried out using the interactive

Jupyter Notebook environment [19]. The analysis leveraged

Python libraries including SQLAlchemy, Pandas, NumPy,

and Matplotlib. Additionally, the Z-score method [20] was

applied to detect anomalies in pricing data. This filtering

allowed for the exclusion of distorted values caused by low

liquidity in specific DEX pools, thus improving the quality

and reliability of the resulting dataset.

Analysis of recent research and publications. The

phenomenon of MEV in blockchain networks was first

formalized in [3]. That study drew parallels between

algorithmic high-frequency trading (HFT) in traditional

stock markets and transaction ordering manipulation

performed by automated bots and mining nodes within

Ethereum blocks. It also investigated priority gas auctions

(PGAs) using game theory [21] to model the behavior of

participating bots, which allowed the authors to distinguish

specific strategic patterns and analyze coordination

mechanisms. Particular attention was given to systemic risks

posed by MEV attacks conducted by miners. In such cases,

miners, motivated by the potential for increased profits

through transaction reordering, exploited vulnerabilities in

the consensus algorithm to initiate blockchain

reorganizations and capture portions of other users’ profits.

While this study made a significant contribution to the

understanding of MEV, it focused primarily on spam-like

PGA activity and did not explore the distribution of such

attacks across different DeFi protocols.

The paper [10] presents an empirical analysis of

transaction ordering manipulation in Ethereum and

introduces a slightly different taxonomy of MEV attacks:

Displacement – when an attacker’s transaction precedes

the victim’s transaction, altering its intended effect.

Insertion – a classic sandwich attack in which the attacker

inserts transactions before and after the victim’s to profit

from price movements.

Suppression – when the attacker floods a block with

high-fee transactions to exclude the victim’s transaction

from inclusion.

This study is notable for its depth in analyzing MEV

execution and fits within earlier waves of MEV-related

research.

The next study [6] offers a more in-depth examination of

MEV exploitation across various types of DeFi protocols.

The authors use a combination of heuristic algorithms and

graph-based analysis to identify MEV attacks in large

blockchain datasets. They trace transactions and apply

clustering techniques to detect recurring behavioral patterns

among MEV bots. Although the paper proposes improved

techniques for MEV detection and examines their impact on

the stability of DeFi protocols, it does not delve into

differences between specific DEX implementations.

In [22], the authors examine the difficulty of MEV

valuation and propose alternative methods for its estimation.

They emphasize that due to the evolving nature of the

market, changing trading mechanisms, and increasing

reliance on private transaction channels, estimating the total

value of MEV is extremely challenging. The study proposes

a minimal-value estimation approach based on market

analysis and observation of MEV actors’ operational costs.

While the methodological contribution is substantial, the

work does not address differences in MEV exploitation

across categories of DeFi protocols.

Another study [7] focuses on the role of Ethereum miners

in block construction and transaction ordering for MEV

extraction. It reveals that a significant portion of MEV activity

occurs through private channels. Importantly, the paper

highlights how miners maintain control over a large share of

MEV profits. Although the study provides valuable insights

into miner behavior and MEV dynamics, it does not

investigate variation in MEV susceptibility across protocol

categories – leaving room for further research into the

relationship between protocol design and MEV extractability.

The study [23] presents a focused case study of MEV

attacks on the Uniswap DEX, analyzing the USDC/WETH

pool. The authors find that roughly 45% of daily trade

volume in this pool involves MEV bots. The paper

concentrates on arbitrage and sandwich attacks and

demonstrates their impact on liquidity and price volatility.

However, it limits its scope to a single DEX protocol and

single exchange pool. Future research, therefore, could focus

on cross-protocol comparison and evaluation of MEV

resilience in a broader set of DeFi platforms.

In [24], the authors conduct a large-scale empirical

analysis of sandwich and arbitrage MEV attacks on

decentralized exchanges such as Sushiswap and Curve.

Using a modified clustering algorithm and extensive

transaction data, they show that liquidity structure and

pricing mechanisms play a significant role in determining the

frequency and profitability of MEV attacks. However, the

study does not address systemic risks at the blockchain

network level, nor does it perform a comparative analysis

across a sufficiently broad set of DeFi protocols.

Finally, the study [25] explores MEV extraction within

the Flashbots Bundle infrastructure. The authors introduce

two novel analytical techniques – ActLifter and ActCluster,

which enable the identification of MEV activities and the

clustering of suspicious transactions to uncover the trading

bot behavior patterns. This approach led to the discovery of

previously undocumented rare MEV attack types. The

authors also suggest several future research directions where

these techniques may be applied.

In summary, MEV quantification has become a vibrant

area of research in recent years, encompassing various

aspects of its impact on blockchain ecosystems. A substantial

portion of existing studies focus on profitability estimation,

attack identification, and refinement of detection methods.

However, despite this progress, a significant gap remains in

understanding how MEV exploitation varies across

categories of DeFi protocols and which protocols are most

frequently targeted.

This direction of research is particularly relevant, as it

may help identify the most vulnerable protocols and support

the development of mitigation strategies. Moreover, such
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comparative analysis can offer practical guidance for DeFi

protocol developers seeking to minimize exposure to MEV

threats in their systems.

Research results and their discussion 

The results presented in this study are based on public

data collected from the Ethereum blockchain between May

13 and May 19, 2024, using the modified version of the MEV

Inspect Py (MIP) framework along with additional

components developed as part of this work. The key

quantitative characteristics of the resulting dataset are

summarized in Table 1.

Table 1. Dataset from Ethereum network 13.05.2024 –

19.05.2024

Indicator Value

Blocks 50 041

Swap method calls 1 707 482

Classified transaction traces 46 762 510

Sandwich attacks 66 125

Arbitrages 17 954

Liquidations 96

Unique decentralized exchanges involved 35

The data collection and processing workflow using the

MIP framework includes the following stages:

1. Remote Procedure Calls (RPC) to a blockchain node

to fetch blocks within the specified range. Retrieved data

includes transactions, trace records, receipts, and other

metadata.

2. Classification of transaction traces using the

Application Binary Interface (ABI) of known decentralized

exchanges (DEXs). This allows the identification of smart

contract method calls relevant to MEV extraction.

3. Pattern matching among the classified method calls

(e. g., swap) to detect known MEV attack types such as

sandwich, arbitrage, or liquidation. For each identified MEV

case, the system calculates the extracted profit, payments to

miners or validators, and attaches relevant metadata.

The default version of the MIP framework contains

several limitations that hinder more advanced analysis:

 lack of granular crypto-asset pricing data, which is

essential for evaluating the volume and profitability of

MEV extraction;

 absence of MEV volume metrics per attack type, which

are important for estimating the scale of capital passing

through MEV strategies;

 token balance mismatches between frontrun and backrun

transactions in sandwich attacks which leaves some

amount of profit unaccounted;

 no built-in functionality for comparing MEV metrics

across different DEXs;

 lack of metadata on DEX protocols and the presence of

certain processing bugs that distort the analysis results [12].

To address these limitations, this study introduces a

comparative MEV analysis methodology designed to

evaluate extraction patterns across different DeFi protocols

using unified criteria. The methodology is implemented

through the components described below.

Modified MEV Inspect Py (MIP) framework. The

following extensions were introduced to enable richer

quantitative analysis:

- expanded database schema to store token price data

obtained from decentralized exchanges;

- implementation of rate limiting for external API calls;

- fixes for token balance mismatch in frontrun/backrun

transactions in sandwich attacks;

- updated ABI configuration for the Uniswap protocol;

- bug fix for handling GBTC / WETH and other non-

strict-check pools in Uniswap V3 [26], along with

other minor fixes and improvements.

All modifications are publicly available in the GitHub

repository [27].

Price resolver component for retrieving and

correcting crypto-asset prices. This Python-based module

supports granular historical price data collection using two

sources – Coingecko [17] and Geckoterminal [18] APIs.

While Coingecko provides aggregated price data for a

limited number of tokens, Geckoterminal offers a broader

dataset focused on DeFi protocols, particularly DEXs. If a

token price is unavailable on Coingecko, the system searches

for the token’s pool on Geckoterminal and retrieves price

data along with pool and token metadata.

Since Geckoterminal data may be distorted due to low

liquidity in certain pools, the dataset may include anomalous

price values. To filter out such anomalies, the Z-score

method [20] is applied:

z = (x –m) / s,

where z is the standardized score, x is the value being

evaluated, H is the sample mean and I is the standard

deviation.

This approach is applied to token price data obtained via

Geckoterminal’s API. Values with Z-scores above 3.0 are

excluded, eliminating outliers and improving data quality.

The component also retrieves additional pool metadata,

including token decimals and relevant technical parameters.

Jupyter Notebook analytics module for comparing

MEV extraction across protocols. This module serves as a

post-processing layer for aggregating, comparing, and

visualizing MEV extraction data across various DeFi

protocols. When evaluating the impact of MEV on

decentralized exchanges, it is important to assess not only the

profitability of attacks but also the volume – the total

adjusted amount of crypto-assets transferred through

transactions involved in MEV attacks. The following

formula is used to estimate MEV extraction volume:

VMEN = max (Aout, Ain) + R + F + L

where Ain – total assets spent by the attacker; Aout – total

assets received by the attacker; R – residual unconverted

assets; F – gas fees paid; L – losses due to failed transactions.

Comparative analysis of MEV extraction across different

protocols also requires data aggregation by relevant

dimensions such as attacker transaction pairs (frontrun-
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backrun), block number, or date. In addition, the notebook

module provides tools for statistical evaluation, filtering

empty entries, and visualizing trends and relationships in the

dataset. The baseline MIP implementation lacks these

capabilities, so they were implemented as part of a Jupyter

Notebook post-processing pipeline

Fig. 2 shows the architecture of the complete data

collection and analysis system implementing the proposed

methodology.

As illustrated in Fig. 2, the data collected by the MIP

system is accessed via its built-in PostgreSQL database

client. This architecture provides modularity and flexibility:

pricing queries and analytics can be executed independently

from MIP’s core processing engine, and results generated in

Jupyter Notebook can be exported in multiple formats,

including CSV, PDF, and HTML.

Discussion of research results. The analytical module

implemented using Jupyter Notebooks was applied to the

dataset collected from the Ethereum blockchain between May

13 and May 19, 2024. Although a broad set of MEV-related

metrics was calculated (extracted profit, validator payments,

and others), this discussion focuses primarily on the number

and volume of MEV extractions by type, as these metrics are

the most indicative of the intensity and systemic footprint of

MEV activity across protocols. The analysis is conducted

across different decentralized exchanges, as these

comparisons provide insights into the relative MEV activity

and its impact on the examined protocols.

Fig. 3 presents the number of identified sandwich-type

MEV attacks, grouped by the decentralized exchange on

which they occurred.

As seen in the chart, the vast majority of sandwich attacks

were executed on Uniswap V2, followed by a sharp drop in

frequency across Uniswap V3 and other exchanges. A

slightly different picture emerges in Fig. 4, which shows the

volume of sandwich attacks over the same time period.

Fig. 2. Architecture of MEV data collection and comparative analysis

Fig. 3.MEV sandwich attacks count

A comparison of attack volume and count reveals that the

total volume of crypto-assets involved in sandwich-type

MEV extraction is similarly high for Uniswap V2, Uniswap

V3, PancakeSwap, and Solidly V3. These results lead to

several important observations. Uniswap V2, as shown in

prior studies [28] and [23] employs a simple AMM
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(Automated Market Maker) mechanism, which facilitates

more flexible price manipulation in individual liquidity pools

(e. g., WETH/USDC pairs) and easier execution of attacks.

As a result, the number of attacks is higher, but their average

volume tends to be lower. In contrast, Uniswap V3,

PancakeSwap, and Solidly V3 use alternative mechanisms

with distinctive characteristics. For example, Uniswap V3

utilizes concentrated liquidity [23], which makes sandwich

attacks somewhat harder to perform but, due to liquidity

fragmentation across price ranges, allows for greater

financial gains per attack.

A similar pattern is observed when analyzing arbitrage-

based MEV extraction on decentralized exchanges (Figs. 5–6).

Regarding MEV extraction during liquidations in lending

protocols, the data collected shows a predictably small

number of events (96 cases in total), limited to only two

protocols – Compound V2 [29] and Aave [30].

Consequently, these cases are not analyzed in further detail.

Fig. 4.MEV sandwich attacks volume

Fig. 5. MEV arbitrages count

Fig. 6. MEV arbitrages volume
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Fig. 7. DEXs volume, may 2024 [31]

It is also important to note that this study does not ignore

the dependency between MEV extraction volume and overall

trading volume on decentralized exchanges. To account for

this factor, we implemented a custom SQL query using the

Dune Analytics platform [31], which enables the estimation

of trading volumes across leading DEX protocols for the

target time period. The results are shown as a pie chart in

Fig. 7, illustrating the distribution of trading volume across

the most popular decentralized exchanges.

As we can see, trading volume does not fully explain the

observed MEV distribution patterns, nor does it capture the

distinct gap between the number and volume of MEV attacks

revealed by our prior figures.

When comparing these findings to related studies, it is worth

highlighting the work in [10], where the authors note that the

highest frequency of MEV attacks tends to concentrate on

protocols with high liquidity and significant trading activity –

an observation corroborated by our results. However, our study

further reveals substantial differences in the number and volume

of attacks between different versions of the Uniswap protocol

(V2 vs V3), attributed to their respective liquidity mechanisms

(standard vs concentrated liquidity).

In addition, [6] emphasizes the role of priority gas

auctions (PGAs) in shaping the scale of MEV activity. While

our findings confirm this conclusion, we also provide

quantitative comparisons across specific decentralized

exchange protocols, which enhances the granularity of

analysis.

Finally, the study [32], focuses on the structure of MEV

attacks conducted through Flashbots auctions. Our results

extend their conclusions by analyzing not only Flashbots-

based attacks but also a wider range of transaction types,

allowing us to examine more broadly how DeFi protocol

design influences the extent of MEV exploitation.

Scientific contribution – this study introduces and applies

a comparative methodology for analyzing Maximal

Extractable Value (MEV) exploitation in decentralized

exchange protocols. As part of this work, the open-source

analytical framework MEV Inspect Py was modified, a Price

Resolver component was developed to retrieve and

normalize crypto-asset price data, and a Jupyter Notebook –

based module was implemented for post-processing and

visualization. The Z-score method was applied to detect and

filter out anomalous pricing data. New metrics were

proposed to assess the scale of MEV exploitation, including

attack counts and the total volume of involved crypto-assets.

The methodology enabled structured comparisons between

Uniswap V2, Uniswap V3, PancakeSwap, and Solidly V3,

and revealed clear correlations between architectural design

and vulnerability to MEV attacks. The analysis also showed

how differences in liquidity and pricing mechanisms affect

both the nature and the magnitude of MEV activity,

suggesting that the proposed approach may be applied to

other protocols and blockchain ecosystems.

Practical significance and contribution – the proposed

methodology and its components, including the customized

version of MEV Inspect Py [12] and supporting modules can

be reused by other researchers to obtain new insights into

MEV dynamics in DeFi protocols. Additionally, the results

of this study may be valuable to protocol developers and

DeFi users alike. Developers can draw conclusions about

potential improvements to protocol mechanisms, while users

gain a better understanding of MEV-related risks across

leading DeFi platforms.

Conclusions / !BCEFHIB 

This study reviewed existing academic literature on the

phenomenon of Maximal Extractable Value (MEV) and its

empirical evaluation, revealing a notable lack of focus on the

differences in MEV extraction across decentralized

exchange protocols. This motivated the development of a

dedicated comparative analysis methodology capable of

identifying MEV events in public blockchain data,

quantifying their frequency and volume, and enabling further

processing and visualization.

To address this challenge, the open-source framework

MEV Inspect Py was selected, although its default

configuration proved insufficient for the study’s objectives.

Accordingly, the framework was modified and extended
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through the development of two additional components – a

Price Resolver for retrieving and correcting crypto-asset

price data, and an analytics module based on Jupyter

Notebook for post-processing and visualization.

To improve the quality of pricing data, the Z-score method

was applied to detect and remove anomalies. Also, we

introduced two new metrics – the number of attacks and the

total volume (USD) of involved crypto-assets which help to

assess the scale of MEV exploitation more accurately.

The analysis showed that Uniswap V2 and Uniswap V3

are the most active protocols in terms of MEV extraction.

This is explained by their architectural differences: Uniswap

V2 facilitates easier price manipulation via a classic AMM

model (> · y = k), while Uniswap V3, through its use of

concentrated liquidity, creates conditions for higher per-

attack profitability. Significant MEV volumes were also

observed in PancakeSwap and Solidly V3, indicating that the

internal design of a DEX plays a key role in the likelihood

and profitability of MEV attacks. These results confirm that

AMM model design and liquidity mechanics directly

influence the scale and nature of MEV exploitation.

The proposed methodology and supporting tools provide

scientific value as a unified approach for comparative

analysis that can be adapted to other categories of DeFi

protocols and blockchain networks. From a practical

standpoint, the results may benefit protocol developers

aiming to improve system design and end-users seeking to

make better-informed decisions when interacting with DeFi

infrastructure.

Future research directions may include:

 comparative MEV analysis across other blockchain

networks;

 studying the temporal dynamics of MEV extraction and the

impact of network and protocol updates on attack scale;

 deeper investigation of DeFi protocol implementations

and their correlation with MEV frequency and

profitability;

 evaluation of existing and development of new

mitigation strategies to reduce the negative effects of

MEV in decentralized finance protocols.
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