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METHODOLOGY FOR COMPARATIVE ANALYSIS OF MAXIMAL
EXTRACTABLE VALUE (MEV) IN DECENTRALIZED EXCHANGE PROTOCOLS

The development of smart contracts in blockchain networks has enabled the creation of sophisticated decentralized
finance (DeFi) protocols, encompassing decentralized exchanges, lending platforms, and algorithmic crypto-assets. Despite
decentralization and transparency, blockchain networks do not guarantee a predictable transaction execution order, leading
to the emergence of the phenomenon known as Maximal Extractable Value (MEV) — an additional profit extracted by certain
network participants who influence transaction ordering.

This study focuses on the empirical analysis of MEV extraction across various DeFi protocols to identify critical factors
influencing the frequency and extent of MEV attacks. The research introduces a comparative methodology for evaluating
MEV extraction based on a modified version of the MEV Inspect Py software suite, enhanced by newly developed
components: a Price Resolver for collecting and correcting cryptocurrency price data, and a Jupyter Notebook module for
detailed data analysis, comparison and visualization. An evaluation of the total volume of sandwich and arbitrage-type MEV
attacks was also developed, and a method for correcting cryptocurrency price data was implemented, which improved the
quality of the obtained results.

The obtained results demonstrate that Uniswap V2 and Uniswap V3 are the primary targets for MEV extraction;
however, their operational mechanisms create distinct conditions for attacks. A clear correlation was identified between
concentrated liquidity, pricing algorithms, and the scale of MEV exploitation. Furthermore, the findings confirm that the
architectural features of DeFi protocols significantly affect their vulnerability to MEV.

These results can be employed to enhance the resilience of decentralized exchange algorithms against MEV extraction
and to develop mechanisms that minimize its negative impacts on both protocol efficiency and user fairness. Moreover, the
insights from this research provide valuable guidance to DeFi protocol users seeking to reduce their exposure to MEV-
related risks and make more informed decisions. Future research directions include extending the analysis to MEV
exploitation in blockchain networks other than Ethereum and evaluating the effectiveness of existing and emerging

protective strategies.
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Introduction

Over time, blockchain networks have evolved to support
programmable logic through smart contracts, which laid the
foundation for the emergence of decentralized finance (DeFi)
protocols — decentralized cryptocurrency exchanges, lending
platforms, automated portfolio management systems, and
algorithmic crypto-assets such as stablecoins and derivatives
[1]. These protocols serve as decentralized analogues to
traditional centralized financial services, which has rendered
them susceptible to transaction ordering manipulation, similar
to those observed in traditional finance, particularly in high-
frequency trading (HFT) environments [2].

Such manipulations, or in fact attacks, have gained
significant traction and were first formalized in [3] under the
term Maximal Extractable Value (MEV) — the maximum
value that network participants can extract by gaining
preferential access to transaction ordering.

Researchers typically distinguish four primary categories
of MEV attacks in blockchain systems [4]:

— frontrunning;
— backrunning;
sandwich attacks;

liquidations in decentralized lending protocols.

The exploitation of MEV has reached significant scale,
initially started through uncoordinated priority gas auctions
(PGAs), which eventually threatened the stability of the
Ethereum network by incentivizing miners to rewrite block-
chain history for additional profit. Later, after many blockchain
networks including Ethereum transitioned to Proof-of-Stake
(PoS) consensus, the MEV phenomenon influenced the role
separation between network participants into Searchers, Block
Builders, and Validators, alongside the introduction of the
Protocol Builder Separation (PBS) scheme [5].

Consequently, MEV extraction must be recognized as a
substantial systemic risk impacting the efficiency, fairness,
and security of blockchain networks. Investigating this issue
is particularly relevant amid the rapid growth of DeFi
protocols, which demonstrate varying degrees of suscepti
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bility to MEV attacks. This necessitates the use of empirical
research methods capable of identifying and comparing
vulnerabilities across different architectural models. The
goal of this study is to formalize a methodology for
comparative analysis of MEV exploitation in DeFi protocols
and to identify the key factors that influence their resilience
to such attacks.

The relevance of the MEV problem is driven by the range
of risks it introduces: user profit loss within DeFi operations,
increased network load due to surplus transactions,
exploitation of consensus vulnerabilities, heightened cen-
sorship of on-chain activity, and broader centralization
trends within blockchain infrastructure.

Researching MEV is non-trivial task due to the decen-
tralized and dynamic nature of blockchain systems, the
pseudonymity of participants, and the overall fragmentation
of on-chain data. One of the most promising directions of
inquiry is the empirical analysis of public blockchain data to
assess the nature and scale of such attacks. Prior studies have
focused either on live block monitoring or retrospective
analysis of specific block ranges using a variety of methods
and tools, such as those presented in [6], [7] (graph-
theoretical approaches), [8], [9], [10] and [11].

Nevertheless, a gap remains in assessing the relationship
between the implementation details of DeFi protocols and
the extent of MEV exploitation. Our study focuses on
comparing MEV extraction across DEX protocols and
identifying potential correlations between their architectural
design and their resilience or susceptibility to such attacks.

The object of this study is the process of MEV extraction
within DeFi protocols and the architectural details of those
protocols, specifically within the Ethereum blockchain.

The subject of this study is the set of algorithms,
analytical techniques, and tooling used to evaluate MEV
extraction, as well as the operational mechanics underlying
DeFi protocol implementations.

The purpose of the study is to formulate and implement a
methodology for comparative analysis of MEV exploitation
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Fig. 1. Architecture of MEV Insepct Py

One of the main challenges in working with MIP is
retrieving up-to-date prices for cryptocurrencies and tokens
(hereafter referred to as crypto-assets). The built-in
capabilities rely on paid external services such as Coingecko
[17], which can be costly and may not always guarantee
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across decentralized exchange protocols, with the goal of
identifying key factors that affect their susceptibility or
resistance to such attacks.

In order to achieve this goal, the following research
objectives were defined:

To review existing empirical studies on MEV and its
impact on DeFi protocols;

To modify and extend the MEV Inspect Py software
framework to adapt it for comparative analysis of MEV
extraction;

To develop additional components of the methodology,
including a Jupyter Notebook analytics module and a Price
Resolver component for retrieving and correcting crypto
asset pricing data;

To collect and process MEV extraction data using the
extended toolkit;

To investigate differences in MEV activity across the
most popular DeFi protocols within selected categories;

To identify correlations between MEV extraction and
other protocol metrics such as total value locked (TVL),
trading volume, and liquidity distribution;

To summarize the findings and outline directions for
further research.

Materials and methods. To collect and identify instances
of MEV exploitation, this study employed the open-source
project MEV Inspect Py (MIP) [12]. MIP is an Extract-
Transform-Load (ETL) software framework that, based on a
defined configuration, collects data from the Ethereum
blockchain, decodes smart contract calls to DeFi protocols
within transactions, classifies those calls, and detects MEV
attacks using built-in patterns.

The MIP framework consists of the following
components: a launcher container, a worker container, a
PostgreSQL database [13], and a Redis caching layer
configured in a master-slave setup [14]. The system is
deployed using container orchestration tools based on
Kubernetes [15], in conjunction with a local development
cluster powered by Minikube [16] (Fig. 1).
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sufficient data accuracy. To address this issue, a set of custom
Python scripts was implemented to fetch prices using the
decentralized exchange API provided by Geckoterminal [18].

The analysis of differences in MEV extraction across
various DeFi protocols and the generation of corresponding
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analytical reports was carried out using the interactive
Jupyter Notebook environment [19]. The analysis leveraged
Python libraries including SQLAlchemy, Pandas, NumPy,
and Matplotlib. Additionally, the Z-score method [20] was
applied to detect anomalies in pricing data. This filtering
allowed for the exclusion of distorted values caused by low
liquidity in specific DEX pools, thus improving the quality
and reliability of the resulting dataset.

Analysis of recent research and publications. The
phenomenon of MEV in blockchain networks was first
formalized in [3]. That study drew parallels between
algorithmic high-frequency trading (HFT) in traditional
stock markets and transaction ordering manipulation
performed by automated bots and mining nodes within
Ethereum blocks. It also investigated priority gas auctions
(PGAs) using game theory [21] to model the behavior of
participating bots, which allowed the authors to distinguish
specific strategic patterns and analyze coordination
mechanisms. Particular attention was given to systemic risks
posed by MEV attacks conducted by miners. In such cases,
miners, motivated by the potential for increased profits
through transaction reordering, exploited vulnerabilities in
the consensus algorithm to initiate  blockchain
reorganizations and capture portions of other users’ profits.
While this study made a significant contribution to the
understanding of MEV, it focused primarily on spam-like
PGA activity and did not explore the distribution of such
attacks across different DeFi protocols.

The paper [10] presents an empirical analysis of
transaction ordering manipulation in Ethereum and
introduces a slightly different taxonomy of MEV attacks:

Displacement — when an attacker’s transaction precedes
the victim’s transaction, altering its intended effect.

Insertion — a classic sandwich attack in which the attacker
inserts transactions before and after the victim’s to profit
from price movements.

Suppression — when the attacker floods a block with
high-fee transactions to exclude the victim’s transaction
from inclusion.

This study is notable for its depth in analyzing MEV
execution and fits within earlier waves of MEV-related
research.

The next study [6] offers a more in-depth examination of
MEV exploitation across various types of DeFi protocols.
The authors use a combination of heuristic algorithms and
graph-based analysis to identify MEV attacks in large
blockchain datasets. They trace transactions and apply
clustering techniques to detect recurring behavioral patterns
among MEV bots. Although the paper proposes improved
techniques for MEV detection and examines their impact on
the stability of DeFi protocols, it does not delve into
differences between specific DEX implementations.

In [22], the authors examine the difficulty of MEV
valuation and propose alternative methods for its estimation.
They emphasize that due to the evolving nature of the
market, changing trading mechanisms, and increasing
reliance on private transaction channels, estimating the total

value of MEV is extremely challenging. The study proposes
a minimal-value estimation approach based on market
analysis and observation of MEV actors’ operational costs.
While the methodological contribution is substantial, the
work does not address differences in MEV exploitation
across categories of DeFi protocols.

Another study [7] focuses on the role of Ethereum miners
in block construction and transaction ordering for MEV
extraction. It reveals that a significant portion of MEV activity
occurs through private channels. Importantly, the paper
highlights how miners maintain control over a large share of
MEYV profits. Although the study provides valuable insights
into miner behavior and MEV dynamics, it does not
investigate variation in MEV susceptibility across protocol
categories — leaving room for further research into the
relationship between protocol design and MEV extractability.

The study [23] presents a focused case study of MEV
attacks on the Uniswap DEX, analyzing the USDC/WETH
pool. The authors find that roughly 45% of daily trade
volume in this pool involves MEV bots. The paper
concentrates on arbitrage and sandwich attacks and
demonstrates their impact on liquidity and price volatility.
However, it limits its scope to a single DEX protocol and
single exchange pool. Future research, therefore, could focus
on cross-protocol comparison and evaluation of MEV
resilience in a broader set of DeFi platforms.

In [24], the authors conduct a large-scale empirical
analysis of sandwich and arbitrage MEV attacks on
decentralized exchanges such as Sushiswap and Curve.
Using a modified clustering algorithm and extensive
transaction data, they show that liquidity structure and
pricing mechanisms play a significant role in determining the
frequency and profitability of MEV attacks. However, the
study does not address systemic risks at the blockchain
network level, nor does it perform a comparative analysis
across a sufficiently broad set of DeFi protocols.

Finally, the study [25] explores MEV extraction within
the Flashbots Bundle infrastructure. The authors introduce
two novel analytical techniques — ActLifter and ActCluster,
which enable the identification of MEV activities and the
clustering of suspicious transactions to uncover the trading
bot behavior patterns. This approach led to the discovery of
previously undocumented rare MEV attack types. The
authors also suggest several future research directions where
these techniques may be applied.

In summary, MEV quantification has become a vibrant
area of research in recent years, encompassing various
aspects of its impact on blockchain ecosystems. A substantial
portion of existing studies focus on profitability estimation,
attack identification, and refinement of detection methods.
However, despite this progress, a significant gap remains in
understanding how MEV exploitation varies across
categories of DeFi protocols and which protocols are most
frequently targeted.

This direction of research is particularly relevant, as it
may help identify the most vulnerable protocols and support
the development of mitigation strategies. Moreover, such
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comparative analysis can offer practical guidance for DeFi
protocol developers seeking to minimize exposure to MEV
threats in their systems.

Research results and their discussion

The results presented in this study are based on public
data collected from the Ethereum blockchain between May
13 and May 19, 2024, using the modified version of the MEV
Inspect Py (MIP) framework along with additional
components developed as part of this work. The key
quantitative characteristics of the resulting dataset are
summarized in Table 1.

Table 1. Dataset from Ethereum network 13.05.2024 —

19.05.2024
Indicator Value
Blocks 50 041
Swap method calls 1707 482
Classified transaction traces 46 762 510
Sandwich attacks 66 125
Arbitrages 17 954
Liquidations 96
Unique decentralized exchanges involved 35

The data collection and processing workflow using the
MIP framework includes the following stages:

1. Remote Procedure Calls (RPC) to a blockchain node
to fetch blocks within the specified range. Retrieved data
includes transactions, trace records, receipts, and other
metadata.

2. Classification of transaction traces using the
Application Binary Interface (ABI) of known decentralized
exchanges (DEXs). This allows the identification of smart
contract method calls relevant to MEV extraction.

3. Pattern matching among the classified method calls
(e. g., swap) to detect known MEV attack types such as
sandwich, arbitrage, or liquidation. For each identified MEV
case, the system calculates the extracted profit, payments to
miners or validators, and attaches relevant metadata.

The default version of the MIP framework contains
several limitations that hinder more advanced analysis:

e lack of granular crypto-asset pricing data, which is

essential for evaluating the volume and profitability of
MEV extraction;

e absence of MEV volume metrics per attack type, which
are important for estimating the scale of capital passing
through MEYV strategies;

e token balance mismatches between frontrun and backrun
transactions in sandwich attacks which leaves some
amount of profit unaccounted;

e 1o built-in functionality for comparing MEV metrics
across different DEXs;

e lack of metadata on DEX protocols and the presence of
certain processing bugs that distort the analysis results [12].

To address these limitations, this study introduces a
comparative  MEV analysis methodology designed to

evaluate extraction patterns across different DeFi protocols
using unified criteria. The methodology is implemented
through the components described below.

Modified MEV Inspect Py (MIP) framework. The
following extensions were introduced to enable richer
quantitative analysis:

— expanded database schema to store token price data

obtained from decentralized exchanges;

— implementation of rate limiting for external API calls;

— fixes for token balance mismatch in frontrun/backrun

transactions in sandwich attacks;

— updated ABI configuration for the Uniswap protocol;

— bug fix for handling GBTC / WETH and other non-

strict-check pools in Uniswap V3 [26], along with
other minor fixes and improvements.

All modifications are publicly available in the GitHub
repository [27].

Price resolver component for retrieving and
correcting crypto-asset prices. This Python-based module
supports granular historical price data collection using two
sources — Coingecko [17] and Geckoterminal [18] APIs.
While Coingecko provides aggregated price data for a
limited number of tokens, Geckoterminal offers a broader
dataset focused on DeFi protocols, particularly DEXs. If a
token price is unavailable on Coingecko, the system searches
for the token’s pool on Geckoterminal and retrieves price
data along with pool and token metadata.

Since Geckoterminal data may be distorted due to low
liquidity in certain pools, the dataset may include anomalous
price values. To filter out such anomalies, the Z-score
method [20] is applied:

z=(x-wW/o,
where z is the standardized score, x is the value being
evaluated, u is the sample mean and o is the standard
deviation.

This approach is applied to token price data obtained via
Geckoterminal’s API. Values with Z-scores above 3.0 are
excluded, eliminating outliers and improving data quality.
The component also retrieves additional pool metadata,
including token decimals and relevant technical parameters.

Jupyter Notebook analytics module for comparing
MEYV extraction across protocols. This module serves as a
post-processing layer for aggregating, comparing, and
visualizing MEV extraction data across various DeFi
protocols. When evaluating the impact of MEV on
decentralized exchanges, it is important to assess not only the
profitability of attacks but also the volume — the total
adjusted amount of crypto-assets transferred through
transactions involved in MEV attacks. The following
formula is used to estimate MEV extraction volume:

Vmen = max (Aow, Ain) + R+ F+ L
where A4;, — total assets spent by the attacker; A, — total
assets received by the attacker; R — residual unconverted
assets; F'— gas fees paid; L —losses due to failed transactions.

Comparative analysis of MEV extraction across different
protocols also requires data aggregation by relevant
dimensions such as attacker transaction pairs (frontrun-

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2025, 1.7, Ne 1 (11)

111



backrun), block number, or date. In addition, the notebook
module provides tools for statistical evaluation, filtering
empty entries, and visualizing trends and relationships in the
dataset. The baseline MIP implementation lacks these
capabilities, so they were implemented as part of a Jupyter
Notebook post-processing pipeline

Fig. 2 shows the architecture of the complete data
collection and analysis system implementing the proposed
methodology.

As illustrated in Fig. 2, the data collected by the MIP
system is accessed via its built-in PostgreSQL database
client. This architecture provides modularity and flexibility:
pricing queries and analytics can be executed independently
from MIP’s core processing engine, and results generated in
Jupyter Notebook can be exported in multiple formats,
including CSV, PDF, and HTML.

Discussion of research results. The analytical module
implemented using Jupyter Notebooks was applied to the
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dataset collected from the Ethereum blockchain between May
13 and May 19, 2024. Although a broad set of MEV-related
metrics was calculated (extracted profit, validator payments,
and others), this discussion focuses primarily on the number
and volume of MEV extractions by type, as these metrics are
the most indicative of the intensity and systemic footprint of
MEV activity across protocols. The analysis is conducted
across different decentralized exchanges, as these
comparisons provide insights into the relative MEV activity
and its impact on the examined protocols.

Fig. 3 presents the number of identified sandwich-type
MEV attacks, grouped by the decentralized exchange on
which they occurred.

As seen in the chart, the vast majority of sandwich attacks
were executed on Uniswap V2, followed by a sharp drop in
frequency across Uniswap V3 and other exchanges. A
slightly different picture emerges in Fig. 4, which shows the
volume of sandwich attacks over the same time period.
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Fig. 2. Architecture of MEV data collection and comparative analysis
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Fig. 3. MEV sandwich attacks count

A comparison of attack volume and count reveals that the
total volume of crypto-assets involved in sandwich-type
MEYV extraction is similarly high for Uniswap V2, Uniswap

V3, PancakeSwap, and Solidly V3. These results lead to
several important observations. Uniswap V2, as shown in
prior studies [28] and [23] employs a simple AMM
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(Automated Market Maker) mechanism, which facilitates
more flexible price manipulation in individual liquidity pools
(e. g., WETH/USDC pairs) and easier execution of attacks.
As a result, the number of attacks is higher, but their average
volume tends to be lower. In contrast, Uniswap V3,
PancakeSwap, and Solidly V3 use alternative mechanisms
with distinctive characteristics. For example, Uniswap V3
utilizes concentrated liquidity [23], which makes sandwich
attacks somewhat harder to perform but, due to liquidity

fragmentation across price ranges, allows for greater
financial gains per attack.

A similar pattern is observed when analyzing arbitrage-
based MEV extraction on decentralized exchanges (Figs. 5-6).

Regarding MEV extraction during liquidations in lending
protocols, the data collected shows a predictably small
number of events (96 cases in total), limited to only two
protocols — Compound V2 [29] and Aave [30].
Consequently, these cases are not analyzed in further detail.
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Fig. 5. MEV arbitrages count
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It is also important to note that this study does not ignore
the dependency between MEV extraction volume and overall
trading volume on decentralized exchanges. To account for
this factor, we implemented a custom SQL query using the
Dune Analytics platform [31], which enables the estimation
of trading volumes across leading DEX protocols for the
target time period. The results are shown as a pie chart in
Fig. 7, illustrating the distribution of trading volume across
the most popular decentralized exchanges.

As we can see, trading volume does not fully explain the
observed MEV distribution patterns, nor does it capture the
distinct gap between the number and volume of MEV attacks
revealed by our prior figures.

When comparing these findings to related studies, it is worth
highlighting the work in [10], where the authors note that the
highest frequency of MEV attacks tends to concentrate on
protocols with high liquidity and significant trading activity —
an observation corroborated by our results. However, our study
further reveals substantial differences in the number and volume
of attacks between different versions of the Uniswap protocol
(V2 vs V3), attributed to their respective liquidity mechanisms
(standard vs concentrated liquidity).

In addition, [6] emphasizes the role of priority gas
auctions (PGAs) in shaping the scale of MEV activity. While
our findings confirm this conclusion, we also provide
quantitative comparisons across specific decentralized
exchange protocols, which enhances the granularity of
analysis.

Finally, the study [32], focuses on the structure of MEV
attacks conducted through Flashbots auctions. Our results
extend their conclusions by analyzing not only Flashbots-
based attacks but also a wider range of transaction types,
allowing us to examine more broadly how DeFi protocol
design influences the extent of MEV exploitation.

Scientific contribution — this study introduces and applies
a comparative methodology for analyzing Maximal
Extractable Value (MEV) exploitation in decentralized
exchange protocols. As part of this work, the open-source
analytical framework MEV Inspect Py was modified, a Price
Resolver component was developed to retrieve and
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normalize crypto-asset price data, and a Jupyter Notebook —
based module was implemented for post-processing and
visualization. The Z-score method was applied to detect and
filter out anomalous pricing data. New metrics were
proposed to assess the scale of MEV exploitation, including
attack counts and the total volume of involved crypto-assets.
The methodology enabled structured comparisons between
Uniswap V2, Uniswap V3, PancakeSwap, and Solidly V3,
and revealed clear correlations between architectural design
and vulnerability to MEV attacks. The analysis also showed
how differences in liquidity and pricing mechanisms affect
both the nature and the magnitude of MEV activity,
suggesting that the proposed approach may be applied to
other protocols and blockchain ecosystems.

Practical significance and contribution — the proposed
methodology and its components, including the customized
version of MEV Inspect Py [12] and supporting modules can
be reused by other researchers to obtain new insights into
MEV dynamics in DeFi protocols. Additionally, the results
of this study may be valuable to protocol developers and
DeFi users alike. Developers can draw conclusions about
potential improvements to protocol mechanisms, while users
gain a better understanding of MEV-related risks across
leading DeFi platforms.

Conclusions / BUCHOBKH

This study reviewed existing academic literature on the
phenomenon of Maximal Extractable Value (MEV) and its
empirical evaluation, revealing a notable lack of focus on the
differences in MEV extraction across decentralized
exchange protocols. This motivated the development of a
dedicated comparative analysis methodology capable of
identifying MEV events in public blockchain data,
quantifying their frequency and volume, and enabling further
processing and visualization.

To address this challenge, the open-source framework
MEV Inspect Py was selected, although its default
configuration proved insufficient for the study’s objectives.
Accordingly, the framework was modified and extended
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through the development of two additional components — a
Price Resolver for retrieving and correcting crypto-asset
price data, and an analytics module based on Jupyter
Notebook for post-processing and visualization.

To improve the quality of pricing data, the Z-score method
was applied to detect and remove anomalies. Also, we
introduced two new metrics — the number of attacks and the
total volume (USD) of involved crypto-assets which help to
assess the scale of MEV exploitation more accurately.

The analysis showed that Uniswap V2 and Uniswap V3
are the most active protocols in terms of MEV extraction.
This is explained by their architectural differences: Uniswap
V2 facilitates easier price manipulation via a classic AMM
model (x - y = k), while Uniswap V3, through its use of
concentrated liquidity, creates conditions for higher per-
attack profitability. Significant MEV volumes were also
observed in PancakeSwap and Solidly V3, indicating that the
internal design of a DEX plays a key role in the likelihood
and profitability of MEV attacks. These results confirm that
AMM model design and liquidity mechanics directly
influence the scale and nature of MEV exploitation.

The proposed methodology and supporting tools provide
scientific value as a unified approach for comparative
analysis that can be adapted to other categories of DeFi
protocols and blockchain networks. From a practical
standpoint, the results may benefit protocol developers
aiming to improve system design and end-users seeking to
make better-informed decisions when interacting with DeFi
infrastructure.

Future research directions may include:

e comparative MEV analysis across other blockchain

networks;

e studying the temporal dynamics of MEV extraction and the
impact of network and protocol updates on attack scale;

e deeper investigation of DeFi protocol implementations
and their correlation with MEV frequency and
profitability;

e cvaluation of existing and development of new
mitigation strategies to reduce the negative effects of
MEV in decentralized finance protocols.
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METO/0JIOTIA IMMOPIBHA/ILHOTO AHAJII3Y EKCTPAKIIII MAXIMAL
EXTRACTABLE VALUE (MEV) Y IPOTOKOJIAX JEHEHTPAJII30OBAHUX KPUIITOBIPXK

I3 pO3BUTKOM CMapT-KOHTPAKTIB y Mepexax OJOKYSHH YMOKIMBHIOCH CTBOPEHHS CKIAIHHX JCHEHTPai30BaHHUX

¢inancoBux (DeFi) mporokoiiB, 10 OXOIUIIOIOTH Oipoki, MIATGOPMU KPEAUTYBAHHS Ta AITOPUTMI4HI KPUINTOAKTUBHU.
HesBaxarouu Ha JELEHTPali30BaHICTh Ta MPO30PICTb, OJIOKUEHH-Mepexi He rapaHTYIOTh MPOTHO30BaHOI MOCIJOBHOCTI
BUKOHAHHs TpaH3aKWii, 1110 npuBeno a0 nosBu sBuiia Maximal Extractable Value (MEV) — nomatkoBoi Buromm, siky
OTPUMYIOTH OKpEMi YIaCHUKH Mepei 3aBIAKH BIUIMBY Ha BIOPSIKYBaHHS TPaH3aKIIiH.

[Tomane mocimiKEHHS 30cepe/PKEHE Ha eMITIpUYHOMY aHai3i Maciitadis seuma MEV mik pisaumu DeFi-npoTokonamu
3 METOK BHM3HAYCHHS KIFOYOBUX (DAaKTOpIB, 10 BIUIMBAIOTH Ha Maciutabu Ta dactoty MEV-arak. ¥ mexax pobGotu
3alpPOIIOHOBAHO METOJOJOTI0 MmopiBHAHHA ekcTpakuii MEV i3 BukopucraHHaM MoauikoBaHOi Bepcii MPOrpaMHOro
xoMmiuiekcy MEV Inspect Py Ta 101aTkoBO peanizoBaHUX KOMIOHEHTiB — Price Resolver s 36upaHHs Ta HOIEPEIHbOIO
OIIPAIIOBAaHHS L[iH HA KPUITOAKTUBHU, Ta aHATITHUYHOTO Moy Jupyter Notebook a1 BUBUEHHS OTPUMAHUX PE3YNIbTATiB.
Kpim TOTrO0, 3amponoHoBaHO MiAXia 70 OLiHIOBaHHS 3araibHOro oocsry MEV aTtak Tumy ceHIBid Ta apOiTpak, a TaKoK
peaiti3oBaHO METOJI BUSIBJICHHS Ta YCYHCHHS aHOMAJTiH Y IIHOBHUX JTAHMX, IO TOJIIIIINIO SKICTh PE3yJIbTaTiB aHai3y.

Pesynbratu mociipkeHHs nokasan, mo Uniswap V2 ta Uniswap V3 € ocHoBanmE MiteHsiMu MEV ekcTpaxiiii, oqHak
IXHI MeXaHi3MU POOOTU CTBOPIOIOTH Pi3HI YMOBM Ul aTak. BUsABIEHO KOPEISLi0 MDK KOHLEHTPOBAHOIO JIKBIIHICTIO,
JIrOpUTMaMU LIIHOYTBOpeHH: Ta MaciuTabamu MEV-ekcrpakuii. Kpim Toro, miaTBeprkeHo, o apXiTeKTypHi 0COOIMBOCTI
DeFi-nportokoiiB 6e3nocepeiHbo BILIMBAIOTh HA TXHIO Bpa3nuBicTs 10 MEV.

OTpuMaHi pe3ysibTaTi MOKYTh OyTH BUKOPHCTAHI JJISI MTIABUIIICHHS CTIHKOCTI aJIrOPUTMIB JICHICHTPATI30BaHUX OipiK J10
TakoXK sl KopuctyBauiB DeFi-npoTokoiiB, siki mparHyTh 3MEHIIUTH pu3ukH 4epe3 siBuiie MEV. BusHaueno HampsiMu
HOAANBIINX JOCIiKEHb, 30kpeMa aHani3 MEV-ekcrnyaranii B iHImuX OI0K4elHH-Mepexkax Ta BUBUEHHS €(EKTUBHOCTI
CTparerii 3aXucry.

Kniouoei cnoga: 610KkueiiH, cMapT-KOHTPAKTHU, PO3IOALIEH] CUCTEMHU, OJHOPAHIOB1 Mepeski, Kpunrorpadis.
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