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METHODS AND TOOLS FOR GRAPH VISUALIZATION IN DYNAMIC SYSTEMS:  
ANALYSIS AND EXPERIMENTAL STUDY  

Graph visualization is a key tool for interpreting complex data in systems with dynamic relationships, such as

transportation, computer, or social networks, where the underlying structure is continuously evolving. In such contexts, there

is a growing need for adaptive visualization methods that can ensure clear, intuitive, and timely representation of structural

changes. This paper analyzes force-directed graph layout methods, which simulate attractive and repulsive physical forces

to determine vertex positions in a two-dimensional space, aiming to minimize the system’s energy function. A custom

software application was developed using the Java programming language, integrated with the Spring framework, the

GraphStream library, and JavaFX for visualization. The system provides functionality for implementing, configuring, and

comparing the Eades, Fruchterman – Reingold, and Kamada – Kawai algorithms. An experimental study was conducted

using various types of graphs from open datasets, particularly Rome-Lib and the Scotch Graph Collection, to evaluate the

behavior of each algorithm under different conditions. Results show that the Fruchterman – Reingold algorithm demonstrates

smooth and gradual layout transitions, high adaptability to structural changes, and good scalability, making it suitable for

real-time dynamic graph visualization, such as traffic monitoring systems. The Kamada – Kawai algorithm provides stable

and symmetric but has higher computational complexity and less suitability for interactive scenarios due to abrupt

movements of individual vertices. The Eades algorithm performs effectively on sparse or tree-like graphs but tends to

produce overly long edges and excessive edge crossings in denser graphs. The developed application supports automatic

detection of graph structure changes and restarts the layout algorithm accordingly, enabling near real-time reflection of

updates in the visual representation. A promising direction for future research is the integration of neural networks to

automate layout evaluation, graph-type classification, and algorithm selection based on specific graph characteristics and

task requirements. Such an adaptive approach is expected to enhance the efficiency, clarity, and responsiveness of graph

visualizations in dynamic systems, contributing to improved monitoring, analysis, and decision-making based on graph-

based models.
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Introduction 

Data processing and data transformation into useful

information is one of the key tasks of modern science and

technologies. In the digital age, the value of large

corporations largely depends on the volume and quality of

accumulated data, which can be utilized for decision-

making, trend forecasting, and profit maximization [1], [2].

Graphs are a powerful tool for modeling and analyzing

systems with complex interconnections, finding applications

in various domains: optimization of transportation networks

and analysis of logistics systems [3], [4], design and

enhancement of computer network architectures [5],

investigation of social relationships and structures [6], as

well as analysis and optimization of energy networks [7],

among others. In such systems, where the data structure

continuously evolves, the ability of graphs to represent these

relationships in real time becomes especially important. For

instance, in the field of cybersecurity of energy networks,

graph models are used to analyze vulnerabilities and protect

monitoring systems from attacks that distort real-time results

of state estimation [8].

Thus, efficient graph visualization in dynamic systems,

where information changes are continuous, is a highly

relevant challenge with a broad range of applications. Under

such conditions, there is a growing demand for adaptive

visualization that allows immediate representation of

updated data structures and facilitates their analysis. At the

same time, preference of the optimal method for dynamic

graph visualization remains an open question, as each

algorithm has its own advantages and limitations. To enable

testing and comparison of graph visualization algorithms, a

software tool was developed to experimentally evaluate the

performance of different approaches using practical

examples.

The object of this research is the process of graph

visualization in dynamic systems.

The research subject includes algorithms and tools for

graph visualization in systems with dynamic changes.
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The aim of the research is to analyze and investigate

graph visualization algorithms, realize software imple-

mentation of the best algorithms, compare their efficiency,

and assess their suitability for use in dynamic systems.

To achieve this aim, the following primary research

objectives have been defined:

 to review existing graph visualization algorithms,

analyze them, and select methods for further imple-

mentation;

 to implement programmatically the selected algo-

rithms for experimental testing;

 to provide an experimental comparison of the effect-

tiveness of graph visualization algorithms;

 to formulate conclusions regarding the effectiveness

of the analyzed methods and to identify future

research directions.

Materials and methods of the study. The study used

methods of mathematical analysis, in particular, optimi-

zation approaches necessary for solving problems of mini-

mizing the energy of graph structures in power visualization

algorithms.

The corresponding software application was imple-

mented using the Java programming language. Code depen-

dency management was handled using the Spring Fra-

mework, which simplifies component management and

increases the system’s flexibility. In graph processing

implementation were used tools of the GraphStream library.

For algorithm testing, pre-existing sets of test graphs

from open sources were used, specifically the Rome-Lib and

Scotch Graph Collection datasets [9].

Analysis of recent research and publications. Force-

directed algorithms have proven effective for graph

visualization, ensuring both stability and adaptability of the

layout, as well as smooth real time updates in response to

structural changes of the graph. By simulating physical

forces of attraction and repulsion, these algorithms generate

visually comprehensible layouts with minimal edge cro-

ssings, which simplifies the tracking of graph evolution.

Studies confirm their ability to maintain dynamic stability

and their suitability for online visualization tasks [10], [11].

One of the earliest and most well-known force-directed

algorithms is the Eades algorithm, which models a graph as a

mechanical system where vertices are represented as steel

rings and edges as springs [12], [13]. Initially, the graph's

vertices are placed at random positions, after which the system

evolves according to physical forces that seek to bring it to a

state of minimal energy, where the vertices occupy positions

that yield a visually comprehensible layout with appro-

ximately equal edge lengths. The algorithm is based on two

key principles that define the forces between vertices.

For adjacent vertices connected by edges (springs), the

attractive force Fs is defined as a logarithmic function of the

distance between the vertices:

1

2
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where d is the distance between the vertices, and C1 and C2

are constants. The authors of the algorithm note that using

linear springs according to Hooke’s law can result in

excessive attractive force for distant vertices, leading to

layout instability, whereas the logarithmic dependency

ensures a smoother force transition [13]. The attractive force

equals zero when d = C2, which corresponds to an

equilibrium state. The recommended values for the constants

are: C1 = 2.0 and C2 = 1.0. The dependency of the force Fs

on the distance d for these constants is illustrated in Fig. 1.

Fig. 1. Plot of the attractive force versus vertex distance

for Eades’ algorithm

The plot shows that when d = C2 the force is zero, and as

C1 increases, the attractive force grows, allowing control

over the “stiffness” of the springs.

For non-adjacent vertices, a repulsive force Fr, is applied,

which follows the inverse-square law [13]:
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r
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where d is the distance between the vertices, and C3 is a

constant, with a recommended value of C3 = 1.0. This force

ensures that non-adjacent vertices are distributed at a

sufficient distance from each other, preventing

overcrowding. The dependency of the repulsive force Fr on

the distance d is shown in Fig. 2. The plot demonstrates that

the repulsive force rapidly decreases with increasing

distance, and increasing C3 amplifies the repulsion, enabling

finer control over vertex spacing in the layout.

The Eades algorithm follows an iterative process:

1. The vertices of the graph are placed at random initial

positions.

2. A total of M iterations are performed, during each of

which:

 the resultant force for each vertex is calculated, taking

into account the attractive forces Fs, from adjacent

vertices and the repulsive forces Fr from non-adjacent

vertices;
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 each vertex is moved proportionally to the resultant

force, scaled by the displacement coefficient C4:

displacement = C4m(Fs+Fr).

3. After completing the iterations, the resulting layout is

visualized.

Fig. 2. Plot of repulsive force versus vertex distance

for Eades’ algorithm

The Eades algorithm performs effectively on many types

of graphs, particularly trees and sparse graphs, producing

layouts with approximately equal edge lengths and

noticeable symmetry. However, it has limitations when

applied to dense graphs, graphs with dense subgraphs, or

graphs with a small number of bridges (edges whose removal

disconnects the graph). In such cases, the algorithm may

generate distorted layouts with excessively long edges or

numerous edge crossings, which complicates the perception

of the graph structure.

One of the improvements based on the ideas proposed by

Eades is the Fruchterman-Reingold algorithm [12], [14]. Its

primary goal is to create visually clear and expressive layouts

that adhere to commonly accepted criteria, such as uniform

edge lengths, even distribution of vertices in space, and the

display of graph symmetry. The authors reinterpreted Eades’

physical model, drawing an analogy to physical systems,

such as atomic particles or celestial bodies, that interact

through attractive and repulsive forces. As in the Eades

algorithm, attractive forces act only between neighboring

vertices, while repulsive forces act between all pairs of

vertices. However, unlike Eades’ logarithmic force func-

tions, Fruchterman and Reingold proposed simpler and more

computationally efficient functions for modeling forces [14].

The method introduces the concept of an optimal distance

k, which depends on the size of the display area (frame) and

the number of vertices in the graph, and is defined by the

formula (3):

area
k C

N
= , (3)

where area – is the size of the display area, N is the number

of vertices in the graph, and C – is an empirically determined

constant. This optimal distance is used to define the

attractive and repulsive force functions.

The attractive force fa between neighboring vertices is

given by:
2

( )a

d
f d

k
= . (4)

The repulsive force fr between all pairs of vertices is

defined as:
2

( )r

k
f d

d
= , (5)

where d is the distance between two vertices. The functions

proposed by the authors (based on experimental

observations) resemble Hooke’s law, although they are not

exact representations of it: the attractive force increases

quadratically with distance, while the repulsive force

decreases inversely with distance [14].

In the plot (Fig. 3), the repulsive force is shown in

absolute value for clarity: the equilibrium point, where the

two forces are balanced, occurs at d = k, which corresponds

to the ideal distance between vertices.

Fig. 3. Plot of attractive (red line) and repulsive (blue line)

forces for the Fruchterman – Reingold algorithm

with k = 0.5

In addition, the algorithm introduces the concept of

“temperature”, which serves to limit the maximum

displacement of vertices during each iteration, thereby

ensuring gradual stabilization of the layout [14]. Like the

Eades algorithm, the Fruchterman – Reingold algorithm is

iterative. Initially, the vertices of the graph are placed at

random positions. At each iteration, attractive forces

between neighboring vertices are calculated using formula

(4), and repulsive forces between all pairs of vertices using

formula (5). The vertices are then moved, with their
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displacement constrained by the “temperature” parameter,

the value of which is gradually decreased over time. The

Fruchterman – Reingold method effectively reveals graph

symmetry and produces visually appealing layouts,

particularly for highly symmetric structures. However, it is

prone to getting trapped in local minima and does not

guarantee edge-crossing minimization, which can hinder the

interpretation of complex graphs.

Another force-directed algorithm is the Kamada – Kawai

algorithm, which emphasizes symmetry and even

distribution of vertices based on graph-theoretic distance

[15]. Unlike the Fruchterman – Reingold algorithm, which

uses a global parameter k, Kamada – Kawai determines the

theoretical distance between each pair of vertices as the

length of the shortest path dij. The optimal “spring” length

between vertices i and j is defined by formula (6):

i j i jl L d= ×
ij ijl Ld=×

, (6)

where L is the base length representing the ideal Euclidean

distance between two adjacent vertices and is calculated

using formula (7):

0

i j i j
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L
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= , (7)

where L0 is the length of a side of the display area.

The spring stiffness is defined as:

2i j

i j

K
k

d
= , (8)

where K is a constant. The total system energy _ is defined

as the sum of the elastic energies for all pairs of vertices,

given by formula (9):
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where(j i jp p lê ú- -ë û is the Euclidean distance between vertices.

The authors propose using the Newton – Raphson method to

find a local minimum of the energy function [15], where only

one vertex is moved at each step of the algorithm, while the

coordinates of the remaining vertices are “frozen.”

The Kamada – Kawai algorithm operates iteratively:

initially, the vertices are placed at the nodes of a regular n-

gon, after which the shortest path matrix dij, optimal lengths

lij and stiffness coefficients kij are computed. At each

iteration, the vertex with the highest energy gradient is

relocated using the Newton – Raphson method until a

specified threshold is reached. The Kamada – Kawai

algorithm effectively reveals graph symmetry, but it has high

computational complexity and may converge to a local

minimum, which can affect layout quality in the case of

complex graphs.

Research results and their discussion 

For the comparative study of the aforementioned

methods, a custom software application for visualizing graph

algorithms, developed by the authors, was used [16]. This

application was significantly enhanced within the scope of

our research: new visualization algorithms (in particular, the

Eades and Kamada – Kawai algorithms) were integrated, and

special functionality was added for flexible configuration of

each algorithm’s parameters. These enhancements allow the

adjustment of key visualization characteristics, such as

attraction force, repulsion force, and spring stiffness in the

model.

The software solution was implemented in Java using

several modern libraries. Specifically, the Spring framework

was used to facilitate dependency management through the

inversion of control mechanism; GraphStream served as the

core library for working with graphs, providing built-in

algorithms; and JavaFX was used for creating the graphical

user interface. This technology stack offers a high degree of

flexibility, simplifying the integration of new algorithms and

the modification of existing functionality.

Graph visualization within the application begins with

reading the input graph data and placing the vertices

randomly. All integrated visualization algorithms operate in

a cyclic manner, gradually optimizing the value of a specific

energy function. This enables the creation of interactive

animation: the layout of the graph is updated smoothly with

each algorithm iteration. To ensure unified integration of

various algorithms, a dedicated interface class was

developed, which includes a set of common methods,

particularly a method for executing a single iteration of the

algorithm. This approach ensures compatibility of any

algorithm with the visualization module regardless of its

specific implementation.

The GraphStream library is based on an event-driven

model, which made it possible to implement concurrent

execution of computations and rendering. In particular, the

algorithm runs in a separate thread and generates events

indicating vertex position changes during each iteration,

while another thread, responsible for visualization, intercepts

these events and updates the graph layout accordingly. The

algorithm iterations are executed at a controlled time

interval. To ensure smooth and rapid layout generation, this

interval was set to 10 ms, creating the impression of a

continuous visualization process. It should be noted that this

interval determines only the frequency of iteration execution;

the actual time required to compute new vertex positions can

be much shorter and depends on the complexity of the

specific algorithm.

The iterative process continues until the system reaches

a specified convergence criterion (minimum energy level).

The stopping condition, which may vary depending on the

selected algorithm, is encapsulated in a separate method

within the aforementioned interface – this provides

additional flexibility for integrating new algorithms. Once

the layout stabilizes, the system continues monitoring the

state of the graph. If any changes in the graph’s configuration

are detected (such as the addition or removal of elements),

the module automatically restarts the iterative search for a

new optimal layout in response. The overall functioning

scheme of the visualization module is illustrated in Fig. 4.
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Fig. 4. Diagram illustrating the operation cycle

of the graph visualization module with automatic

algorithm restart upon detecting changes

As part of the experimental study, three vertex layout

algorithms: Fruchterman –Reingold, Eades, and Kamada –

Kawai were included into the integrated visualization

module. The system enables flexible configuration of all key

parameters of these algorithms, which influence the force

and energy functions. This provides extensive capabilities

for detailed examination of algorithm behavior under various

conditions and for selecting optimal settings based on the

specific characteristics and parameters of the graphs. Such

approach enables algorithm adaptation to task-specific

requirements and improves the effectiveness of their use

across different scenarios.

Each algorithm provides options for configuring specific

constants and coefficients. In particular:

 Eades Algorithm: C1 – parameter that defines the

intensity of attractive forces; C2 – the distance at

which the attractive force becomes zero (equilibrium

state); C3 – parameter that determines the intensity of

repulsive forces; C4 – displacement coefficient that

defines how far a vertex moves in proportion to the

resultant force.

 Fruchterman – Reingold algorithm: K1 – coefficient

for the attractive force (modifies the base attraction

formula): –
2

1

( )
a

d
d

K
f = ; K2 – coefficient for the

repulsive force (modifies the base repulsion

formula): –
2

2( )r

K
f d

d
= .

 Kamada – Kawai algorithm: K – constant that defines

the spring stiffness in the model (affects the optimal

“spring” length between vertices).

A series of experiments was conducted to evaluate the

impact of the aforementioned parameters on the behavior of the

algorithms. As an example, Fig. 5 presents the visualization

results of the grafo1.26 graph from the Rome Library dataset

using the Eades algorithm with different values of parameter C2.

To ensure the validity of the comparison, a random number

generator with a fixed seed was used during the random

placement of vertices. This eliminated the influence of

randomness on the final layout and allowed the effect of

changing C2 to be isolated. The same approach was applied

throughout all experiments.

The result of the parametric experiments shows that the

parameter C2 has a significant impact on the layout generated

by the Eades algorithm, effectively determining the optimal

edge (spring) length in the graph. This can be useful for

visualizing hierarchical structures, where longer edges help

clearly delineate hierarchy levels and avoid node congestion at

lower levels. In contrast, varying the parameters of the

Fruchterman – Reingold and Kamada – Kawai algorithms (K1,

K2 and K) did not demonstrate a noticeable effect on the final

vertex layout. It is likely that these algorithms internally

normalize or balance the effects of parameters, thereby reducing

their overall impact on the outcome.

In addition, a comparative experimental analysis of all three

algorithms was conducted to assess their performance and

behavior across different types of graphs. Visualization results

of two different graph structures (nd_31.78 from the Scotch

Graph Collection and grafo1.26 from the Rome Library),

generated using the three described algorithms, are presented in

Fig. 6. The comparative study confirmed the previously

noted drawbacks of the Eades algorithm: it tends to produce

excessively long edges and numerous edge crossings, which

complicate the perception of the graph’s structure.

Meanwhile, the layouts generated by the Kamada – Kawai

and Fruchterman – Reingold algorithms were relatively similar

in terms of vertex positioning. A more detailed analysis revealed

that the Fruchterman – Reingold algorithm is more prone to

becoming trapped in local minima of the energy function,

whereas the Kamada – Kawai algorithm provides more stable

results and is less susceptible to local minima.
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a b

Fig. 5.Visualization results of the grafo1.26 graph from the Rome Library dataset using Eades’

algorithm with different C2 values: a – C2 = 1.0; b – C2 = 4.0

a b c

Fig. 6. Visualization results of two graphs: nd_31.78, Scotch Graph Collection (images a, b, and c) and grafo1.26, Rome

Library (images d, e, and f), using three algorithms: Eades (images a and d), Kamada – Kawai (images b and e) and

Fruchterman – Reingold (images c and f)
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d e f

Fig. 6. (Continuation)Visualization results of two graphs: nd_31.78, Scotch Graph Collection (images a, b, and c)

and grafo1.26, Rome Library (images d, e, and f), using three algorithms: Eades (images a and d),

Kamada – Kawai (images b and e) and Fruchterman – Reingold (images c and f)

Another important observation concerns the suitability of

these algorithms for dynamic (interactive) visualization. The

Kamada – Kawai algorithm moves only one vertex per

iteration, attempting to locally minimize the system’s

energy. As a result, the position of this vertex may change

quite abruptly from one iteration to the next, which nega-

tively affects the smoothness of real-time layout updates. In

contrast, the Fruchterman – Reingold algorithm updates the

positions of all vertices gradually, ensuring a smoother and

more consistent change in the graph’s configuration. This

leads to a visually “softer” layout evolution and quicker

adaptation to changes in graph structure – an essential feature

for dynamic systems. Moreover, experiments showed that

the Fruchterman-Reingold algorithm scales better to larger

graphs, especially under frequent structural changes,

whereas the Kamada – Kawai algorithm proved more

effective for relatively small but densely connected graphs.

These characteristics make it possible to choose the most

appropriate algorithm based on the size and density of the

graph in dynamic visualization tasks.

The conducted research allowed us to identify and assess

the advantages and limitations of each visualization algorithm

under specific conditions. In particular, the Fruchterman –

Reingold algorithm is recommended for visualizing dyna-

mically changing networks (e. g., real-time monitoring of

transportation networks), as it can smoothly adapt the layout

to continuous route changes and provides a clear repre-

sentation of the current state. The Kamada – Kawai algorithm,

owing to the stability of its resulting layouts, is more effective

for static analysis of complex networks (e. g., gene interaction

models in biology), where it is important to accurately convey

distances between connected entities. Despite the limitations

mentioned earlier, the Eades algorithm can still be useful for

visualizing sparse graphs (e. g., hierarchical tree-like

structures), provided its parameters are configured to

minimize the number of edge crossings.

Discussion of research results. The results obtained

through the conducted experimental studies provide a

detailed evaluation of the effectiveness and characteristics of

fundamental methods and algorithms for two-dimensional

dynamic graph visualization. The following outlines the

scientific novelty of the study and the practical significance

of the findings.

Scientific novelty of the obtained results. For the first

time, a detailed comparative analysis was conducted on the

behavior of three core graph visualization algorithms (Eades,

Fruchterman – Reingold, and Kamada – Kawai) across

different graph types, including scenarios involving dynamic

changes. This made it possible to delineate the areas where

each algorithm is most effectively applied and to assess how

their parameters influence visualization quality.

A flexible graph visualization software module was

developed using modern computing technologies, designed

for the integration of various algorithms and supporting

adaptive configuration of their parameters according to

specific task requirements. Unlike previous solutions, which

were limited to a fixed set of algorithms and standard confi-

gurations, the proposed application implements a universal

approach to managing algorithms in dynamic environments.

Practical significance of the research results. The

obtained results have significant practical potential for

solving applied tasks related to the visualization of structures

and processes in dynamic systems, as they can serve as a

foundation for making informed decisions about the optimal

visualization algorithm for each specific case.

The developed graph visualization software module can

form the basis of interactive monitoring and analysis tools,

where it is important to display the structure and changes of



138 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

complex systems in real time (e. g., transportation networks).

Thus, the research outcomes open up new opportunities for

applying graph visualization methods in practice, both for

improving existing software systems and for developing new

specialized systems in various domains.

Future research may focus on developing an adaptive

graph visualization algorithm capable of automatically

selecting the optimal method and its parameters based on the

characteristics of input data and the task requirements.

Implementing such an approach will require extensive

experimental research, including comparative analysis of

different algorithms on a wide range of graphs and the

establishment of evaluation criteria for layout quality. A

promising solution involves the use of neural networks,

which are expected to enable assessment of the quality and

interpretability of the resulting layouts, collection of

comparative performance statistics, and automated selection

of the most appropriate visualization algorithm for a given

scenario. This adaptive approach opens substantial oppor-

tunities for automating the graph visualization process and

improving its quality and efficiency in dynamic applications.

Conclusions 

The Bonducted research enabled a critical analysis and

experimental comparison of the main force-directed graph

visualization algorithms: Eades, Fruchterman – Reingold,

and Kamada – Kawai in the context of dynamic systems. The

Java-based visualization module developed with flexible

parameter configuration enabled the comprehensive inves-

tigation and comparative testing of these algorithms using

extensive open datasets such as Rome-Lib and the Scotch

Graph Collection.

The experiments demonstrated that the Fruchterman –

Reingold algorithm produces optimal layouts for large

graphs with frequent configuration changes due to its fast

and smooth layout updates. The Kamada – Kawai algorithm

stands out for its stability and ability to avoid local minima

but is less suitable for interactive visualization because of

potentially abrupt vertex movements. The Eades algorithm,

in turn, can be effectively applied to visualizing sparse

graphs and hierarchical structures but is not well-suited for

dense graphs due to its tendency to produce excessively long

edges and numerous crossings.

Based on these findings, recommendations were

formulated for selecting algorithms depending on graph type

and visualization requirements, particularly for monitoring

tasks involving transportation or hierarchical systems. A

promising direction for future research is the development of

an adaptive algorithm using neural networks to select

automatically the optimal methods and parameters. The

results obtained hold both scientific novelty and practical

value for real-time visual analysis of dynamic systems.
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P/8F:1/8:U/O Y4:</9 T 9:R1797= /3B64F=D36,= K1O /36D4;4D6:U/M BL1:K37I K:37I F B7B6D=:I /8 K73:=/S37=7

89’O8L:=7, 6:L7I OL 64:3B;,463/, L,=;’H6D43/ S7 B,U/:123/ =D4DR/, KD B64FL6F4: K:37I ;,B6/Z3, 8=/3HT62BO.] 6:L7I

F=,9:I ,B,.179, :L6F:123D 8:9K:33O B69,4D33O :K:;67937I =D6,K/9, 8K:637I 8:.D8;DS767 S/6LD, 84,8F=/1D Z

B9,TS:B3D 9/K,.4:RD33O 8=/3 F B64FL6F4/ Y4:<:. ] 4,.,6/ ;4,:3:1/8,9:3, B71,9/ =D6,K7 9/8F:1/8:U/M Y4:</9, OL/

=,KD1HH62 B717 ;476OYF9:33O 6: 9/KE6,9IF9:33O K1O ;,EFLF ;,87U/Z 9D4E73 Y4:<: F K9,97=/43,=F ;4,B6,4/, V,

=/3/=/8FT BF=:43F D3D4YD67S3F <F3LU/H B7B6D=7. >,84,.1D3, ;4,Y4:=37Z 8:B6,BF3,L /8 97L,47B6:33O= =,97

;4,Y4:=F9:33O Java, <4DZ=9,4LF Spring, ./.1/,6DL7 GraphStream 6: 8:B,./9 JavaFX K1O /36DY4:U/M, 4D:1/8:U/M,

3:1:E6F9:33O 6: ;,4/93O33O :1Y,476=/9 dKB:, q4HI6D4=:3: – >DZ3Y,12K: 6: h:=:K: – h:9:M. P7L,3:3,

DLB;D47=D36:123D K,B1/KRD33O, F =DR:I OL,Y, ;4,6DB6,9:3, ;,9DK/3LF L,R3,Y, :1Y,476=F 3: 4/837I 67;:I Y4:</9

/8 9/KL4767I 3:.,4/9 K:37I, 8,L4D=: Rome-Lib / Scotch Graph Collection. P7O91D3,, V, :1Y,476= q4HI6D4=:3: –

>DZ3Y,12K: 8:.D8;DSFT ;1:93/ Z ;,B6F;,9/ 8=/37 =:LD6:, 97B,LF :K:;6793/B62 K, 8=/3 / 3:1DR3F =:BE6:.,9:3/B62,

6,=F 9/3 D<DL67937Z K1O K73:=/S3,M 9/8F:1/8:U/M, 8,L4D=: F B7B6D=:I =,3/6,473YF 64:3B;,46F. `1Y,476= h:=:K: –

h:9:M 8:.D8;DSFT B6:./123/B62 =:LD6:, ,K3:L =:T 97B,LF ,.S7B1H9:123F BL1:K3/B62 / =D3E 3:,S37Z F 4:8/

/36D4:L6793,M 9/8F:1/8:U/M 8=/3 L,3</YF4:U/M Y4:<: SD4D8 4/8L/ ;D4D=/VD33O ,L4D=7I 9D4E73. `1Y,476= dKB:

;47K:637Z K1O 4,.,67 8 4,84/KRD37=7 Y4:<:=7 :., KD4D9,;,K/.37=7 B64FL6F4:=7, :1D ;,B6F;:T62BO 8: OL/B6H ;/K

S:B 4,.,67 8/ V/1237=7 Y4:<:=7. >,84,.1D3: B7B6D=: ;/K647=FT :96,=:67S3D 4D:YF9:33O 3: 8=/3F B64FL6F47 Y4:<:

6: ;,96,437Z 8:;FBL :1Y,476=F, V, K:T 8=,YF 9/K,.4:R:67 :L6F:1237Z B6:3 =:LD6: 9 4DR7=/ 4D:123,Y, S:BF.

y:;4,;,3,9:3, 3:;4O= ;,K:12E7I K,B1/KRD32, ;,9’O8:37Z /8 97L,47B6:33O= 3DZ4,337I =D4DR K1O :96,=:67S3,M

,U/3L7 OL,B6/ =:LD6/9, L1:B7</L:U/M 67;F Y4:<: 6: 97.,4F ,;67=:123,Y, :1Y,476=F Z ;:4:=D64/9 Z,Y, 4,.,67.

WS/LFT62BO, V, UD ;/K97V762 D<DL6793/B62, 6,S3/B62 / 84FS3/B62 9/8F:1/8:U/M Y4:</9 F K73:=/S37I B7B6D=:I,

8:.D8;DS79E7 3,9/ =,R179,B6/ K1O =,3/6,473YF, :3:1/8F 6: ;47Z3O66O 4/ED32 3: ,B3,9/ Y4:<,97I =,KD1DZ.

 !"#$&' )!$&+: 9/K,.4:RD33O Y4:</9, =:6D=:67S3/ =,KD1/, B71,9/ =D6,K7, :1Y,476=7 4D:123,Y, S:BF, K73:=/S3/

Y4:<7.
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