ISSN 2707-1898 (print)

Ukrainian Journal of Information Technology
http://science.lpnu.ua/uk/ujit

YKpaiHCbKMUIA XKypHaN iHPopMaLiMHUX TEXHONOTIN

https://doi.org/10.23939/ujit2025.01.131

<] Correspondence author

Z.Y. Shpak
zoreslava.y.shpak@lpnu.ua

Article received 14.04.2025 p.
Article accepted 01.05.2025 p.
UDC 004.9

I. M. Danych, Z. Y. Shpak
Lviv Polytechnic National University, Lviv, Ukraine

METHODS AND TOOLS FOR GRAPH VISUALIZATION IN DYNAMIC SYSTEMS:

ANALYSIS AND EXPERIMENTAL STUDY

Graph visualization is a key tool for interpreting complex data in systems with dynamic relationships, such as
transportation, computer, or social networks, where the underlying structure is continuously evolving. In such contexts, there
is a growing need for adaptive visualization methods that can ensure clear, intuitive, and timely representation of structural
changes. This paper analyzes force-directed graph layout methods, which simulate attractive and repulsive physical forces
to determine vertex positions in a two-dimensional space, aiming to minimize the system’s energy function. A custom
software application was developed using the Java programming language, integrated with the Spring framework, the
GraphStream library, and JavaFX for visualization. The system provides functionality for implementing, configuring, and
comparing the Eades, Fruchterman — Reingold, and Kamada — Kawai algorithms. An experimental study was conducted
using various types of graphs from open datasets, particularly Rome-Lib and the Scotch Graph Collection, to evaluate the
behavior of each algorithm under different conditions. Results show that the Fruchterman — Reingold algorithm demonstrates
smooth and gradual layout transitions, high adaptability to structural changes, and good scalability, making it suitable for
real-time dynamic graph visualization, such as traffic monitoring systems. The Kamada — Kawai algorithm provides stable
and symmetric but has higher computational complexity and less suitability for interactive scenarios due to abrupt
movements of individual vertices. The Eades algorithm performs effectively on sparse or tree-like graphs but tends to
produce overly long edges and excessive edge crossings in denser graphs. The developed application supports automatic
detection of graph structure changes and restarts the layout algorithm accordingly, enabling near real-time reflection of
updates in the visual representation. A promising direction for future research is the integration of neural networks to
automate layout evaluation, graph-type classification, and algorithm selection based on specific graph characteristics and
task requirements. Such an adaptive approach is expected to enhance the efficiency, clarity, and responsiveness of graph
visualizations in dynamic systems, contributing to improved monitoring, analysis, and decision-making based on graph-

based models.

Keywords: graph visualization, force-directed methods, online algorithms, dynamic graphs.

Introduction

Data processing and data transformation into useful
information is one of the key tasks of modern science and
technologies. In the digital age, the value of large
corporations largely depends on the volume and quality of
accumulated data, which can be utilized for decision-
making, trend forecasting, and profit maximization [1], [2].

Graphs are a powerful tool for modeling and analyzing
systems with complex interconnections, finding applications
in various domains: optimization of transportation networks
and analysis of logistics systems [3], [4], design and
enhancement of computer network architectures [5],
investigation of social relationships and structures [6], as
well as analysis and optimization of energy networks [7],
among others. In such systems, where the data structure
continuously evolves, the ability of graphs to represent these
relationships in real time becomes especially important. For
instance, in the field of cybersecurity of energy networks,
graph models are used to analyze vulnerabilities and protect

monitoring systems from attacks that distort real-time results
of state estimation [8].

Thus, efficient graph visualization in dynamic systems,
where information changes are continuous, is a highly
relevant challenge with a broad range of applications. Under
such conditions, there is a growing demand for adaptive
visualization that allows immediate representation of
updated data structures and facilitates their analysis. At the
same time, preference of the optimal method for dynamic
graph visualization remains an open question, as each
algorithm has its own advantages and limitations. To enable
testing and comparison of graph visualization algorithms, a
software tool was developed to experimentally evaluate the
performance of different approaches using practical
examples.

The object of this research is the process of graph
visualization in dynamic systems.

The research subject includes algorithms and tools for
graph visualization in systems with dynamic changes.

YKpaiHCbKUI }KypHan iHbopmauiliHux TexHonorii, 2025, 1. 7, Ne 1 (11)

131

The aim of the research is to analyze and investigate
graph visualization algorithms, realize software imple-
mentation of the best algorithms, compare their efficiency,
and assess their suitability for use in dynamic systems.

To achieve this aim, the following primary research
objectives have been defined:

e to review existing graph visualization algorithms,
analyze them, and select methods for further imple-
mentation;

e to implement programmatically the selected algo-
rithms for experimental testing;

e to provide an experimental comparison of the effect-
tiveness of graph visualization algorithms;

e to formulate conclusions regarding the effectiveness
of the analyzed methods and to identify future
research directions.

Materials and methods of the study. The study used
methods of mathematical analysis, in particular, optimi-
zation approaches necessary for solving problems of mini-
mizing the energy of graph structures in power visualization
algorithms.

The corresponding software application was imple-
mented using the Java programming language. Code depen-
dency management was handled using the Spring Fra-
mework, which simplifies component management and
increases the system’s flexibility. In graph processing
implementation were used tools of the GraphStream library.

For algorithm testing, pre-existing sets of test graphs
from open sources were used, specifically the Rome-Lib and
Scotch Graph Collection datasets [9].

Analysis of recent research and publications. Force-
directed algorithms have proven effective for graph
visualization, ensuring both stability and adaptability of the
layout, as well as smooth real time updates in response to
structural changes of the graph. By simulating physical
forces of attraction and repulsion, these algorithms generate
visually comprehensible layouts with minimal edge cro-
ssings, which simplifies the tracking of graph evolution.
Studies confirm their ability to maintain dynamic stability
and their suitability for online visualization tasks [10], [11].

One of the earliest and most well-known force-directed
algorithms is the Eades algorithm, which models a graph as a
mechanical system where vertices are represented as steel
rings and edges as springs [12], [13]. Initially, the graph's
vertices are placed at random positions, after which the system
evolves according to physical forces that seek to bring it to a
state of minimal energy, where the vertices occupy positions
that yield a visually comprehensible layout with appro-
ximately equal edge lengths. The algorithm is based on two
key principles that define the forces between vertices.

For adjacent vertices connected by edges (springs), the
attractive force Fj is defined as a logarithmic function of the
distance between the vertices:

d
F =C, -log(—), 1
K 1 g(Cz) ()
where d is the distance between the vertices, and C; and C,
are constants. The authors of the algorithm note that using

linear springs according to Hooke’s law can result in
excessive attractive force for distant vertices, leading to
layout instability, whereas the logarithmic dependency
ensures a smoother force transition [13]. The attractive force
equals zero when d=C,, which corresponds to an
equilibrium state. The recommended values for the constants
are: C; =2.0 and C, = 1.0. The dependency of the force Fj
on the distance d for these constants is illustrated in Fig. 1.

[The point of change of force direction
E - - E 0 4

Fig. 1. Plot of the attractive force versus vertex distance
for Eades’ algorithm

The plot shows that when d = C, the force is zero, and as
Ci increases, the attractive force grows, allowing control
over the “stiffness” of the springs.

For non-adjacent vertices, a repulsive force F}, is applied,
which follows the inverse-square law [13]:

F ==)

where d is the distance between the vertices, and C; is a
constant, with a recommended value of C; = 1.0. This force
ensures that non-adjacent vertices are distributed at a
sufficient other, preventing
overcrowding. The dependency of the repulsive force . on
the distance d is shown in Fig. 2. The plot demonstrates that
the repulsive force rapidly decreases with increasing
distance, and increasing Cs; amplifies the repulsion, enabling
finer control over vertex spacing in the layout.

The Eades algorithm follows an iterative process:

1. The vertices of the graph are placed at random initial

positions.

2. A total of M iterations are performed, during each of

which:

e the resultant force for each vertex is calculated, taking
into account the attractive forces Fs, from adjacent
vertices and the repulsive forces Fr from non-adjacent
vertices;

distance from each

132 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

e cach vertex is moved proportionally to the resultant
force, scaled by the displacement coefficient Cj:

displacement = Cy-(F+F)).

3. After completing the iterations, the resulting layout is
visualized.

Fig. 2. Plot of repulsive force versus vertex distance
for Eades’ algorithm

The Eades algorithm performs effectively on many types
of graphs, particularly trees and sparse graphs, producing
layouts with approximately equal edge lengths and
noticeable symmetry. However, it has limitations when
applied to dense graphs, graphs with dense subgraphs, or
graphs with a small number of bridges (edges whose removal
disconnects the graph). In such cases, the algorithm may
generate distorted layouts with excessively long edges or
numerous edge crossings, which complicates the perception
of the graph structure.

One of the improvements based on the ideas proposed by
Eades is the Fruchterman-Reingold algorithm [12], [14]. Its
primary goal is to create visually clear and expressive layouts
that adhere to commonly accepted criteria, such as uniform
edge lengths, even distribution of vertices in space, and the
display of graph symmetry. The authors reinterpreted Eades’
physical model, drawing an analogy to physical systems,
such as atomic particles or celestial bodies, that interact
through attractive and repulsive forces. As in the Eades
algorithm, attractive forces act only between neighboring
vertices, while repulsive forces act between all pairs of
vertices. However, unlike Eades’ logarithmic force func-
tions, Fruchterman and Reingold proposed simpler and more
computationally efficient functions for modeling forces [14].

The method introduces the concept of an optimal distance
k, which depends on the size of the display area (frame) and
the number of vertices in the graph, and is defined by the
formula (3):

area
k=C , 3
N 3)

where area — is the size of the display area, N is the number
of vertices in the graph, and C — is an empirically determined
constant. This optimal distance is used to define the
attractive and repulsive force functions.

The attractive force f; between neighboring vertices is
given by:

d2
Ja(d)=—. “)
k
The repulsive force f. between all pairs of vertices is
defined as:

k2
dy=—, S
J,(d) 7 (%)
where d is the distance between two vertices. The functions
proposed by the authors (based on experimental

observations) resemble Hooke’s law, although they are not
exact representations of it: the attractive force increases
quadratically with distance, while the repulsive force
decreases inversely with distance [14].

In the plot (Fig.3), the repulsive force is shown in
absolute value for clarity: the equilibrium point, where the
two forces are balanced, occurs at d = k, which corresponds
to the ideal distance between vertices.

o 05 1 15 2

Fig. 3. Plot of attractive (red line) and repulsive (blue line)
forces for the Fruchterman — Reingold algorithm
with £=0.5

In addition, the algorithm introduces the concept of
“temperature”, which serves to limit the maximum
displacement of vertices during each iteration, thereby
ensuring gradual stabilization of the layout [14]. Like the
Eades algorithm, the Fruchterman — Reingold algorithm is
iterative. Initially, the vertices of the graph are placed at
random positions. At each iteration, attractive forces
between neighboring vertices are calculated using formula
(4), and repulsive forces between all pairs of vertices using
formula (5). The vertices are then moved, with their

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2025, 1.7, Ne 1 (11)

133

displacement constrained by the “temperature” parameter,
the value of which is gradually decreased over time. The
Fruchterman — Reingold method effectively reveals graph
symmetry and produces visually appealing layouts,
particularly for highly symmetric structures. However, it is
prone to getting trapped in local minima and does not
guarantee edge-crossing minimization, which can hinder the
interpretation of complex graphs.

Another force-directed algorithm is the Kamada — Kawai
algorithm, which emphasizes and
distribution of vertices based on graph-theoretic distance
[15]. Unlike the Fruchterman — Reingold algorithm, which
uses a global parameter &k, Kamada — Kawai determines the
theoretical distance between each pair of vertices as the
length of the shortest path dj. The optimal “spring” length
between vertices i and j is defined by formula (6):

lij :L'dij > (6)

symmetry even

where L is the base length representing the ideal Euclidean
distance between two adjacent vertices and is calculated
using formula (7):
L= L
max,_d,; '
where Lo is the length of a side of the display area.
The spring stiffness is defined as:
K
k..

1: 2 2
] d,‘j

(7

®)

where K is a constant. The total system energy E is defined
as the sum of the elastic energies for all pairs of vertices,
given by formula (9):
n=1 n 2
E:ZZ%kij(Lpi_ij_lij))
i=l j=i+l
where .Lpi P /J is the Euclidean distance between vertices.
The authors propose using the Newton — Raphson method to
find a local minimum of the energy function [15], where only
one vertex is moved at each step of the algorithm, while the
coordinates of the remaining vertices are “frozen.”

The Kamada — Kawai algorithm operates iteratively:
initially, the vertices are placed at the nodes of a regular n-
gon, after which the shortest path matrix dj;, optimal lengths
l; and stiffness coefficients k; are computed. At each
iteration, the vertex with the highest energy gradient is
relocated using the Newton — Raphson method until a
specified threshold is reached. The Kamada — Kawai
algorithm effectively reveals graph symmetry, but it has high
computational complexity and may converge to a local
minimum, which can affect layout quality in the case of
complex graphs.

Research results and their discussion

For the comparative study of the aforementioned
methods, a custom software application for visualizing graph
algorithms, developed by the authors, was used [16]. This
application was significantly enhanced within the scope of

our research: new visualization algorithms (in particular, the
Eades and Kamada — Kawai algorithms) were integrated, and
special functionality was added for flexible configuration of
each algorithm’s parameters. These enhancements allow the
adjustment of key visualization characteristics, such as
attraction force, repulsion force, and spring stiffness in the
model.

The software solution was implemented in Java using
several modern libraries. Specifically, the Spring framework
was used to facilitate dependency management through the
inversion of control mechanism; GraphStream served as the
core library for working with graphs, providing built-in
algorithms; and JavaFX was used for creating the graphical
user interface. This technology stack offers a high degree of
flexibility, simplifying the integration of new algorithms and
the modification of existing functionality.

Graph visualization within the application begins with
reading the input graph data and placing the vertices
randomly. All integrated visualization algorithms operate in
a cyclic manner, gradually optimizing the value of a specific
energy function. This enables the creation of interactive
animation: the layout of the graph is updated smoothly with
each algorithm iteration. To ensure unified integration of
various algorithms, a dedicated interface class was
developed, which includes a set of common methods,
particularly a method for executing a single iteration of the
algorithm. This approach ensures compatibility of any
algorithm with the visualization module regardless of its
specific implementation.

The GraphStream library is based on an event-driven
model, which made it possible to implement concurrent
execution of computations and rendering. In particular, the
algorithm runs in a separate thread and generates events
indicating vertex position changes during each iteration,
while another thread, responsible for visualization, intercepts
these events and updates the graph layout accordingly. The
algorithm iterations are executed at a controlled time
interval. To ensure smooth and rapid layout generation, this
interval was set to 10 ms, creating the impression of a
continuous visualization process. It should be noted that this
interval determines only the frequency of iteration execution;
the actual time required to compute new vertex positions can
be much shorter and depends on the complexity of the
specific algorithm.

The iterative process continues until the system reaches
a specified convergence criterion (minimum energy level).
The stopping condition, which may vary depending on the
selected algorithm, is encapsulated in a separate method
within the aforementioned interface — this provides
additional flexibility for integrating new algorithms. Once
the layout stabilizes, the system continues monitoring the
state of the graph. If any changes in the graph’s configuration
are detected (such as the addition or removal of elements),
the module automatically restarts the iterative search for a
new optimal layout in response. The overall functioning
scheme of the visualization module is illustrated in Fig. 4.

134

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

Start of algorithm
iterations

Calculate new
positions,determine
system's potential energy

Generate new vertex
position changes

Apply vertex changes to
visualization

detected

Update graph interface

Check exit condition

Condition met/

Condition not met

Wait for 10 ms

Fig. 4. Diagram illustrating the operation cycle
of the graph visualization module with automatic
algorithm restart upon detecting changes

As part of the experimental study, three vertex layout
algorithms: Fruchterman —Reingold, Eades, and Kamada —
Kawai were included into the integrated visualization
module. The system enables flexible configuration of all key
parameters of these algorithms, which influence the force
and energy functions. This provides extensive capabilities
for detailed examination of algorithm behavior under various
conditions and for selecting optimal settings based on the
specific characteristics and parameters of the graphs. Such
approach enables algorithm adaptation to task-specific
requirements and improves the effectiveness of their use
across different scenarios.

Each algorithm provides options for configuring specific
constants and coefficients. In particular:

o FEades Algorithm: Ci— parameter that defines the
intensity of attractive forces; C>— the distance at
which the attractive force becomes zero (equilibrium
state); Cs3 — parameter that determines the intensity of
repulsive forces; Cs— displacement coefficient that
defines how far a vertex moves in proportion to the
resultant force.

e Fruchterman — Reingold algorithm: K, — coefficient
for the attractive force (modifies the base attraction

d2
formula): — d)=—7; K, — coefficient for the
): - f (@ ke

repulsive force (modifies the base repulsion
2
formula): — f,,(d)z%.

o Kamada— Kawai algorithm: K — constant that defines
the spring stiffness in the model (affects the optimal
“spring” length between vertices).

A series of experiments was conducted to evaluate the
impact of the aforementioned parameters on the behavior of the
algorithms. As an example, Fig. 5 presents the visualization
results of the grafol.26 graph from the Rome Library dataset
using the Eades algorithm with different values of parameter C>.
To ensure the validity of the comparison, a random number
generator with a fixed seed was used during the random
placement of vertices. This eliminated the influence of
randomness on the final layout and allowed the effect of
changing C; to be isolated. The same approach was applied
throughout all experiments.

The result of the parametric experiments shows that the
parameter C; has a significant impact on the layout generated
by the Eades algorithm, effectively determining the optimal
edge (spring) length in the graph. This can be useful for
visualizing hierarchical structures, where longer edges help
clearly delineate hierarchy levels and avoid node congestion at
lower levels. In contrast, varying the parameters of the
Fruchterman — Reingold and Kamada — Kawai algorithms (K,
K> and K) did not demonstrate a noticeable effect on the final
vertex layout. It is likely that these algorithms internally
normalize or balance the effects of parameters, thereby reducing
their overall impact on the outcome.

In addition, a comparative experimental analysis of all three
algorithms was conducted to assess their performance and
behavior across different types of graphs. Visualization results
of two different graph structures (nd _31.78 from the Scotch
Graph Collection and grafol.26 from the Rome Library),
generated using the three described algorithms, are presented in
Fig. 6. The comparative study confirmed the previously
noted drawbacks of the Eades algorithm: it tends to produce
excessively long edges and numerous edge crossings, which
complicate the perception of the graph’s structure.
Meanwhile, the layouts generated by the Kamada — Kawai
and Fruchterman — Reingold algorithms were relatively similar
in terms of vertex positioning. A more detailed analysis revealed
that the Fruchterman — Reingold algorithm is more prone to
becoming trapped in local minima of the energy function,
whereas the Kamada — Kawai algorithm provides more stable
results and is less susceptible to local minima.

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2025, 1.7, Ne 1 (11) 135

a b
Fig. 5. Visualization results of the grafol.26 graph from the Rome Library dataset using Eades’
algorithm with different C; values: a— C,=1.0;b—C,=4.0

Fig. 6. Visualization results of two graphs: nd_31.78, Scotch Graph Collection (images a, b, and c) and grafo1.26, Rome
Library (images d, e, and f), using three algorithms: Eades (images a and d), Kamada — Kawai (images b and ¢) and
Fruchterman — Reingold (images ¢ and f)

136 Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

f

Fig. 6. (Continuation)Visualization results of two graphs: nd_31.78, Scotch Graph Collection (images a, b, and ¢)
and grafo1.26, Rome Library (images d, e, and f), using three algorithms: Eades (images a and d),
Kamada — Kawai (images b and ¢) and Fruchterman — Reingold (images ¢ and f)

Another important observation concerns the suitability of
these algorithms for dynamic (interactive) visualization. The
Kamada — Kawai algorithm moves only one vertex per
iteration, attempting to locally minimize the system’s
energy. As a result, the position of this vertex may change
quite abruptly from one iteration to the next, which nega-
tively affects the smoothness of real-time layout updates. In
contrast, the Fruchterman — Reingold algorithm updates the
positions of all vertices gradually, ensuring a smoother and
more consistent change in the graph’s configuration. This
leads to a visually “softer” layout evolution and quicker
adaptation to changes in graph structure — an essential feature
for dynamic systems. Moreover, experiments showed that
the Fruchterman-Reingold algorithm scales better to larger
graphs, especially under frequent structural changes,
whereas the Kamada — Kawai algorithm proved more
effective for relatively small but densely connected graphs.
These characteristics make it possible to choose the most
appropriate algorithm based on the size and density of the
graph in dynamic visualization tasks.

The conducted research allowed us to identify and assess
the advantages and limitations of each visualization algorithm
under specific conditions. In particular, the Fruchterman —
Reingold algorithm is recommended for visualizing dyna-
mically changing networks (e. g., real-time monitoring of
transportation networks), as it can smoothly adapt the layout
to continuous route changes and provides a clear repre-
sentation of the current state. The Kamada — Kawai algorithm,
owing to the stability of its resulting layouts, is more effective
for static analysis of complex networks (e. g., gene interaction
models in biology), where it is important to accurately convey
distances between connected entities. Despite the limitations
mentioned earlier, the Eades algorithm can still be useful for
visualizing sparse graphs (e. g., hierarchical tree-like

structures), provided its parameters are configured to
minimize the number of edge crossings.

Discussion of research results. The results obtained
through the conducted experimental studies provide a
detailed evaluation of the effectiveness and characteristics of
fundamental methods and algorithms for two-dimensional
dynamic graph visualization. The following outlines the
scientific novelty of the study and the practical significance
of the findings.

Scientific novelty of the obtained results. For the first
time, a detailed comparative analysis was conducted on the
behavior of three core graph visualization algorithms (Eades,
Fruchterman — Reingold, and Kamada — Kawai) across
different graph types, including scenarios involving dynamic
changes. This made it possible to delineate the areas where
each algorithm is most effectively applied and to assess how
their parameters influence visualization quality.

A flexible graph visualization software module was
developed using modern computing technologies, designed
for the integration of various algorithms and supporting
adaptive configuration of their parameters according to
specific task requirements. Unlike previous solutions, which
were limited to a fixed set of algorithms and standard confi-
gurations, the proposed application implements a universal
approach to managing algorithms in dynamic environments.

Practical significance of the research results. The
obtained results have significant practical potential for
solving applied tasks related to the visualization of structures
and processes in dynamic systems, as they can serve as a
foundation for making informed decisions about the optimal
visualization algorithm for each specific case.

The developed graph visualization software module can
form the basis of interactive monitoring and analysis tools,
where it is important to display the structure and changes of

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2025, 1.7, Ne 1 (11)

137

complex systems in real time (e. g., transportation networks).
Thus, the research outcomes open up new opportunities for
applying graph visualization methods in practice, both for
improving existing software systems and for developing new
specialized systems in various domains.

Future research may focus on developing an adaptive
graph visualization algorithm capable of automatically
selecting the optimal method and its parameters based on the
characteristics of input data and the task requirements.
Implementing such an approach will require extensive
experimental research, including comparative analysis of
different algorithms on a wide range of graphs and the
establishment of evaluation criteria for layout quality. A
promising solution involves the use of neural networks,
which are expected to enable assessment of the quality and
interpretability of the resulting layouts, collection of
comparative performance statistics, and automated selection
of the most appropriate visualization algorithm for a given
scenario. This adaptive approach opens substantial oppor-
tunities for automating the graph visualization process and
improving its quality and efficiency in dynamic applications.

Conclusions

The conducted research enabled a critical analysis and
experimental comparison of the main force-directed graph
visualization algorithms: Eades, Fruchterman — Reingold,
and Kamada — Kawai in the context of dynamic systems. The
Java-based visualization module developed with flexible
parameter configuration enabled the comprehensive inves-
tigation and comparative testing of these algorithms using
extensive open datasets such as Rome-Lib and the Scotch
Graph Collection.

The experiments demonstrated that the Fruchterman —
Reingold algorithm produces optimal layouts for large
graphs with frequent configuration changes due to its fast
and smooth layout updates. The Kamada — Kawai algorithm
stands out for its stability and ability to avoid local minima
but is less suitable for interactive visualization because of
potentially abrupt vertex movements. The Eades algorithm,
in turn, can be effectively applied to visualizing sparse
graphs and hierarchical structures but is not well-suited for
dense graphs due to its tendency to produce excessively long
edges and numerous crossings.

Based on these findings, recommendations were
formulated for selecting algorithms depending on graph type
and visualization requirements, particularly for monitoring
tasks involving transportation or hierarchical systems. A
promising direction for future research is the development of
an adaptive algorithm using neural networks to select
automatically the optimal methods and parameters. The
results obtained hold both scientific novelty and practical
value for real-time visual analysis of dynamic systems.

References

[1] Birch, K., Cochrane, D. T., & Ward, C. (2021). Data as asset?
The measurement, governance, and valuation of digital
personal data by Big Tech. Big Data & Society, 8(1), 115.
https://doi.org/10.1177/20539517211017308

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Gupta, S., Justy, T., Kamboj, S., Kumar, A., & Kristo-
ffersen, E. (2021). Big data and firm marketing performance:
Findings from knowledge-based view. Technological
Forecasting and Social Change, 171, Article 120986.
https://doi.org/ 10.1016/ j.techfore.2021.120986

Boeing, G. (2025). Modeling and analyzing urban networks
and amenities with OSMnx (Working paper). University of
Southern California. Retrieved from: https://geoftboeing.
com/share/osmnx-paper.pdf

Rathore, M. M., Shah, S. A., Awad, A., Shukla, D., Vimal,
S., & Paul, A. (2021). A cyber-physical system and graph-
based approach for transportation management in smart
cities. Sustainability, 13(14), Article 7606. https://doi.org/
10.3390/ sul3147606

Anisa, R., Prihandini, R. M., Alvina, D. A. R. J., Makhfud-
loh, I. I, Agatha, A. B., & Wulandari, Y. N. (2024).
Application of graph theory in computer network
optimization. Retrieved from: https://www.researchgate.net/
publication/ 381490742 Application_of Graph Theory in
Computer Network Optimization

Logan, A. P., LaCasse, P. M., & Lunday, B. J. (2023). Social
network analysis of Twitter interactions: A directed
multilayer network approach. Social Network Analysis and
Mining, 13(65). https://doi.org/10.1007/s13278-023-01063-2
Aksoy, S. G., Purvine, E., Cotilla-Sanchez, E., & Halappa-
navar, M. (2018). A generative graph model for electrical
infrastructure networks. Journal of Complex Networks, 7(1),
128-162. https://doi.org/10.1093/comnet/cny016

Bi, S., & Zhang, Y. J. A. (2016). Graph-based cyber security
analysis of state estimation in smart power grid. [EEE
Communications Magazine, arXiv preprint arXiv:1612.
05878. https://arxiv.org/abs/1612.05878

Graph Layout Benchmark Datasets. Retrieved March 26, 2025,
from: https://visdunneright.github.io/gd benchmark sets/
Beck, F., Burch, M., Diehl, S., & Weiskopf, D. (2014). The
state of the art in visualizing dynamic graphs. In R. Borgo,
R. Maciejewski, & 1. Viola (Eds.), Eurographics Conference
on Visualization (EuroVis)— STARs. The Eurographics
Association. https://doi.org/10.2312/eurovisstar.20141174
Cheong, S.-H., Si, Y.-W., & Wong, R. K. (2021). Online
force-directed algorithms for visualization of dynamic
graphs. Information Sciences, 556, 223-255. https://doi.org/
10.1016/j.ins.2020.12.068

Kobourov, S. G. (2013). Force-directed algorithms for
schematic drawings and placement: A survey. In Handbook
of Graph Drawing and Visualization (pp. 383—408). CRC
Press. https://doi.org/10.1016/5.ins.2020.12.069

Cheong, S.-H.,, & Si, Y.-W. (2020). Force-directed
algorithms for schematic drawings and placement: A survey.
Information Visualization, 19(1), 6591. https://doi.org/
10.1177/1473871618821740

Eades, P. (1984). A heuristic for graph drawing. Congressus
Numerantium, 42, 149-160. Retrieved from https://www.
cs.ubc.ca/~will/536E/papers/Eades1984.pdf

Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph
drawing by force-directed placement. Software: Practice and
Experience, 21(11), 1129-1164. https://doi.org/10.1002/spe.
4380211102

Kamada, T., & Kawai, S. (1989). An algorithm for drawing
general undirected graphs. Information Processing Letters,
31(1), 715. https://doi.org/10.1016/0020-0190(89)90102-6
Danych, 1., & Shpak, Z. (2024). Practical and educational
application for interaction with graphs. In Proceedings of the
Ist International Scientific and Practical Conference
“Computational Intelligence and Smart Systems” (CISS-
2024) (pp. 37-39). Lviv: ATB Publishing.

138

Ukrainian Journal of Information Technology, 2025, vol. 7, No. 1

L M. Jlanuy, 3. 4. lllnak

Hayionanonuii ynieepcumem “Jlvsiscorka nonimexuixa”, JIvgie, Ykpaina

AHAJII3 TA EKCIEPUMEHTAJIBHI JOCIIAKEHHA METOIB
1 3ACOBIB 1/ BI3YAJII3ALIl TPA®IB Y JUHAMIYHUX CUCTEMAX

Bisyaunizanis rpadiB € BaXJIMBUM IHCTPYMEHTOM JUIs IHTEpIIpeTallii CKIaAHUX JaHUX Yy CHCTeMax i3 JTUHAMIYHUMH
3B’s13KaMH, TAKHX SIK TPAHCIIOPTHI, KOMIT FOTEPHI YH COIIiaAlIbHI MEPEKi, e CTPYKTYpa JaHUX MOCTIHHO 3MIHIOETHCS. Y TaKHX
yMOBaxX OCOOJIMBO aKTyallbHE 3aBIaHHS CTBOPCHHS aQJaNTHBHUX METOJIB, 3[aTHUX 3a0€3MCYUTH YiTKE, 3p0o3yMmiie i
CBO€YACHE BIZIOOpaKEHHsI 3MIH y CTPYKTypi rpada. ¥ poOoTi mpoaHaai30BaHO CHIIOBI METOIH Bi3yamizaiii rpadis, ski
MO/ICJIFOIOTh CHJI TIPUTSATYBAHHS Ta BIIIITOBXYBAHHS JUIS MOIIYKY TIO3UIIi# BepIINH rpada y ABOBUMIPHOMY MPOCTOPI, M0
MiHIMI3y€e CyMapHy eHepreTHyHy (yHKI0 cucTteMu. Po3poOJeHO MpOTrpaMHHi 3aCTOCYHOK 13 BUKOPHUCTAHHSIM MOBH
nporpamyBaHHsl Java, ¢peiimBopky Spring, 6i0miorekn GraphStream ta 3aco6iB JavaFX g iHterpauii, peanmizauii,
HaJIAIITYBaHHS Ta NOPIBHAHHSA airoputMmiB Inca, ®proxrepmana — PeiiHronsga ta Kamama — Kasai. BukonaHo
SKCIICPUMEHTAJIbHE JIOCIIJUKCHHSI, Y MEKaX SKOT0 IPOTECTOBAHO ITOBEAIHKY KOJKHOTO aTOPUTMY Ha Pi3HHX THIAxX rpadis
13 BinkpuTux HaOopiB gaHux, 3okpema Rome-Lib i1 Scotch Graph Collection. BusiBneno, mo anroputm @proxrepmana —
Peiinronsna 3abe3neuye IIaBHi i OCTYNOBI 3MIHU MaKeTa, BUCOKY aJalTHBHICTh O 3MiH 1 HaJeXHY MacIITa0OBaHICTb,
TOMY BiH e(h)eKTUBHMHI JJIs1 IMHAMIYHOI Bi3yai3allii, 30KkpeMa y cucTeMax MOHITOpUHTY TpaHcnopty. Anroputm Kamana —
KaBai 3a0e3neuye cTabiIbHICTH MakeTa, OJHAK MAa€ BHCOKY OOUHMCIIOBAJbHY CKJIAAHICTb 1 MEHII HAOYHUH y pasi
IHTepaKTHBHOT Bi3yaiizamii 3MiH KOH(irypamii rpada yepe3 pi3ki MEepeMilllCHHS OKpEMHX BepIIMH. AJroput™m Imca
MPUIATHUH U pOOOTH 3 pO3piKEHUMHU TpadamMu abo AepeBOTIOAIOHIMHU CTPYKTYpaMH, ajie MOCTYMAEThCS 3a SKICTHO TTi[T
yac poboTH 3i mibHUME rpadamu. Po3pobiieHa cuctema miATpUMYy€e aBTOMATUYHE pearyBaHHs Ha 3MiHY CTPYKTYpH rpada
Ta MOBTOPHUI 3aIlyCK aJrOPHTMY, IO Ja€ 3MOTY BiOOpakaTH aKTyaJbHUH CTaH MakeTa B PEKMMi peabHOrO dacy.
3anmporoHOBaHO HANPSIM TTOJAIBIINX JOCIIKEHb, 0B’ I3aHHUH 13 BUKOPUCTAHHSAM HEHPOHHUX MEPEeX Ul aBTOMaTHIHOI
OIIIHKK SIKOCTI MakeTiB, Kiacudikaiii tuny rpada Tta BUOOPY ONTHMAIBHOTO AJITOPUTMY M MapaMeTpiB HOro poOoTH.
OuiKyeTbCs, 1O 1E MiIBUINNTh €(PEKTUBHICTh, TOYHICTH 1 3pYYHICTh Bi3yamizaiii rpadiB y JMHAMIYHUX CHCTEMaXx,
3a0€3MeUNBIIY HOBI MOMIIMBOCTI 11 MOHITOPHMHTY, aHaIIi3y Ta NPUMHATTS pillieHb HAa OCHOBI IpadoBUX Mozeneil.

Knwowuoei cnosa: BinoOpaxxeHHs rpadis, MaTeMaTU4HI MOJIEI, CUIIOBI METOM, aJITOPUTMU PEATIBHOTO Yacy, ANHAMIuHi

rpadu.

IHdopmaLia npo aBTopiB:

OaHuu IBaH MuKonahoBuy, acnipaHT, Kadegpa aBTOMATM30BaHMX cCUCTemM ynpasBaiHHA. Email: ivan.m.danych@lpnu.ua;
https://orcid.org/0000-0003-2533-2039

LLinak 3opecnaBa ApocnaBiBHA, KaHA,. TEXH. HayK, AOLEHT, Kadeapa aBTOMATU30BaHUX cucTeM ynpasaiHHA. Email: zoreslava.y.shpak@
Ipnu.ua; https://orcid.org/0000-0003-4375-2985

LUutyBanHa 3a ACTY: fanuy . M., LLnak 3. . AHani3 Ta eKcnepuMeHTanbHi AOCNIAXKEHHA MeTOAiB i 3acobiB ans Bisyanisauii rpagis y
OUHAMIYHUX cUCTeMaX. YKpaiHcoKuli ¥ypHan iHgpopmayiliHux mexHonoeil. 2025, 1.7, Ne 1. C. 131-139

Citation APA: Danych, I. M., & Shpak, Z. Y. (2025). Methods and tools for graph visualization in dynamic systems: An experimental study.
Ukrainian Journal of Information Technology, 7(1), 131-139. https://doi.org/10.23939/ujit2025.01.131

YKpaiHCbKUI }KypHan iHbopmauiliHux TexHonorii, 2025, 1. 7, Ne 1 (11) 139

