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MATHEMATICAL MODELING AND ANALYSIS OF TEMPERATURE REGIME  

IN DIGITAL DEVICES DUE TO SURFACE HEATING 

Linear and nonlinear mathematical models for determining the temperature field and, subsequently, for analyzing

temperature regimes in an isotropic plate due to near-surface thermal loading have been developed. For the case of a

thermosensitive plate (the thermophysical parameters of the structural material depend on temperature), the Kirchhoff

transformation has been applied, using which the nonlinear heat conduction equation and nonlinear boundary conditions

have been linearized, and as a result, a linear second-order differential equation with partial derivatives and a discontinuous

right-hand side and partially linearized boundary conditions have been obtained. For the final linearization of the boundary

conditions, the temperature has been approximated by the spatial coordinate on the boundary surface of the thermosensitive

plate by a segment-constant function, which made it possible to obtain a linear boundary problem with respect to the

Kirchhoff variable. To solve the obtained boundary value problems, the integral Fourier transform was used and, as a result,

analytical and analytical-numerical solutions in the form of improper convergent integrals were obtained. For a thermally

sensitive medium, as an example, the linear dependence of the thermal conductivity coefficient of the structural material of

the structure on temperature was chosen, which is often used to solve many practical problems. Software tools have been

developed, using which a numerical analysis of the behavior of temperature as a function of spatial coordinates for given

values of geometric and thermophysical parameters has been performed, and on this basis the behavior of the temperature

field has been geometrically depicted. The developed linear and nonlinear mathematical models for determining the

temperature field in spatial environments with near-surface heating make it possible to analyze their thermal stability and

on this basis it is possible to prevent overheating, which can cause failure not only of structural units and their individual

elements, but also of the electronic device as a whole.

Keywords: temperature field; isotropic plate; thermal conductivity of the material; convective heat transfer; surface

heating; thermal sensitivity of the material; heat flux; ideal thermal contact.

 

Introduction  

The temperature field in microelectronic devices is an

important factor that affects their operation and reliability. An

increase in the temperature in the device can lead to a decrease

in its efficiency, increased energy consumption, and a

reduction in its operating life. Therefore, determining the

behavior of the temperature field is an important task in

microelectronics. The temperature field in microelectronic

devices is formed as a result of the passage of electric current

through electronic components. This is due to the fact that

when current flows, electrons collide with each other and with

atoms of the material, which leads to the generation of heat.

As a result, the temperature in the device increases and a

temperature field is formed. Experimental determination of

the temperature field in microelectronic devices is performed

using various methods, in particular, such as thermal impe-

dance microscopy, thermometry, based on the photoelectric

effect, thermal microscopy, infrared microscopy, interfero-

metry. Each of these methods has its own advantages and

disadvantages and is used to determine the temperature field

under certain conditions. Observation of the behavior of the

temperature field in microelectronic devices allows not only

to determine the temperature in the device, but also to analyze

its distribution in it. In the future, this makes it possible to

develop designs of microelectronic devices with optimal

temperature operating conditions. For example, it is possible

to estimate the level of heat release in individual components

of microelectronic devices and determine the distribution of

heat from active elements to thermal areas, which prevents

overheating and damage to the device. To analyze the

temperature field in microelectronic devices, computer

simulations are widely used, which allow determining the

temperature field in devices using mathematical models of

thermal processes. As a result, it is possible to predict the

temperature modes of operation of devices and determine their
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design parameters for effective operation. One of the impor-

tant factors affecting the temperature regime in micro-

electronic devices is the location of components on the board.

In particular, components located in the center of the board can

heat up more than components located at the edges, due to the

difference in heat dissipation. Also, increasing the density of

components on the board can lead to an increase in

temperature and deterioration of device performance. An

important aspect of studying the behavior of the temperature

field in microelectronic devices is ensuring effective heat

dissipation, which ensures a decrease in temperature and

contributes to increasing their efficiency and reliability. As a

result, heat dissipation is a significant factor that leads to a

decrease in the reliability of microelectronic devices. The

relative influence of temperature is the highest (55 %)

compared to humidity (19 %), vibration (20 %) and dust (6 %)

[1]. If there is no effective heat dissipation, the device

overheats and becomes unusable. Various technologies are

used to ensure effective heat dissipation, in particular, heat

dissipation materials, fans, thermal pipes, thermoelectric

modules, etc. In addition, to ensure effective heat dissipation

in microelectronic devices, methods such as coating the

surface of components with heat dissipation materials, using

radiators, thermal pastes and heat pumps are used. An

important task is also to control the temperature regime in

microelectronic devices. For this purpose, temperature sensors

are used that measure the temperature at individual points of

the device, which makes it possible to control the level of

heating of the device and take measures to reduce the

temperature in a timely manner. Consequently, the study of

the temperature field in microelectronic devices is an impor-

tant task that allows ensuring the effective operation of the

device and increasing its reliability. The use of modern

methods of analyzing temperature regimes and technologies

for effective heat dissipation contributes to the process of

developing more efficient and reliable microelectronic

devices.

Consequently, the development of mathematical models

of the heat conduction process is an urgent problem, since as

a result of the operation of modern electronic devices, they

are subjected to thermal loads. As a result of intense heating,

significant temperature gradients arise that contribute to

overheating, which leads to the failure of both individual

elements and assemblies and the device as a whole. To

prevent this, it is necessary to establish permissible

temperature regimes for the effective operation of devices.

Without conducting expensive experiments for isotropic

media with near-surface heating, the presented research

results make it possible to achieve this.

The object of research is linear and nonlinear heat

conduction processes in isotropic spatial media that are

subjected to near-surface heating.

The subject of the study is linear and nonlinear mathe-

matical models of the heat conduction process and methods

for determining analytical and analytical-numerical solu-

tions of the corresponding boundary value problems for

isotropic spatial media with near-surface heating.

The purpose of the work is to develop linear and

nonlinear mathematical models of heat conduction for an

isotropic plate with near-surface heating, as a result of which

it will be possible to increase the accuracy of determining

temperature fields, which will further affect the effectiveness

of design methods for modern electronic devices.

To achieve this goal, it is necessary to perform the

following main research tasks:

 analyze the main literary sources in the direction of

developing linear and nonlinear mathematical models

of heat conduction;

 indicate the object of the study and its linear and

nonlinear mathematical models;

 indicate the method of linearization of the nonlinear

mathematical model;

 obtain an analytical solution of the linear and

analytical-numerical solution of the nonlinear

boundary value problems of heat conduction;

 develop algorithms and software tools for their

numerical implementation for analyzing temperature

regimes in an isotropic plate with near-surface

thermal heating.

Analysis of major studies and publications. The study of

temperature regimes in structures of both homogeneous and

heterogeneous materials is a subject of interest to many

scientists. The importance of taking these regimes into

account is important for establishing the physical and

chemical properties of materials, in particular for the case of

significant temperature fluctuations that are inherent in heat

conduction processes. Temperature changes cause

transformations of material properties, which complicates

the determination of temperature distribution, thermal loads

and thermoelastic state of structures.

In [2], a method for modeling heat transfer in porous

materials with temperature-dependent properties is con-

sidered, which is relevant for structures of complex archi-

tecture. This approach can be applied to electronic tech-

nology, since modern electronic devices with components

containing foreign semi-through inclusions face similar

challenges in the field of thermal conductivity. It is important

to develop mathematical models based on analytical and

numerical methods to predict the thermal behavior of such

devices, which will contribute to their more efficient

operation and increased reliability. The use of the modeling

method does not allow to take into account local thermal

disturbances, which often occur in devices with foreign

semi-through inclusions.

Analytical solutions are given [3] for the distribution of

temperature, displacements and stresses in layered

rectangular plates with a simple support, which are subjected

to thermomechanical loads. The properties of the materials

of the layers take into account the temperature dependence.
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The analytical solutions given do not describe local

thermomechanical loads, which limits their application in

problems with real operating conditions.

Reconstruction of the temperature field from limited

observations is important for the thermal regulation of

electronic equipment. To solve such a problem, a deep

learning method combining adaptive UNet and fine multilayer

perceptron (MLP) is given in [4]. The method allows to

transform the problem of reconstruction of the temperature

field into the problem of image-to-image regression. Adaptive

UNet reconstructs the general temperature field, while MLP

specializes in accurate prediction of zones with large

temperature gradients. The results of numerical experiments

performed using finite element modeling data show that the

maximum absolute errors of the reconstructed temperature

field are less than 1 °K. The method has also been tested for

different locations of heat sources and observation points. The

disadvantage of this approach is the need for a significant

amount of data for training the model, which is not easy to

provide in real conditions.

Thermomechanical loads of fixed columns for longi-

tudinal thermal heating with different boundary conditions

were analyzed [5]. The temperature distribution is

determined by the differential quadrature method (DQM). A

segmental model of a column with a uniform temperature

distribution is used to analyze the deflection. The critical

load and deflection mode are determined by the transfer

matrix method based on the Euler – Bernoulli theory. The

obtained results are confirmed by comparison with literature

data and FEM. The influence of temperature and material

properties on deflection and critical load is studied. The main

drawback of the presented approach is a simplified model for

determining the temperature distribution, which does not

take into account the appearance of significant temperature

gradients as a result of critical temperature loading.

In [6], the main equations and a data set of the thermal

model for predicting temperature fields and heating rates when

applying localized laser treatments to the Fe-C-Ni alloy are

presented. The model takes into account the transient

properties of the material and the relationship between

temperature and microstructure with an emphasis on the phase

dependence of thermal parameters and hysteresis in the phase

change. The model provides temperature fields that are

consistent with experimental microstructures in laser-affected

zones. The presented model can be applied to other materials

that demonstrate solid-state transformations during laser

processing. The thermophysical parameters are averaged,

which leads to errors in the obtained results.

In the article [7], a temperature field model was

developed to control the shape of a steel plate during roller

hardening. The cooling mechanism was analyzed and heat

transfer coefficients were obtained for each surface. The

model is based on the heat conduction equation, which

allows us to investigate the uniformity of plate cooling. A

plate shape control structure was developed and tested

experimentally. However, the results show certain errors in

modeling for a homogeneous medium.

In [8], the influence of control parameters on

dimensionless velocity, temperature, skin friction and local

heat transfer rate for two thermal boundary conditions:

Newtonian heating and convection was investigated. The

thermophysical properties of the fluid remain constant

throughout the study for a constant plate surface temperature.

Geometric mapping allows analyzing the behavior of the

heat flux and temperature distribution with respect to the

influence of dimensionless parameters. The studies confirm

the influence of boundary conditions on the heat transfer

rate, with Newtonian heating leading to an increase in the

rate, and convective heating leading to a decrease. This is

explained by the heating at the boundary during Newtonian

heating, which improves the transfer of thermal energy, in

contrast to convective heating. As a result, heat is dissipated

due to the moving fluid, which limits the transfer rate. The

thermophysical properties of the fluid are generally consi-

dered constant, which does not reflect the real conditions

during heat treatment. The thermophysical parameters of the

fluid may depend on temperature and other factors, and

failure to take this into account in the model may lead to

significant errors in the research results.

Thermal modeling of electronic devices is one of the

most important tools for assessing their reliability in

different operating modes. In [9], a thermal model of

electronic devices is presented, which is based on

experimental temperature measurement data obtained by an

infrared camera. These data are input for the developed

mathematical model, which is based on the finite difference

method and some known physical dependencies. The

developed model was verified by comparing the simulation

data with the experimentally obtained data. It can be used

to study the thermal behavior of the device under different

operating conditions. The temperature distribution was

determined experimentally, which introduces an error into

the developed mathematical model based on the finite

difference method. As a result, the obtained results contain

significant errors.

In the article [10], dynamic compact thermal models for

predicting the case temperature of portable devices, in

particular smartphones and laptops, are proposed based on

the convolution method. The models allow for quick

determination of the case temperature, taking into account

the stepwise response of each heat source, but are limited to

two devices and are experimental. The model contributes to

improving thermal design and determining the temperature

control strategy at the early stages of development. The

developed model is experimental and does not allow

determining the temperature regimes for more than two

portable electronic devices.

A solution for the steady-state reaction of thick cylinders

subjected to pressure and external heat flux on the inner

surface is presented [11]. The effect of the temperature
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gradient on the deformation of the medium is not taken into

account, which significantly worsens the accuracy of the

model.

A functional defect causes an increase in temperature and

thermal stresses in thermoelectric materials, which reduces the

reliability of the devices. In [12], the thermoelectric-elastic

fields around an elliptical defect in a two-dimensional

thermoelectric plate were investigated using the complex

variable method. The results show that the temperature at the

defect tip increases with increasing size and can exceed the

melting point of the material, and the stresses can exceed the

yield strength. This is important for the analysis of material

failure.

A thermal analysis of cylinders of different thicknesses

made of functionally graded materials, which are under the

influence of inhomogeneous heat fluxes concentrated on the

inner and outer layers, was performed [13], [14]. The

presented studies do not allow to analyze the thermal state of

the cylinders for local thermal perturbation.

Functionally graded materials with continuous change of

properties are useful for thermal protection and biomedical

applications. In the case of a thin coating on a substrate, the

usual mesh discretization is ineffective. In the developed

method [15] of approximate transfer, the finite difference

concept is used to transfer the boundary conditions from the

coating to the substrate. This allows numerically considering

only the substrate with convection conditions using the

hybrid finite element method. The method has been tested

for various types of coatings and can be used to develop

thermal conductivity models in electronic devices

containing individual nodes and their elements with semi-

through inclusions. The use of the finite difference concept

to transfer boundary conditions may limit the accuracy of

numerical calculations, especially for complex systems

with continuous change of properties.

In [16], the authors simplify the nonlinear three-

dimensional heat conduction problem by reducing it to the

Laplace equation using an intermediate function. A

generalized triple function is proposed and a general

solution of the Laplace equation is obtained. Three specific

problems are analyzed: it is shown that the heat flux of the

nonlinear problem coincides with the results for the linear

one, while the temperature field is different. On the flat

defect boundary, the heat flux has a singularity, and its

intensity is proportional to the root of the fourth power of

the defect width. The disadvantage of this approach is that

simplifying the nonlinear problem to the Laplace equation

can lead to a loss of accuracy in determining the

temperature field, since the nonlinearity inherent in the initial

problem is not always adequately reproduced by a linear

model.

Existing methods have been improved and new

approaches have been developed for creating mathematical

models that allow analyzing heat transfer in piecewise

homogeneous media [17]. Planar and spatial heat transfer

models are presented, in which the differential equations

contain coefficients depending on the thermophysical pro-

perties of the phases and the geometric structure. Approaches

are presented for determining analytical and analytical-

numerical solutions of boundary value problems of heat

conduction [18]. Heat transfer processes occurring in

homogeneous and layered structures with foreign inclusions

of canonical form are analyzed [19]. Linear and nonlinear

mathematical models are developed for determining the

temperature field and analyzing temperature regimes in

isotropic media with local thermal heating [20]. Analytical

solutions are obtained and algorithms for numerical

implementation of the temperature distribution in spatial

coordinates are developed. The obtained results make it

possible to analyze heat transfer processes and increase the

thermal resistance of structures.

Research results and their discussion 

The object of the study and its mathematical models.

An isotropic plate with a thickness of 2z with thermally

insulated front surfaces z = d , referred to a Cartesian

rectangular coordinate system (Oxyz), in the near-surface

region ( ){ }0 , , : , 0,x y z x H zW = £ £ d of which uniformly

distributed internal heat sources with a specific power q0

=const are concentrated, is considered. Convective heat

exchange with the environment with a constant temperature

tc=const occurs on the boundary surface of the layer

( ){ }, , : ,L x l z x z+ = < ¥ £ d according to Newton’s law,

and boundary conditions ( ){ }, , : ,L x l z x z- = - < ¥ £ d of

the second kind are set on its other surface (fig. 1).

Fig. 1. Isotropic plate under the influence

of near-surface heating

In the above structure, it is necessary to determine the

temperature distribution t(x, y) in the spatial coordinates x

and y, which is obtained by solving the heat conduction

equation

0
( , ) ( ) ( )

q
x y S H x y l-Dq = - - d -

l
(1)
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with boundary conditions
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where { is the thermal conductivity coefficient of the plate;

| is the heat transfer coefficient from the surface L+ ;

( , ) ( , ) cx y t x y tq = - ;} is the Laplace operator in the Cartesian

rectangular coordinate system; (~)S- – asymmetric unit

function;
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The integral Fourier transform along the x coordinate is

applied to equation (1) and boundary conditions (2), and as

a result, a non-homogeneous ordinary differential equation

of the second order with constant coefficients and a

discontinuous and singular right-hand side is obtained

2
02

2

2
� sin ( )

d q
H y l

dy

q
- q = - xd -

p lx
(3)

with boundary conditions
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q a q
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where ( )yq – the transform of the function  (x, y);

�1
( ) ( , )

2

i xy e x y dx
¥

-¥

q q=
p ò

; � – integral Fourier transform

parameter, 2 1i = - .

The general solution of equation (3) is defined as

0
1 2 2

2
( ) sin ( ) ( )y y q
y c e c e H sh y l S y lx -xq = + - x x - -

p lx
,

here c1 / c2 – constants of integration.

Boundary conditions (4) were used and on this basis the

constants of integration were found and a partial solution of

the problem (3)–(4) was obtained

0 ( ) 2
( ) sin ( ) ( )

( )2

q ch y l
y H sh y l S y l

P

é ùx +
q = x - x - -ê úx lxx p ë û

, (5)

where

( ) 2 2P sh l ch lx = lx x -a x .

The inverse integral Fourier transform was applied to

relation (5) and as a result the solution of problem (1)–(2)

was obtained in the following form:

0

0

cos ( ) 2 ( )
( , ) sin ( )

( )

q x ch y l sh y l
x y H S y l d

P

x x x
q x x

p x x lx

¥ é ù+ -
= - -ê ú

ë û
ò . (6)

As a result, the desired temperature field in the plate,

caused by near-surface heating, is expressed by formula (6),

from which the temperature value at any point is obtained.

An isotropic thermosensitive plate (thermophysical

parameters depend on temperature) is considered (Fig. 1).

In the given structure, it is necessary to determine the

temperature distribution t(x, y) in the spatial coordinates x

and y, which is obtained by solving the nonlinear heat

conduction equation

[ ] 0{( ) ( , ) ( ) ( )div t gradt x y q S H x y l-= - - d - , (7)

with boundary conditions
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where {(t) is the thermal conductivity coefficient of the

thermally sensitive plate.

Kirchhoff transformations are considered

( , )

0
0

1
( , ) {(~) ~

t x y

x y dJ =
l ò . (9)

Here 0l is the reference coefficient of thermal conduc-

tivity of the plate material.

Expression (9) is differentiated by the variables x and y

and as a result therelationis obtained

( ) ( )0 0( , ) ( , ) ( , ) ( , )
{ { ,{ {

x y t x y x y t x y
t t

x x y y

¶J ¶ ¶J ¶
= =

¶ ¶ ¶ ¶
,

taking into account which the original equation (7) and

boundary conditions (8) are transformed to the following

form:

0

0
( ) ( )

q
S H x y l-DJ = - - d -

l
, (10)

( , )
0

x

x y

x ®¥
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0
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¶J
=

¶
; (11)

0

( , )
( ( , ) )y l y l c

x y
t x y t

y
= =

¶J a
= -

¶ l
. (12)

As a result of such transformations linear differential

equations with partial derivatives of the second order with

respect to the function ( , )x yJ with discontinuous and

singular right-hand side, boundary conditions (11) and quasi-

linear boundary condition (12) are obtained.

The temperature t(x,h) is approximated as a function of

the spatial coordinate x by a segment-constant function in the

form

1

1 1

1

( , ) ( ) ( )
m

j j k

k

t x h t t t S x x
-

+ -
=

= + - -å , (13)

where 1 2 1(0; *); ... ;k mx x x x x -Î £ £ £ ( 1, )kt j m= are the

unknown approximate values of temperature ( , )t x h ; m is the

number of partitions of the interval (0; x*); x* is the abscissa
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value for which the temperature reaches the value tc (it is

found from the corresponding linear problem).

The integral Fourier transform in the coordinate x is

applied to equation (10) and boundary conditions (11), (12)

taking into account the relation (13) and an ordinary second-

order differential equation with constant coefficients and a

singular right-hand side is obtained

2
02

2 0

2
sin ( )

d q
H y l

dy

J
- x J = - xd -

p l x
(14)

and linear boundary conditions

0

( ) ( ) ( )
0,

2y l y l

d y d y D

dy dy=- =

J J a x
= =

pl x
, (15)

where ( ) ( )1
,

2

i xy e x y dx
¥

x

-¥

J = J
p ò

– the transform of the

function !(x,y);

1

1

1

1

( ) ( )( )j j

m
i x i x

j j

j

D i t t e e -
-

x x
+

=
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The general solution of equation (14) is obtained in the

form

0
1 2 0 2

2
( ) sin ( ) ( )y y q
y e e H sh y l S y lc cx -xJ - x x - -

p l x
= +

and using the boundary conditions (15) the integration

constants c1, c2 are determined and as a result – the solution

of the problem (14)–(15)

[ 00 2

1
( ) sin ( ( , ) 2

2
y q H D yJ x x -

pl x
=

]( , ) 2 ( ) ( )) ( , ) ( ) .y sh y l S y l D y D- x - - + a x x (16)

Here
( )

( , )
2

ch l y
D y

sh l

x +
x =

x
.

The inverse integral Fourier transform is applied to

relation (16) and the expression for the linearizing function

!(x,y) is defined in the following form:

[{ 00 2
0

1 1
sin cos ( , ) 2( , ) q H x D yx y
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x x x -
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The desired temperature field t(x, y) for the given

structure is determined using the obtained nonlinear

algebraic equation, taking into account the temperature

dependence of the thermal conductivity coefficient of the

structural materials of the plate in relations (9), (17) and by

performing certain mathematical transformations.

Partial example. The dependence of the thermal

conductivity coefficient on the temperature of the structural

material of the plate is given in the form of the relation

( )0 1 ,ktl = l -  (18)

where k is the temperature coefficient of thermal conduc-

tivity of the plate material.

Using expressions (9), (18), an expression for determining

the temperature t(x, y)

( )1
( , ) 1 1 2 ( , )t x y k x y

k
= - - J . (19)

Numerical experiment and analysis of the obtained

results. Silicon was chosen as the material of the plate. In

the temperature range [0 °C; 1127 °C], the dependence of the

thermal conductivity coefficient of silicon on temperature

was obtained by interpolation in the form

{(t)=67.9
m·degree

Wt
(1–0.0005 t

degree

1
)      (20)

which is a partial case of the relation (18).

According to formulas (6), (19), numerical calculations

of the temperature distribution in spatial coordinates in the

plate were performed for a constant value of the thermal

conductivity coefficient for silicon ({=67.9 W/(m·degree) at

a temperature t = 27 °C) and a linearly variable one (relation

(20)). The following input data values were chosen:

q0=200 W/m3; l=0.1 m; H=0.05 m; |=17.64 W/(m2·degree).

The temperature change depending on the spatial coordinates

x for y=0 (Fig. 2, a) and y for x=0.05 (Fig. 2, b) is illustrated.

The behavior of the curves shows that the temperature as a

function of the spatial coordinates is smooth and monotonic

and reaches maximum values in the region where near-

surface heat sources are concentrated. Numerical calcu-

lations were performed with an accuracy of 10–6.

The results obtained for the selected medium material

(silicon) with a linear temperature dependence of the thermal

conductivity coefficient differ from the results obtained for a

constant thermal conductivity coefficient by 2 %. Their

insignificant difference is explained by the fact that the value

of the temperature coefficient of thermal conductivity for

silicon, as shown by the relation (20), is small.

Discussion of the research results. The boundary value

problems of thermal conductivity are formulated in accor-

dance with the real physical process, which is studied in

environments with near-surface heating. Due to this, the

differential equations of thermal conductivity and boundary

conditions clearly describe the mathematical models of the

stationary process of thermal conductivity, which correspond

to the given physical model.

The theory of generalized functions was applied in the

studies, which made it possible to effectively describe near-

surface thermal heating. As a result, the differential

equations and boundary conditions contain a discontinuous

right-hand side. The given mathematical models of thermal

conductivity are simplified, but they can be improved for

more complex physical processes.
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Fig. 2. Dependence of temperature t(x,y) on spatial x (a)

and y (b) coordinates

The architecture of digital devices of modern electronic

technology contains individual nodes and their elements in

the form of structures with near-surface heating. Therefore,

the development of mathematical models of the thermal

conductivity process is an urgent task for the analysis of

thermal stability, which makes it possible to prevent their

overheating.

Scientific novelty of the obtained research results – linear

and nonlinear mathematical models of thermal conductivity for

isotropic spatial media in the form of a plate with near-surface

heating have been developed. A method for linearizing the

nonlinear mathematical model of thermal conductivity has been

presented and analytical and analytical-numerical solutions of

the corresponding linear and nonlinear boundary value

problems have been obtained in a closed form.

Practical significance of the research results – based on the

obtained analytical and analytical-numerical solutions of linear

and nonlinear boundary value problems of thermal conductivity

for isotropic thermally active spatial media with near-surface

heating, computational algorithms and software tools for their

numerical implementation have been developed for analyzing

temperature regimes in individual structural elements and

assemblies of electronic devices in order to predict their

operating modes, identify unknown parameters and increase

thermal stability, which increases their service life.

 Conclusions 

Linear and nonlinear mathematical models for

determining temperature fields have been developed, and

subsequently for analyzing temperature regimes caused by

near-surface thermal heating for structures geometrically

described by an isotropic spatial structure in the form of a

plate. As a result, the accuracy of determining temperature

fields has been increased, which significantly affects the

effectiveness of design methods for devices, individual

elements and assemblies of which are subjected to near-

surface thermal loads. Based on the results of the research,

the following main conclusions can be drawn:

1. Using linear and nonlinear mathematical models for

determining temperature fields, an analysis of temperature

regimes caused by near-surface thermal heating for

structures geometrically described by an isotropic spatial

structure in the form of a plate has been performed.

2. A method for linearizing the nonlinear boundary value

problem of thermal conductivity has been presented and its

analytical-numerical solution has been obtained in a closed

form.

3. Based on the obtained analytical and analytical-

numerical solutions for both linear and nonlinear boundary

value problems of heat transfer, computational algorithms

and software tools for their numerical implementation have

been developed for the analysis of temperature regimes in

spatial environments with near-surface heating.

4. It has been established that the thermal sensitivity of

structural materials of digital devices should be taken into

account. This approach significantly complicates the process

of solving the corresponding nonlinear boundary value

problems of thermal conductivity, but the sought solutions of

these problems more accurately describe the behavior of

temperature as a function of spatial coordinates. As a result,

it is possible to identify structural materials of devices for

which consideration of thermal sensitivity is essential, and

therefore the obtained results will be more accurate. The

insignificant influence of thermal sensitivity leads to the use

of a linear model of thermal conductivity, which simplifies

the determination of temperature fields.
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