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A METHOD FOR FORECASTING THE ENERGY GENERATION OF A SOLAR POWER PLANT 

The successful deployment of solar energy systems necessitates accurate forecasting of electricity production by

photovoltaic power stations (PPS) to ensure the stable operation of power supply networks. This requirement stems from

the need to maintain a real-time balance between electricity generation and consumption, which is achieved through the

implementation of complex hierarchical control systems governing available energy sources. In this context, short-term

forecasting of solar power generation is particularly critical, as it enables operational planning, economic dispatching, and

grid stability.

This study presents the results of developing and validating forecasting methods while examining the impact of

meteorological data structure and quality on prediction accuracy. Particular attention is paid to assessing the significance of

various meteorological parameters using statistical correlation methods, including Pearson’s linear correlation, Spearman’s

rank correlation, and Kendall’s tau, as well as the Boruta feature selection algorithm. These methods provide complementary

insights into the relevance and influence of environmental variables.

Based on the extracted significant predictors, a data-driven model using the k-Nearest Neighbors (kNN) algorithm was

implemented. The research employed two distinct meteorological datasets, both containing environmental measurements

and actual energy output data from the same photovoltaic facility. The first dataset was obtained from a weather station

installed directly at the solar plant, offering high temporal and spatial precision. The second dataset was derived from open-

access satellite-based weather sources linked to the plant’s geographic coordinates, which are often used when on-site

instrumentation is unavailable.

The results confirm that the use of on-site meteorological observations significantly improves model performance. For

the kNN algorithm, the coefficient of determination (R%) reached 0.99 using local data, compared to 0.95 with the satellite-

based set. Additionally, metrics such as MAPE, MAE, and generation forecast error (PFG) support the superiority of models

trained on accurate, high-resolution inputs. These findings highlight the importance of equipping solar energy facilities with

dedicated meteorological sensors and integrating refined data into intelligent prediction frameworks.

Keywords: solar energy forecasting, machine learning algorithms, photovoltaic power generation, feature selection,

k-Nearest Neighbors (kNN).

Introduction  

The development of alternative energy sources has

significantly transformed modern power systems, accelerating

the transition toward distributed generation. The increasing

share of photovoltaic power stations (PPS) in the overall

energy balance introduces new challenges for managing

electric grids, including autonomous microgrids, as traditional

control methods were originally designed for centralized

power generation. One of the key aspects of effectively mana-

ging distributed energy resources is the real-time balancing of

electricity generation and consumption, which is implemented

through complex hierarchical control architectures.

Accurate forecasting of solar power generation is

critically important for optimizing energy system operation,

reducing transmission losses, and improving the economic

efficiency of photovoltaic installations. The shift to

distributed generation necessitates the development of new

forecasting methods to balance energy flows and ensure the

stability of the power grid [1, 2].

Photovoltaic systems play a vital role in ensuring a stable

energy supply; however, their efficiency is highly dependent

on dynamic meteorological conditions [3]. Fluctuations in

generation output present additional challenges for auto-

mated control systems that are responsible for maintaining

an instantaneous energy balance. To enable effective

planning, prevent overloads, and avoid energy deficits or

surpluses, day-ahead forecasting of solar generation with

sufficient accuracy is essential [4]. At the same time, fore-

casting across various time horizons (from several minutes

to several days ahead) remains equally relevant [3].

This forecasting process is complicated by both the

stochastic nature of solar energy availability and the inherent

limitations of modern predictive models. Typically,

forecasting methods rely on weather data derived from public

meteorological platforms or specialized APIs (e.g., Solcast,

Meteonorm, NASA POWER), or on processed results from

local meteorological observations. Among the most critical

challenges is the quality of meteorological input data, given
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that solar power output depends on multiple interconnected

variables such like solar radiation, temperature, humidity, etc.

Which exhibits complex stochastic behavior. Additionally,

data sources differ in both spatial and temporal resolution.

The object of research is the data acquisition and

preprocessing procedures used in forecasting the output

power of photovoltaic stations.

The subject of research is the application of correlation

analysis methods for identifying the significance of input

features, as well as machine learning methods for forecasting

solar generation.

The purpose of the research is to enhance the

effectiveness of short-term forecasting of PV generation

under conditions of stochastic variation in meteorological

parameters.

To achieve this purpose, the following research

objectives were defined:

Analyze recent studies and publications on photovoltaic

generation forecasting.

 Perform exploratory data analysis and preprocessing

(e. g., anomaly detection, normalization).

 Conduct correlation analysis of meteorological

parameters to assess their significance in generation

modeling.

 Justify the application of machine learning methods

for forecasting PV operational parameters.

 Develop a software application for automating data

acquisition, preprocessing, and short-term power

forecasting.

 Evaluate the performance and effectiveness of the

developed methods and tools.

Materials and methods of research. The proposed

method for forecasting the power output of a photovoltaic

power station (PPS) comprises several key stages: data

preprocessing, feature selection, model training, and perfor-

mance evaluation.

Two meteorological datasets were used in this study. The

first dataset (hereafter referred to as Dataset I) consists of

observations from a meteorological station located within the

Radehiv solar power facility in Lviv region, Ukraine. It

includes 15-minute interval data collected from April 2024 to

January 2025. The dataset contains global horizontal

irradiance (GHI), global tilted irradiance (GTI), ambient air

temperature, panel temperature, actual power generation, and

a generation curtailment flag. The “generation curtailment”

parameter indicates whether the output was intentionally

limited by a dispatcher or due to technical issues. If the value

is “true”, those records were excluded from model training.

The second dataset (Dataset II) was obtained from the

Solcast service [5], using the geographical coordinates of the

solar facility. As indicated in [6], Solcast has been identified

as one of the most accurate sources of historical meteo-

rological data for solar forecasting. The dataset includes 23

parameters such as diffuse horizontal irradiance (DHI),

direct normal irradiance (DNI), air temperature, humidity,

atmospheric pressure, wind speed and direction, cloud cover,

and others.

To calculate solar geometric parameters based on the

site’s coordinates, a custom Python application was deve-

loped using the pvlib library. Each dataset was extended with

three derived features: solar elevation angle, solar azimuth,

and the number of minutes since the start of the day.

One of the initial steps involved exploratory data prep-

rocessing, which included data cleaning and normalization.

Time series related to power generation often contain

irrelevant values – particularly zero values during nighttime

hours – which were excluded from further analysis. Missing

data were detected and handled using statistical techniques

and machine learning-based imputation methods.

The next phase focused on identifying the most influ-

ential meteorological parameters affecting solar power

generation. For this purpose, the Boruta feature selection

algorithm [7, 8] was used in conjunction with correlation

analysis employing Pearson, Spearman, and Kendall coe-

fficients. The forecasting model was built using the k-

Nearest Neighbors (kNN) machine learning algorithm,

applied to the processed meteorological inputs.

As part of the study, a software application was deve-

loped to automate the collection, preprocessing (including

anomaly detection and normalization), and short-term

forecasting of solar power output. The application was

implemented in Python using the scikit-learn library for

machine learning and pandas for efficient data handling and

analysis.

To evaluate model performance, a statistical assessment

was carried out using several metrics: Mean Squared Error

(MSE), Mean Absolute Error (MAE), coefficient of

determination (R%), Power Forecasting Gap (PFG), and the

Kolmogorov – Smirnov (KS) test for assessing the agree-

ment between actual and predicted distributions.

Analysis of recent research and publications. Fore-

casting electricity production from photovoltaic power

stations (PPS) is a key challenge in maintaining the stability

of power systems with a high penetration of renewable

energy sources. Given the inherent variability of meteo-

rological conditions, high forecasting accuracy can only be

achieved through effective incorporation of weather-related

factors and the use of advanced prediction models.

An essential component of forecasting models is the

effective selection of informative input features. In [10], a

detailed correlation analysis was conducted between various

meteorological and astronomical parameters and solar power

generation. The authors employed the Pearson correlation

coefficient to quantify the strength of the relationships. The

highest correlations were recorded for global horizontal

irradiance (GHI) and global tilted irradiance (GTI), with

values ranging between 0.86 and 0.91, confirming their

critical role in generation modeling. The significance of

geometric variables – such as solar azimuth and elevation –

was also confirmed, with moderate to high correlation values

(0.6–0.8). The study also applied the Boruta feature selection

method to automatically identify the most relevant features,

which helps to reduce model complexity and prevent

overfitting while preserving predictive accuracy.
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Recent years have seen growing interest in combining

physical models, statistical approaches, and artificial inte-

lligence (AI)-based methods. Studies [11, 12, 13] explored a

broad spectrum of solar power forecasting models across

different geographic regions and forecasting horizons. These

works demonstrated that AI-based models significantly

outperform conventional physical and statistical methods in

predictive accuracy [14].

Recent publications [10, 15] highlight the increasing

application of artificial neural networks (ANNs), including

multilayer perceptrons (MLP), recurrent neural networks

(RNN), long short-term memory (LSTM), gated recurrent

units (GRU), and convolutional neural networks (CNN). As

shown in [7], LSTM and GRU models are particularly well-

suited for time series forecasting due to their ability to retain

long-term dependencies. Meanwhile, hybrid architectures

such as CNN-LSTM combine the spatial pattern recognition

capabilities of CNNs with the temporal modeling strength of

LSTMs, resulting in a 15–20 % improvement in forecasting

accuracy compared to individual models.

The study in [10] investigated the performance of

machine learning models including XGBoost, kNN, and

LSTM, as well as ensemble approaches such as model

stacking. The authors observed high correlations between

predicted and actual values, particularly for LSTM and

XGBoost, confirming their reliability for short- and medium-

term solar forecasting. However, other studies [16, 17]

indicate that as the forecasting horizon increases, the

prediction accuracy of both standalone and hybrid models

tends to decline.

The k-Nearest Neighbors (kNN) method has been

increasingly adopted for solar power forecasting due to its

simplicity, flexibility, and effectiveness in regression tasks

involving temporal dependencies. As shown in [18], kNN

delivers high accuracy in short-term forecasting of solar

generation based on dynamic meteorological inputs. The

authors compared kNN with models such as MLP and CNN,

concluding that despite its conceptual simplicity, kNN

achieves comparable accuracy, particularly in cases where

data volume is limited or feature structure varies over time.

One of the key advantages of kNN is its non-parametric,

instance-based nature – it does not require a separate training

phase and stores the entire dataset, allowing the model to adapt

flexibly to new input conditions without retraining. This is

particularly important in forecasting contexts where weather

conditions are highly unpredictable.

In conclusion, the literature review supports the

feasibility and appropriateness of using the kNN method to

construct a baseline model for solar generation forecasting.

The results produced by such a model can serve as a

reference point for comparative analysis with more complex

approaches such as LSTM or XGBoost.

Research results and their discussion  

Preliminary data analysis. To identify the most influential

parameters affecting electricity generation and to reveal

potential nonlinear dependencies among variables, a corre-

lation analysis was performed using the Pearson, Spearman,

and Kendall methods [19]. The analysis focused on quanti-

fying the relationship between meteorological parameters and

the actual power output of the photovoltaic power station.

Only the parameters with a non-negligible correlation

with electricity generation were retained for further analysis.

The results for the first dataset (Dataset I) are presented in

Tables 1, 2.

Table 1. Correlation analysis results for the first data set

Parameter / Correlation
method

Pearson Spearman Kendall

GHI 0.91 0.88 0.84

GTI 0.91 0.86 0.84

Panel temperature 0.81 0.71 0.57

Air temperature 0.62 0.59 0.43

Solar elevation angle 0.75 0.82 0.68

Solar azimuth angle –0.72 –0.77 –0.62

Table 2. Correlation analysis results for the second data set

Parameter /

Correlation method
Pearson Spearman Kendall

GTI 0.9 0.92 0.86

GHI 0.89 0.91 0.85

Clearsky GTI 0.83 0.89 0.8

Clearsky GHI 0.82 0.9 0.8

Clearsky Direct Normal

Irradiance (DNI)
0.78 0.89 0.8

Direct normal irradiance

(DNI)
0.78 0.75 0.64

Solar elevation angle 0.75 0.86 0.72

Clearsky Diffuse

Horizontal Irradiance (DHI)
0.67 0.86 0.71

Diffuse Horizontal

Irradiance (DHI)
0.57 0.86 0.71

Air temperature 0.44 0.46 0.33

Relative humidity –0.56 –0.53 –0.38

Solar azimuth angle –0.72 –0.82 –0.66

Based on the obtained results, the most influential para-

meters for forecasting solar power generation are related to

solar irradiance intensity, particularly Global Horizontal

Irradiance (GHI) and Global Tilted Irradiance (GTI). The

correlation coefficients for these variables range from 0.85 to

0.91, depending on the method used, confirming their

dominant role in generation modeling.The second most

significant group comprises temporal and geometric features,

including time of day, solar azimuth angle, and solar elevation

angle. These parameters exhibit moderate to strong

correlations (between 0.5 and 0.75) and have a substantial

impact on the photovoltaic output due to their role in

determining the incident angle and intensity of sunlight on the

panel surface. The third group includes air temperature and

relative humidity, which, while less influential individually,

contribute to the refinement of prediction accuracy when

incorporated into the model. Their inclusion helps capture

secondary environmental effects on system performance,

especially under variable atmospheric conditions.
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To justify the selection of the most significant variables,

the Boruta algorithm [7] was employed. Boruta is a feature

selection method built upon the Random Forest classifier

and is particularly robust to multicollinearity. It also

accounts for complex interactions between features,

thereby providing a more reliable assessment of variable

importance. The results of the Boruta-based feature

importance analysis are presented in Figs. 1 and 2, where

the vertical axis represents the relative importance of each

input variable.

Fig. 1. Importance of features for the first dataset

Fig. 2. Importance of features for the second dataset

Based on the obtained results, it can be concluded that

parameters such as GHI, GTI, air temperature, solar

elevation, and solar azimuth exert the most significant

influence on electricity generation.

In Dataset II, despite containing a larger number of

meteorological features, several variables were identified as

low-importance and can be disregarded during the training

of an optimized forecasting model, thereby simplifying the

model without compromising its accuracy.

To assess the discrepancies between analogous

parameters from the two meteorological data sources, a

statistical comparison of GHI and GTI values was performed

using cumulative distribution curves (Fig. 3). The vertical

axis represents the cumulative relative frequency, indicating

the proportion of observations that are less than or equal to

the corresponding value on the horizontal axis.

The plot reveals a noticeable asymmetry in the distribution,

with a concentration of GHI values in the mid-range between

100 and 750 W/m%, which corresponds to active daytime

periods under moderate to high solar radiation conditions. In

contrast, values below 100 W/m% (typically associated with

heavy cloud cover or twilight) and above 850 W/m% (indicating

peak irradiance) are significantly less frequent.

Meanwhile, the GTI distribution exhibits a wider range,

spanning from 0 to 1000 W/m%, suggesting greater variability

likely due to panel tilt and orientation effects (Fig. 3).
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Fig. 3. Comparison of the GHI and GTI distribution for the first and second datasets

A frequency distribution of the differences between the

GHI and GTI values from the two datasets was constructed

(Fig. 4). The resulting histogram indicates that deviations in

GHI exceeding ±150 W/m% occur in less than 0.5 % of cases

(approximately 50 observations). The average error is

skewed toward negative values, suggesting that GHI values

in one of the datasets tend to be systematically unde-

restimated compared to the other.

Fig. 4. Distribution of the GHI and GTI difference between the first and second datasets

The range of GTI deviations is slightly broader; however,

differences greater than ±250 W/m% are observed in fewer

than 4.4 % of cases (around 440 observations), indicating

generally acceptable consistency between the datasets,

despite localized discrepancies.

In contrast to the relatively similar frequency distri-

butions of GHI and GTI shown in Fig. 3, the air temperature

distributions for the two datasets (Fig. 5) revealed notable

differences. While the frequency of temperature values in the

range of [&2 °C to +16 °C] is nearly identical for both

datasets, the range of [+16 °C to +42 °C] exhibits significant

divergence.

Dataset I demonstrates greater temperature variability,

with a higher occurrence of extreme values, particularly

those exceeding 30 °C. These differences are likely

attributed to the interpolation methods used in Dataset II,

which may smooth out local fluctuations and reduce the

representation of higher temperatures.

Data preparation and preprocessing for modeling. Data

preprocessing is a critical step in constructing accurate

forecasting models for photovoltaic power generation. At

this stage, missing or irrelevant data values were eliminated,

and the effectiveness of various normalization techniques

was assessed.
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Fig. 5. Comparison of air temperature distribution for the first and second datasets

To ensure model consistency, all records with missing

values were excluded from the dataset. These gaps were

typically caused by technical failures of meteorological

stations or data transmission errors. In addition, all records

corresponding to post-sunset time intervals were removed

from the analysis, as such data are not relevant for solar

power prediction.

To reduce the impact of scale differences among features,

several data normalization approaches were tested:

 Min-Max normalization – scales the data to a [0,1]

range.

 Z-score transformation – standardizes the data to have

a mean of 0 and a standard deviation of 1, using the

formula:

scaled

X
X

m

s

-
= ,

where X – is the original value; m – is the sample mean,

s – is the standard deviation.

 Logarithmic transformation (Log) – reduces the

impact of extreme fluctuations. Since the logarithm is

undefined for negative values, a constant was added

to parameters containing negative values before

transformation.

However, the forecasting results indicated that data

normalization did not improve prediction accuracy (Table 3).

Specifically, for Dataset I, the best results were achieved

using non-normalized input values, with an n
2 score of

0.9912. In contrast, applying Min-Max, logarithmic, and Z-

score transformations led to a notable decline in accuracy,

with Z-score standardization yielding the weakest result

(o2=0.9742).

A similar trend was observed for Dataset II, where the

highest forecasting accuracy was also attained without

applying any normalization (p2=0.9489).

These findings suggest that, for the k-Nearest Neighbors

(kNN) model in the context of solar power forecasting,

preliminary data normalization is not essential and may, in

fact, degrade model performance. The most effective results

were obtained when using the original, non-normalized

feature values from Dataset I. 

Table 3. The impact of normalization on the results
of forecasting solar power generation

Dataset I

MSE MAE R2

No normalization 46621 97.4 0.9912

Min-Max 66497 127.7 0.9875

Z-score 136907 182.3 0.9742

Log 106252 141.3 0.9800

Dataset Id

No normalization 269322 326.9 0.9489

Min-Max 296428 336.7 0.9438

Z-score 286854 325.0 0.9456

Log 331139 361.7 0.9372

kNN model training. The kNN model was trained

separately for each of the two considered datasets. An

identical set of input features was selected from both datasets

for model training, including Global Horizontal Irradiance

(GHI), Global Tilted Irradiance (GTI), air temperature, solar

elevation, solar azimuth, panel tilt angle, and time. The time

feature was normalized and expressed as the number of

minutes elapsed since the beginning of the day.

Each dataset was split into a training set (90 %) and a

testing set (10 %). During training, the number of neighbors

(n_neighbors) was set to 5, and Euclidean distance was used

as the distance metric. This configuration follows both

common practice in regression tasks and empirical findings.

The choice of n_neighbors = 5 provides a practical trade-off

between local smoothing and robustness to noise, helping the

model avoid overfitting to anomalous values.

Previous studies [20, 21] have also applied the same

value for n_neighbors in photovoltaic power forecasting

tasks and reported consistent performance. Model evaluation

was conducted on the test set, and the results are presented

in Table 4.
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Table 4. Results of model performance evaluation

Metric
datasets

Dataset d Dataset dd

MSE 46621 269322

MAE 97.4 326.9

R% 0.9912 0.9489

PFG, % 4.1 12.9

KS (p-value) 0.9998 0.8532

KS (D-statistic) 0.0338 0.0619

The presented results highlight the advantages of using

meteorological data obtained directly from the on-site

weather station of the photovoltaic facility (Dataset I) for

forecasting power generation.

Discussion of research results. A comparative analysis

was carried out to evaluate the accuracy of photovoltaic

power generation forecasting using two models trained on

two distinct meteorological datasets obtained from different

sources. The evaluation results, presented in Table 5, provide

a comprehensive view of the forecasting performance and

reveal noticeable differences in prediction accuracy. These

findings are supported both by numerical metrics and by

subsequent visualizations of the model outputs.

The model trained on Dataset I demonstrated superior

predictive performance, as evidenced by lower values of

Mean Squared Error (MSE) and Mean Absolute Error

(MAE). In contrast, the corresponding error metrics for

Dataset II were notably higher, indicating lower forecast

accuracy. Additionally, the Power Forecasting Gap (PFG)

was higher for the second dataset (13.2 % vs. 14.2 %), further

confirming the discrepancy in model performance.

Table. 5. Results of the assessment of the efficiency
of generation forecasting

Metric
datasets

Dataset d Dataset dd

MSE 209271 270469

MAE 311.5 336.2

R% 0.9582 0.9459

PFG, % 13.2 14.2

KS (p-value) 0.0335 0.0126

KS (D-statistic) 0.0771 0.0859

Nevertheless, the coefficient of determination (R%)

remained high for both models – 0.9582 for Dataset I and

0.9459 for Dataset II – though it should be noted that this

metric is sensitive to the range of predicted values and may

not fully capture forecasting precision. The decrease in

accuracy observed across other metrics supports the

hypothesis that Dataset II may contain less relevant or noisier

data.

Overall, the results validate the effectiveness of the

applied methods for feature selection, correlation analysis,

and data preprocessing. In combination with the kNN

algorithm, they enabled the development of a reliable short-

term forecasting system for photovoltaic power generation.

To enhance the interpretability of model performance

under varying solar conditions, the forecasted and actual

power generation profiles were visualized separately for

periods with high and low solar irradiance (Fig. 6 and 7).

This approach allows for a clearer understanding of model

behavior in response to different meteorological scenarios.

Fig. 6. Actual and forecasted solar electricity generation during periods of high insolation

During sunny days, the model trained on Dataset I more

accurately replicates the daily generation profile, effectively

capturing both morning ramp-ups and peak outputs (Fig. 6).

This outcome confirms the model’s ability to utilize stable

correlations between generation and key meteorological

parameters under favorable conditions.
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Fig. 7. Actual and forecasted solar electricity generation during periods of low insolation

In contrast, during low-irradiance periods (Fig. 7), a

decrease in forecasting accuracy is observed for both models.

This is a common challenge caused by the stochastic impact

of cloud cover. The deviations are particularly pronounced

in the model based on Dataset II, highlighting the importance

of selecting high-quality predictive features – especially

those that account for rapid weather fluctuations.

To visually compare the forecasting accuracy obtained

using two different meteorological datasets, a scatter plot

was constructed (Fig. 8), showing the relationship between

the predicted and actual solar power generation values for

both datasets. Each point on the graph represents a 15-minute

observation, with the actual generation plotted along the x-

axis and the predicted value along the y-axis.

Fig. 8. Variance of predicted solar power generation values relative to actual data for two datasets

Data points concentrated along the line of perfect

prediction (diagonal y=x) indicate a high degree of accuracy.

The plot clearly shows that predictions generated from

Dataset I are more closely clustered around this diagonal,

reflecting a stronger correspondence with actual values. In

contrast, the predictions based on Dataset II exhibit greater

dispersion, indicating higher variability and lower accuracy

in reproducing real power outputs.

This visualization complements the preceding quan-

titative error analysis and illustrates that the model trained on

Dataset I is not only more accurate on average, but also more

consistent at the level of individual observations.
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In addition to numerical metrics, the distribution density

of absolute forecasting errors was analyzed (Fig. 9) to

visually assess the concentration of deviations between

predicted and actual power generation. The resulting plot

shows that the model built on Dataset I exhibits a narrower

peak centered near zero error, indicating greater prediction

stability and lower deviation levels.

By contrast, the model trained on Dataset II produces a

broader and more dispersed error distribution, reflecting

greater variability and more frequent large deviations. This

aspect is particularly important in practical applications, as

substantial forecasting errors can lead to imbalances in the

power system.

These findings further emphasize the importance of high-

quality feature selection and clean input data in photovoltaic

power forecasting tasks. Moreover, the results of this study

allow for the formulation of its scientific novelty and

practical relevance.

Fig. 9. Density distribution of solar power generation forecast error for two independent datasets

The scientific novelty of the research results is a novel

method for forecasting the power output of photovoltaic

systems was developed based on the k-Nearest Neighbors

(kNN) model, with an enhanced approach to feature

selection and data preprocessing, resulting in a prediction

accuracy of q2=0.96

The study further advanced the methodology for

identifying significant input features in photovoltaic power

forecasting by integrating correlation analysis techniques

(Pearson, Spearman, and Kendall) with the Boruta

algorithm. This combined approach enabled a reduction in

the number of input parameters while maintaining high

forecasting accuracy.

A comparative statistical analysis of meteorological

parameters from different data sources for the same PV site

location was also conducted, providing insight into their

variability and influence on model performance.

The practical significance of the research results is the

proposed approach enables enhanced accuracy in short-term

forecasting of photovoltaic (PV) power generation, which is

critically important for the stable operation of distributed

energy systems and for maintaining the balance between

energy production and consumption.

The kNN model with a basic configuration

(n_neighbors = 5) demonstrated high predictive accuracy

(r2=0.9582) when trained on a well-preprocessed

meteorological dataset. Its simplicity and computational

efficiency – achieved without the need for complex neural

network architectures – make it an attractive solution for

practical deployment, especially in environments with

limited computational resources.

The findings can be integrated into energy management

systems for estimating next-day PV output and can be

adapted to different geographical locations with minimal

model adjustment.

The results have practical value for PV system operators,

SCADA system developers, and weather service providers

involved in building analytical modules for power

forecasting and decision support.

Conclusions 

This study addressed the challenge of improving the

accuracy of solar power generation forecasting by

conducting a comparative analysis of two meteorological

data sources and identifying the most relevant parameters

influencing forecasting performance. A customized data

preprocessing and kNN-based modeling approach was

developed, allowing for the identification and quantification

of the influence of key meteorological variables – including

GHI, GTI, solar azimuth, solar elevation, and time – through

the application of the Boruta algorithm and correlation

analysis (Pearson, Spearman, and Kendall).

In the case of the kNN model, higher forecast accuracy

was achieved without prior normalization of the input
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features (R2=0.96), confirming the effectiveness of the

selected feature set. The study demonstrated the critical

importance of solar irradiance parameters (GHI, GTI) along

with temporal and geometric features (solar azimuth,

elevation, time), which consistently emerged as significant

across both datasets and align with findings from previous

research [9].

The results confirm the effectiveness of kNN as a simple

yet robust method for short-term solar power forecasting,

provided that relevant features are carefully selected and

input data is appropriately processed.
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