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A METHOD FOR FORECASTING THE ENERGY GENERATION OF A SOLAR POWER PLANT

The successful deployment of solar energy systems necessitates accurate forecasting of electricity production by
photovoltaic power stations (PPS) to ensure the stable operation of power supply networks. This requirement stems from
the need to maintain a real-time balance between electricity generation and consumption, which is achieved through the
implementation of complex hierarchical control systems governing available energy sources. In this context, short-term
forecasting of solar power generation is particularly critical, as it enables operational planning, economic dispatching, and
grid stability.

This study presents the results of developing and validating forecasting methods while examining the impact of
meteorological data structure and quality on prediction accuracy. Particular attention is paid to assessing the significance of
various meteorological parameters using statistical correlation methods, including Pearson’s linear correlation, Spearman’s
rank correlation, and Kendall’s tau, as well as the Boruta feature selection algorithm. These methods provide complementary
insights into the relevance and influence of environmental variables.

Based on the extracted significant predictors, a data-driven model using the k-Nearest Neighbors (kNN) algorithm was
implemented. The research employed two distinct meteorological datasets, both containing environmental measurements
and actual energy output data from the same photovoltaic facility. The first dataset was obtained from a weather station
installed directly at the solar plant, offering high temporal and spatial precision. The second dataset was derived from open-
access satellite-based weather sources linked to the plant’s geographic coordinates, which are often used when on-site
instrumentation is unavailable.

The results confirm that the use of on-site meteorological observations significantly improves model performance. For
the kNN algorithm, the coefficient of determination (R?) reached 0.99 using local data, compared to 0.95 with the satellite-
based set. Additionally, metrics such as MAPE, MAE, and generation forecast error (PFG) support the superiority of models
trained on accurate, high-resolution inputs. These findings highlight the importance of equipping solar energy facilities with
dedicated meteorological sensors and integrating refined data into intelligent prediction frameworks.

Keywords: solar energy forecasting, machine learning algorithms, photovoltaic power generation, feature selection,
k-Nearest Neighbors (kNN).

Introduction Photovoltaic systems play a vital role in ensuring a stable
energy supply; however, their efficiency is highly dependent
on dynamic meteorological conditions [3]. Fluctuations in
generation output present additional challenges for auto-
mated control systems that are responsible for maintaining
an instantaneous energy balance. To enable effective
planning, prevent overloads, and avoid energy deficits or
surpluses, day-ahead forecasting of solar generation with
sufficient accuracy is essential [4]. At the same time, fore-
casting across various time horizons (from several minutes
to several days ahead) remains equally relevant [3].

This forecasting process is complicated by both the
Accurate forecasting of solar power generation is stochastic nature of solar energy availability and the inherent

critically important for optimizing energy system operation, ~limitations —of ~modern  predictive models. = Typically,
reducing transmission losses, and improving the economic forecasting methods rely on weather data derived from public
efficiency of photovoltaic installations. The shift to meteorological platforms or specialized APIs (e.g., Solcast,
distributed generation necessitates the development of new  Meteonorm, NASA POWER), or on processed results from

forecasting methods to balance energy flows and ensure the ~ local meteorological observations. Among the most critical
stability of the power grid [1, 2]. challenges is the quality of meteorological input data, given

The development of alternative energy sources has
significantly transformed modern power systems, accelerating
the transition toward distributed generation. The increasing
share of photovoltaic power stations (PPS) in the overall
energy balance introduces new challenges for managing
electric grids, including autonomous microgrids, as traditional
control methods were originally designed for centralized
power generation. One of the key aspects of effectively mana-
ging distributed energy resources is the real-time balancing of
electricity generation and consumption, which is implemented
through complex hierarchical control architectures.

YKpaiHCbKUI }KypHan iHbopmauiliHux TexHonorii, 2025, 1. 7, Ne 1 (11) 149



that solar power output depends on multiple interconnected
variables such like solar radiation, temperature, humidity, etc.
Which exhibits complex stochastic behavior. Additionally,
data sources differ in both spatial and temporal resolution.

The object of research is the data acquisition and
preprocessing procedures used in forecasting the output
power of photovoltaic stations.

The subject of research is the application of correlation
analysis methods for identifying the significance of input
features, as well as machine learning methods for forecasting
solar generation.

The purpose of the research is to enhance the
effectiveness of short-term forecasting of PV generation
under conditions of stochastic variation in meteorological
parameters.

To achieve this purpose,
objectives were defined:

Analyze recent studies and publications on photovoltaic
generation forecasting.

e Perform exploratory data analysis and preprocessing

(e. g., anomaly detection, normalization).

e Conduct correlation analysis of meteorological
parameters to assess their significance in generation
modeling.

e Justify the application of machine learning methods
for forecasting PV operational parameters.

e Develop a software application for automating data
acquisition, preprocessing, and short-term power
forecasting.

e Evaluate the performance and effectiveness of the
developed methods and tools.

Materials and methods of research. The proposed
method for forecasting the power output of a photovoltaic
power station (PPS) comprises several key stages: data
preprocessing, feature selection, model training, and perfor-
mance evaluation.

Two meteorological datasets were used in this study. The
first dataset (hereafter referred to as Dataset I) consists of
observations from a meteorological station located within the
Radehiv solar power facility in Lviv region, Ukraine. It
includes 15-minute interval data collected from April 2024 to
January 2025. The dataset contains global horizontal
irradiance (GHI), global tilted irradiance (GTI), ambient air
temperature, panel temperature, actual power generation, and
a generation curtailment flag. The “generation curtailment”
parameter indicates whether the output was intentionally
limited by a dispatcher or due to technical issues. If the value
is “true”, those records were excluded from model training.

The second dataset (Dataset IT) was obtained from the
Solcast service [5], using the geographical coordinates of the
solar facility. As indicated in [6], Solcast has been identified
as one of the most accurate sources of historical meteo-
rological data for solar forecasting. The dataset includes 23
parameters such as diffuse horizontal irradiance (DHI),
direct normal irradiance (DNI), air temperature, humidity,
atmospheric pressure, wind speed and direction, cloud cover,
and others.

the following research

To calculate solar geometric parameters based on the
site’s coordinates, a custom Python application was deve-
loped using the pvlib library. Each dataset was extended with
three derived features: solar elevation angle, solar azimuth,
and the number of minutes since the start of the day.

One of the initial steps involved exploratory data prep-
rocessing, which included data cleaning and normalization.
Time series related to power generation often contain
irrelevant values — particularly zero values during nighttime
hours — which were excluded from further analysis. Missing
data were detected and handled using statistical techniques
and machine learning-based imputation methods.

The next phase focused on identifying the most influ-
ential meteorological parameters affecting solar power
generation. For this purpose, the Boruta feature selection
algorithm [7, 8] was used in conjunction with correlation
analysis employing Pearson, Spearman, and Kendall coe-
fficients. The forecasting model was built using the k-
Nearest Neighbors (kKNN) machine learning algorithm,
applied to the processed meteorological inputs.

As part of the study, a software application was deve-
loped to automate the collection, preprocessing (including
anomaly detection and normalization), and short-term
forecasting of solar power output. The application was
implemented in Python using the scikit-learn library for
machine learning and pandas for efficient data handling and
analysis.

To evaluate model performance, a statistical assessment
was carried out using several metrics: Mean Squared Error
(MSE), Mean Absolute Error (MAE), coefficient of
determination (R?), Power Forecasting Gap (PFG), and the
Kolmogorov — Smirnov (KS) test for assessing the agree-
ment between actual and predicted distributions.

Analysis of recent research and publications. Fore-
casting electricity production from photovoltaic power
stations (PPS) is a key challenge in maintaining the stability
of power systems with a high penetration of renewable
energy sources. Given the inherent variability of meteo-
rological conditions, high forecasting accuracy can only be
achieved through effective incorporation of weather-related
factors and the use of advanced prediction models.

An essential component of forecasting models is the
effective selection of informative input features. In [10], a
detailed correlation analysis was conducted between various
meteorological and astronomical parameters and solar power
generation. The authors employed the Pearson correlation
coefficient to quantify the strength of the relationships. The
highest correlations were recorded for global horizontal
irradiance (GHI) and global tilted irradiance (GTI), with
values ranging between 0.86 and 0.91, confirming their
critical role in generation modeling. The significance of
geometric variables — such as solar azimuth and elevation —
was also confirmed, with moderate to high correlation values
(0.6-0.8). The study also applied the Boruta feature selection
method to automatically identify the most relevant features,
which helps to reduce model complexity and prevent
overfitting while preserving predictive accuracy.
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Recent years have seen growing interest in combining
physical models, statistical approaches, and artificial inte-
lligence (Al)-based methods. Studies [11, 12, 13] explored a
broad spectrum of solar power forecasting models across
different geographic regions and forecasting horizons. These
works demonstrated that Al-based models significantly
outperform conventional physical and statistical methods in
predictive accuracy [14].

Recent publications [10, 15] highlight the increasing
application of artificial neural networks (ANNs), including
multilayer perceptrons (MLP), recurrent neural networks
(RNN), long short-term memory (LSTM), gated recurrent
units (GRU), and convolutional neural networks (CNN). As
shown in [7], LSTM and GRU models are particularly well-
suited for time series forecasting due to their ability to retain
long-term dependencies. Meanwhile, hybrid architectures
such as CNN-LSTM combine the spatial pattern recognition
capabilities of CNNs with the temporal modeling strength of
LSTMs, resulting in a 15-20 % improvement in forecasting
accuracy compared to individual models.

The study in [10] investigated the performance of
machine learning models including XGBoost, kNN, and
LSTM, as well as ensemble approaches such as model
stacking. The authors observed high correlations between
predicted and actual values, particularly for LSTM and
XGBoost, confirming their reliability for short- and medium-
term solar forecasting. However, other studies [16, 17]
indicate that as the forecasting horizon increases, the
prediction accuracy of both standalone and hybrid models
tends to decline.

The k-Nearest Neighbors (kNN) method has been
increasingly adopted for solar power forecasting due to its
simplicity, flexibility, and effectiveness in regression tasks
involving temporal dependencies. As shown in [18], kNN
delivers high accuracy in short-term forecasting of solar
generation based on dynamic meteorological inputs. The
authors compared kNN with models such as MLP and CNN,
concluding that despite its conceptual simplicity, kNN
achieves comparable accuracy, particularly in cases where
data volume is limited or feature structure varies over time.
One of the key advantages of kNN is its non-parametric,
instance-based nature — it does not require a separate training
phase and stores the entire dataset, allowing the model to adapt
flexibly to new input conditions without retraining. This is
particularly important in forecasting contexts where weather
conditions are highly unpredictable.

In conclusion, the literature review supports the
feasibility and appropriateness of using the kNN method to
construct a baseline model for solar generation forecasting.
The results produced by such a model can serve as a
reference point for comparative analysis with more complex
approaches such as LSTM or XGBoost.

Research results and their discussion

Preliminary data analysis. To identify the most influential
parameters affecting electricity generation and to reveal

potential nonlinear dependencies among variables, a corre-
lation analysis was performed using the Pearson, Spearman,
and Kendall methods [19]. The analysis focused on quanti-
fying the relationship between meteorological parameters and
the actual power output of the photovoltaic power station.

Only the parameters with a non-negligible correlation
with electricity generation were retained for further analysis.
The results for the first dataset (Dataset I) are presented in
Tables 1, 2.

Table 1. Correlation analysis results for the first data set

Parameter / Correlation Pearson | Spearman | Kendall
method

GHI 0.91 0.88 0.84
GTI 0.91 0.86 0.84
Panel temperature 0.81 0.71 0.57
Air temperature 0.62 0.59 0.43
Solar elevation angle 0.75 0.82 0.68
Solar azimuth angle —0.72 -0.77 —0.62

Table 2. Correlation analysis results for the second data set

Parameter /
Correlation method Pearson | Spearman | Kendall
GTI 0.9 0.92 0.86
GHI 0.89 0.91 0.85
Clearsky GTI 0.83 0.89 0.8
Clearsky GHI 0.82 0.9 0.8
Clearsky Direct Normal
Irradiance (DNI) 0.78 0.89 0.8
Direct normal irradiance
(DNI) 0.78 0.75 0.64
Solar elevation angle 0.75 0.86 0.72
Clearsky Diffuse
Horizontal Irradiance (DHI) 0.67 0.86 0.71
Diffuse Horizontal
Irradiance (DHI) 0.57 0-86 0.71
Air temperature 0.44 0.46 0.33
Relative humidity -0.56 —0.53 —0.38
Solar azimuth angle -0.72 —0.82 —0.66

Based on the obtained results, the most influential para-
meters for forecasting solar power generation are related to
solar irradiance intensity, particularly Global Horizontal
Irradiance (GHI) and Global Tilted Irradiance (GTI). The
correlation coefficients for these variables range from 0.85 to
0.91, depending on the method used, confirming their
dominant role in generation modeling.The second most
significant group comprises temporal and geometric features,
including time of day, solar azimuth angle, and solar elevation
angle. These parameters exhibit moderate to strong
correlations (between 0.5 and 0.75) and have a substantial
impact on the photovoltaic output due to their role in
determining the incident angle and intensity of sunlight on the
panel surface. The third group includes air temperature and
relative humidity, which, while less influential individually,
contribute to the refinement of prediction accuracy when
incorporated into the model. Their inclusion helps capture
secondary environmental effects on system performance,
especially under variable atmospheric conditions.
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To justify the selection of the most significant variables,
the Boruta algorithm [7] was employed. Boruta is a feature
selection method built upon the Random Forest classifier
and is particularly robust to multicollinearity. It also
accounts for complex interactions between features,

thereby providing a more reliable assessment of variable
importance. The results of the Boruta-based feature
importance analysis are presented in Figs. 1 and 2, where
the vertical axis represents the relative importance of each
input variable.
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Fig. 2. Importance of features for the second dataset

Based on the obtained results, it can be concluded that
parameters such as GHI, GTI, air temperature, solar
elevation, and solar azimuth exert the most significant
influence on electricity generation.

In Dataset II, despite containing a larger number of
meteorological features, several variables were identified as
low-importance and can be disregarded during the training
of an optimized forecasting model, thereby simplifying the
model without compromising its accuracy.

To assess the discrepancies between analogous
parameters from the two meteorological data sources, a
statistical comparison of GHI and GTI values was performed
using cumulative distribution curves (Fig. 3). The vertical

axis represents the cumulative relative frequency, indicating
the proportion of observations that are less than or equal to
the corresponding value on the horizontal axis.

The plot reveals a noticeable asymmetry in the distribution,
with a concentration of GHI values in the mid-range between
100 and 750 W/m? which corresponds to active daytime
periods under moderate to high solar radiation conditions. In
contrast, values below 100 W/m? (typically associated with
heavy cloud cover or twilight) and above 850 W/m? (indicating
peak irradiance) are significantly less frequent.

Meanwhile, the GTI distribution exhibits a wider range,
spanning from 0 to 1000 W/m?, suggesting greater variability
likely due to panel tilt and orientation effects (Fig. 3).
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Fig. 3. Comparison of the GHI and GTI distribution for the first and second datasets

A frequency distribution of the differences between the
GHI and GTI values from the two datasets was constructed
(Fig. 4). The resulting histogram indicates that deviations in
GHI exceeding =150 W/m? occur in less than 0.5 % of cases

0,8
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0,2

(approximately 50 observations). The average error is
skewed toward negative values, suggesting that GHI values
in one of the datasets tend to be systematically unde-
restimated compared to the other.
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Fig. 4. Distribution of the GHI and GTI difference between the first and second datasets

The range of GTI deviations is slightly broader; however,
differences greater than £250 W/m? are observed in fewer
than 4.4 % of cases (around 440 observations), indicating
generally acceptable consistency between the datasets,
despite localized discrepancies.

In contrast to the relatively similar frequency distri-
butions of GHI and GTI shown in Fig. 3, the air temperature
distributions for the two datasets (Fig. 5) revealed notable
differences. While the frequency of temperature values in the
range of [-2°C to +16 °C] is nearly identical for both
datasets, the range of [+16 °C to +42 °C] exhibits significant
divergence.

Dataset I demonstrates greater temperature variability,
with a higher occurrence of extreme values, particularly
those exceeding 30 °C. These differences are likely
attributed to the interpolation methods used in Dataset II,
which may smooth out local fluctuations and reduce the
representation of higher temperatures.

Data preparation and preprocessing for modeling. Data
preprocessing is a critical step in constructing accurate
forecasting models for photovoltaic power generation. At
this stage, missing or irrelevant data values were eliminated,
and the effectiveness of various normalization techniques
was assessed.
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To ensure model consistency, all records with missing
values were excluded from the dataset. These gaps were
typically caused by technical failures of meteorological
stations or data transmission errors. In addition, all records
corresponding to post-sunset time intervals were removed
from the analysis, as such data are not relevant for solar
power prediction.

To reduce the impact of scale differences among features,
several data normalization approaches were tested:

e Min-Max normalization — scales the data to a [0,1]

range.

e Z-score transformation — standardizes the data to have
a mean of 0 and a standard deviation of 1, using the
formula:

X v =

scaled = 5,
where X — is the original value; p — is the sample mean,
o — is the standard deviation.

e Logarithmic transformation (Log) — reduces the
impact of extreme fluctuations. Since the logarithm is
undefined for negative values, a constant was added
to parameters containing negative values before
transformation.

However, the forecasting results indicated that data
normalization did not improve prediction accuracy (Table 3).
Specifically, for Dataset I, the best results were achieved
using non-normalized input values, with an R? score of
0.9912. In contrast, applying Min-Max, logarithmic, and Z-
score transformations led to a notable decline in accuracy,
with Z-score standardization yielding the weakest result
(R?=0.9742).

A similar trend was observed for Dataset II, where the
highest forecasting accuracy was also attained without
applying any normalization (R?=0.9489).

These findings suggest that, for the k-Nearest Neighbors
(kNN) model in the context of solar power forecasting,
preliminary data normalization is not essential and may, in

fact, degrade model performance. The most effective results
were obtained when using the original, non-normalized
feature values from Dataset 1.

Table 3. The impact of normalization on the results
of forecasting solar power generation

Dataset [
MSE MAE R?
No normalization 46621 97.4 0.9912
Min-Max 66497 127.7 0.9875
Z-score 136907 182.3 0.9742
Log 106252 141.3 0.9800
Dataset I1
No normalization 269322 326.9 0.9489
Min-Max 296428 336.7 0.9438
Z-score 286854 325.0 0.9456
Log 331139 361.7 0.9372

kNN model training. The kNN model was trained
separately for each of the two considered datasets. An
identical set of input features was selected from both datasets
for model training, including Global Horizontal Irradiance
(GHI), Global Tilted Irradiance (GTI), air temperature, solar
elevation, solar azimuth, panel tilt angle, and time. The time
feature was normalized and expressed as the number of
minutes elapsed since the beginning of the day.

Each dataset was split into a training set (90 %) and a
testing set (10 %). During training, the number of neighbors
(n_neighbors) was set to 5, and Euclidean distance was used
as the distance metric. This configuration follows both
common practice in regression tasks and empirical findings.
The choice of n_neighbors = 5 provides a practical trade-off
between local smoothing and robustness to noise, helping the
model avoid overfitting to anomalous values.

Previous studies [20, 21] have also applied the same
value for n_neighbors in photovoltaic power forecasting
tasks and reported consistent performance. Model evaluation
was conducted on the test set, and the results are presented
in Table 4.
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Table 4. Results of model performance evaluation

Metric datasets
Dataset I Dataset I1

MSE 46621 269322
MAE 97.4 326.9
R? 0.9912 0.9489

PFG, % 4.1 12.9
KS (p-value) 0.9998 0.8532
KS (D-statistic) 0.0338 0.0619

Table. 5. Results of the assessment of the efficiency
of generation forecasting

The presented results highlight the advantages of using
meteorological data obtained directly from the on-site
weather station of the photovoltaic facility (Dataset I) for
forecasting power generation.

Discussion of research results. A comparative analysis
was carried out to evaluate the accuracy of photovoltaic
power generation forecasting using two models trained on
two distinct meteorological datasets obtained from different
sources. The evaluation results, presented in Table 5, provide
a comprehensive view of the forecasting performance and
reveal noticeable differences in prediction accuracy. These
findings are supported both by numerical metrics and by
subsequent visualizations of the model outputs.

The model trained on Dataset I demonstrated superior
predictive performance, as evidenced by lower values of
Mean Squared Error (MSE) and Mean Absolute Error
(MAE). In contrast, the corresponding error metrics for
Dataset I were notably higher, indicating lower forecast
accuracy. Additionally, the Power Forecasting Gap (PFG)
was higher for the second dataset (13.2 % vs. 14.2 %), further
confirming the discrepancy in model performance.
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Metric datasets
Dataset I Dataset I1
MSE 209271 270469
MAE 311.5 336.2
R? 0.9582 0.9459
PFG, % 13.2 14.2
KS (p-value) 0.0335 0.0126
KS (D-statistic) 0.0771 0.0859

Nevertheless, the coefficient of determination (R?)
remained high for both models — 0.9582 for Dataset I and
0.9459 for Dataset II — though it should be noted that this
metric is sensitive to the range of predicted values and may
not fully capture forecasting precision. The decrease in
accuracy observed across other metrics supports the
hypothesis that Dataset II may contain less relevant or noisier
data.

Overall, the results validate the effectiveness of the
applied methods for feature selection, correlation analysis,
and data preprocessing. In combination with the kNN
algorithm, they enabled the development of a reliable short-
term forecasting system for photovoltaic power generation.

To enhance the interpretability of model performance
under varying solar conditions, the forecasted and actual
power generation profiles were visualized separately for
periods with high and low solar irradiance (Fig. 6 and 7).
This approach allows for a clearer understanding of model
behavior in response to different meteorological scenarios.

=
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451 471 491 511 531 551

Observation number

— Generation
——————— Generation forecast (2nd data sef)

— — — Generation forecast (1st data set)

Fig. 6. Actual and forecasted solar electricity generation during periods of high insolation

During sunny days, the model trained on Dataset I more
accurately replicates the daily generation profile, effectively
capturing both morning ramp-ups and peak outputs (Fig. 6).

This outcome confirms the model’s ability to utilize stable
correlations between generation and key meteorological
parameters under favorable conditions.
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Fig. 7. Actual and forecasted solar electricity generation during periods of low insolation

In contrast, during low-irradiance periods (Fig. 7), a
decrease in forecasting accuracy is observed for both models.
This is a common challenge caused by the stochastic impact
of cloud cover. The deviations are particularly pronounced
in the model based on Dataset II, highlighting the importance
of selecting high-quality predictive features — especially
those that account for rapid weather fluctuations.
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To visually compare the forecasting accuracy obtained
using two different meteorological datasets, a scatter plot
was constructed (Fig. 8), showing the relationship between
the predicted and actual solar power generation values for
both datasets. Each point on the graph represents a 15-minute
observation, with the actual generation plotted along the x-
axis and the predicted value along the y-axis.
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Fig. 8. Variance of predicted solar power generation values relative to actual data for two datasets

Data points concentrated along the line of perfect
prediction (diagonal y=x) indicate a high degree of accuracy.
The plot clearly shows that predictions generated from
Dataset I are more closely clustered around this diagonal,
reflecting a stronger correspondence with actual values. In
contrast, the predictions based on Dataset Il exhibit greater

dispersion, indicating higher variability and lower accuracy
in reproducing real power outputs.

This visualization complements the preceding quan-
titative error analysis and illustrates that the model trained on
Dataset I is not only more accurate on average, but also more
consistent at the level of individual observations.
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In addition to numerical metrics, the distribution density
of absolute forecasting errors was analyzed (Fig. 9) to
visually assess the concentration of deviations between
predicted and actual power generation. The resulting plot
shows that the model built on Dataset I exhibits a narrower
peak centered near zero error, indicating greater prediction
stability and lower deviation levels.

By contrast, the model trained on Dataset II produces a
broader and more dispersed error distribution, reflecting
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0.015

0.01
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0 =

greater variability and more frequent large deviations. This
aspect is particularly important in practical applications, as
substantial forecasting errors can lead to imbalances in the
power system.

These findings further emphasize the importance of high-
quality feature selection and clean input data in photovoltaic
power forecasting tasks. Moreover, the results of this study
allow for the formulation of its scientific novelty and
practical relevance.
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Fig. 9. Density distribution of solar power generation forecast error for two independent datasets

The scientific novelty of the research results is a novel
method for forecasting the power output of photovoltaic
systems was developed based on the k-Nearest Neighbors
(kNN) model, with an enhanced approach to feature
selection and data preprocessing, resulting in a prediction
accuracy of R*=0.96

The study further advanced the methodology for
identifying significant input features in photovoltaic power
forecasting by integrating correlation analysis techniques
(Pearson, Spearman, and Kendall) with the Boruta
algorithm. This combined approach enabled a reduction in
the number of input parameters while maintaining high
forecasting accuracy.

A comparative statistical analysis of meteorological
parameters from different data sources for the same PV site
location was also conducted, providing insight into their
variability and influence on model performance.

The practical significance of the research results is the
proposed approach enables enhanced accuracy in short-term
forecasting of photovoltaic (PV) power generation, which is
critically important for the stable operation of distributed
energy systems and for maintaining the balance between
energy production and consumption.

The kNN model with a basic configuration
(n_neighbors = 5) demonstrated high predictive accuracy
(R*=0.9582) when trained on a well-preprocessed
meteorological dataset. Its simplicity and computational

efficiency — achieved without the need for complex neural
network architectures — make it an attractive solution for
practical deployment, especially in environments with
limited computational resources.

The findings can be integrated into energy management
systems for estimating next-day PV output and can be
adapted to different geographical locations with minimal
model adjustment.

The results have practical value for PV system operators,
SCADA system developers, and weather service providers
involved in building analytical modules for power
forecasting and decision support.

Conclusions

This study addressed the challenge of improving the
accuracy of solar power generation forecasting by
conducting a comparative analysis of two meteorological
data sources and identifying the most relevant parameters
influencing forecasting performance. A customized data
preprocessing and kNN-based modeling approach was
developed, allowing for the identification and quantification
of the influence of key meteorological variables — including
GHI, GTI, solar azimuth, solar elevation, and time — through
the application of the Boruta algorithm and correlation
analysis (Pearson, Spearman, and Kendall).

In the case of the kNN model, higher forecast accuracy
was achieved without prior normalization of the input
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features (R*=0.96), confirming the effectiveness of the
selected feature set. The study demonstrated the critical
importance of solar irradiance parameters (GHI, GTI) along
with temporal and geometric features (solar azimuth,
elevation, time), which consistently emerged as significant
across both datasets and align with findings from previous
research [9].

The results confirm the effectiveness of kNN as a simple
yet robust method for short-term solar power forecasting,
provided that relevant features are carefully selected and
input data is appropriately processed.
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Hayionanonuii ynisepcumem “Jlvsiscora nonimexuika”, JIvgie, Ykpaina

METO/, TIPOTHO3YBAHHSA OBCATIB TEHEPALIl EHEPTII
COHAYHOIO EJIEKTPOCTAHIIEKO

VYceninHe BUKOPUCTAHHS COHSYHOT CHEPreTHKH 3YMOBIIOE HEOOXIJIHICTH TOYHOTO MPOTHO3YBaHHS BHPOOHHIITBA
enekrpoeHeprii constunumu enekrpoctaniisivu (CEC) mwist ctabinpHOro (yHKIIOHYBaHHS CHCTEM eleKTpornocTadanHs. [e
OB’ s13aHO 3 HEOOXITHICTIO MiATPUMAHHS MHUTTEBOTO OajlaHCy BUPOOHUIITBA 1 CHOXHMBAHHS CJICKTPHUYHOI CHEpril, KU
3a0e3MeUyeThCs peasi3allielo CKIaJHUX I€EpapXiyHUX CHCTEM YIpAaBIiHHA HasSBHUMH jpKepenamu eHeprii. OcoliauBo
aKTyaJbHa MOXIIMBICTh KOPOTKOYACHOTO NMPOrHo3yBaHHs BUpoOHHUNTBa eHeprii CEC. YV cTarTi HaBeACHO pe3yibTaTh
PO3pOOIIEHHSI METO/IIB TIPOTHO3YBAHHS Ta JIOCIIHKEHHS 1X e()eKTHBHOCTI, @ TAKOXK BIUIMB CTPYKTYPH 1 IKOCTI METEOAaHUX
Ha Pe3yNbTaTH MPOTHO3yBaHHs. /I OLIHIOBAHHS BaXKJIMBOCTI METCOPOJIOTIYHHUX MapaMeTPiB BUKOPUCTAHO CTATHCTHYHI
metoau kopesuiit [Tipcona, Cripmena Ta Kenpana ta meton bopyra (Boruta). Ha ocHOBI BU3Hau€HHMX 3HAYYIIMX 3MIHHUX
moOyJJOBaHO MOJIE/Ib 3 BUKOPUCTAHHSAM Merony k-HaiOmmkuux cycigiB (KNN). JlocmipkeHHS BUKOHAHO JUIs JIBOX
HE3aJEeXKHUX HaOOpIB METEOPOJIOTiUHUX [AHUX, L0 MICTATh iHGOpMALi0 NpOo 3MiHY NapaMeTpiB HABKOJIHMIIHBOIO
cepenosuina ta pakruuny renepauito eneprii CEC. Iepmmii HaOip ckiiafaeTbes 13 JaHUX, OTPUMAHMUX BiJl METEOCTAHIIT
00’exTa reHepauii. JIpyruif — 3 gaHUX BIIKPUTOrO JpKeperna A reorpadidyHuX KOOpIUHAT 00 ekTa reHepaunii. Oxepaxani
PE3yJIbTAaTH CBiUaTh, 110 BUKOPUCTAHHS METEOJAaHHX 13 METEOPOJIOriuHOI cTaHLii 00’ eKkTa reHepalil Ta X OIpaloBaHHs
PO3pOOIIEHUM METOIOM JIA€ 3MOTY IiIBUIIUTH TOYHICTh HaBuaHHs Mojeni KNN. 3HaueHHs koediieHTa aerepminaiii (R?)
JUTSL TIEPIIOTO 1 Jipyroro HaOopiB Aanux oaHakoBi — 0,99 1 0,95. A e, BIAMOBIIHO, MiJBUINY€E TOYHICTH MPOTHO3YBAHHS
notyxHocTi renepaiiii CEC, o0rpyHTOBY€E HOIIIBHICTE BBEACHHS 0 CTPYKTYpH 00’€KTIB TeHepallii cydyacHHX 3aco0iB
BUMIPIOBAaHHS Ta PEECTPALliT METEOPOJIOTIYHUX MapaMeTpiB.

Knwowuoei cnosa: TpoTHO3yBaHHS, MAaIIMHHE HABYAaHHS, COHSYHA EJIEKTPOCTAHINS, aHaNi3 KOPEeJsLii, MeTo[
k-HaHOMIKIMX CYCITIB.
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