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SIMULATION-BASED EVALUATION OF HYPERBOLIC  

SECANT POTENTIAL FIELD FOR REAL-TIME OBSTACLE AVOIDANCE 

Obstacle avoidance is a fundamental capability for autonomous mobile robots, ensuring safe navigation in dynamic and

unstructured environments. This paper presents a novel approach to real-time obstacle avoidance based on an Artificial

Potential Field Method (APFM) utilizing a hyperbolic secant function. A mathematical formulation of the proposed model

is developed and analyzed. To validate the approach, a simulation framework was implemented using ROS 2, the Gazebo

simulator, and the TurtleBot3 Burger platform. Extensive simulations were conducted, generating LiDAR sample plots

alongside corresponding repulsive, attractive, and total potential field distributions, demonstrating the correctness and

effectiveness of the proposed method. Additionally, RViz visualization confirmed the smoothness of the robot’s path and

continuous heading adjustments over 28 navigation steps. To assess computational efficiency, execution times for evaluating

Gaussian and hyperbolic secant functions were measured using C++ implementations with varying compiler optimization

flags. The results indicate that the computational cost of the hyperbolic secant function is approximately 2–3 % lower than

that of the Gaussian, a negligible difference in practice. The findings support the suitability of the hyperbolic secant-based

APFM for real-time obstacle avoidance in robotic applications. The hyperbolic secant function offers a sharper decay near

the origin compared to the Gaussian distribution, resulting in stronger immediate repulsive forces when the robot is close to

an obstacle and rapidly diminishing influence at greater distances. This property provides improved responsiveness and local

obstacle avoidance without introducing excessive long-range effects that could unnecessarily distort the global path.

Additionally, the hyperbolic secant’s symmetric, heavy-tailed nature maintains smoothness in the potential field, ensuring

stable and predictable robot motion while enabling faster, more efficient trajectory adjustments in dynamic environments.

Keywords: artificial potential field method, cyber-physical system, edge computing, information technologies, IoT

concepts, obstacle avoidance, robotics.

Introduction  

In the field of robotics, autonomous mobile robots

represent a major area of research and development. These

sophisticated systems are engineered to navigate inde-

pendently and to make context-specific decisions in real

time. This capability allows them to operate without human

intervention, dynamically adapting to their environments

based on continuous sensory input. Autonomous mobile

robots are utilized in a broad range of applications. Examples

include service robots in hospitality settings, such as waiter

robots that deliver food and beverages, as well as transport

robots employed in industrial environments to efficiently

move goods. A particularly notable example is autonomous

vehicles, commonly known as self-driving cars. These sys-

tems integrate advanced sensor technologies and compu-

tational algorithms to interpret their surroundings, enabling

them to navigate complex traffic environments and reach

their destinations without human control.

Such examples highlight the extensive applicability of

autonomous mobile robots and underscore their trans-

formative potential across multiple sectors, including hos-

pitality, logistics, and the automotive industry. The ongoing

development and refinement of these systems remain a

central focus of robotics research, with continuous efforts

aimed at enhancing their capabilities and expanding their

range of applications.

One of the core software components in autonomous

mobile robots is the set of algorithms dedicated to path

planning and obstacle avoidance. These algorithms are

fundamental to enabling critical functionalities such as

autonomous parking, evasive maneuvers during emergency

situations, and, ultimately, full autonomy in navigation and

control.

Path planning is generally classified into two main cate-

gories: global and local. Global path planning relies on data

from Geographic Information Systems (GIS) in combination

with global localization methods. This approach necessitates

that the robot possesses a comprehensive, large-scale

understanding of its environment, enabling navigation across

extended distances, such as traversing urban areas or

intercity routes.

In contrast, local path planning requires only the robot’s

relative position and real-time perception of obstacles within

its immediate surroundings. This type of planning focuses on

short-range navigation and dynamic interaction with the
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environment, such as avoiding pedestrians on a sidewalk or

maneuvering around other vehicles in traffic. Local path

planning is essential for ensuring safe and adaptive behavior

in unpredictable and rapidly changing environments.

A diverse array of algorithms has been developed to

address the challenges associated with both global and local

path planning. Each algorithm offers specific advantages and

exhibits particular limitations, and the choice of an

appropriate algorithm can significantly impact the effi-

ciency, reliability, and safety of autonomous navigation.

Comprehensive surveys detailing these path planning

techniques, their underlying methodologies, and their

application contexts are available in the existing literature [1,

2, 3, 4].

Obstacle detection and avoidance are critical components

of local path planning algorithms, playing an essential role

in ensuring the safety of both the autonomous system and its

surrounding environment. This field has been the subject of

extensive research over several decades, resulting in the

development of numerous methodological approaches.

Many of these techniques have proven effective and have

been successfully deployed in real-world applications.

Effective collision avoidance requires that a robot not

only detect obstacles but also dynamically recalculate its

path and adjust its trajectory in real time. Real-time

responsiveness is crucial for navigating safely and efficiently

through complex and dynamic environments.

The process of obstacle avoidance begins with the robot

detecting potential obstacles using its onboard sensors. Upon

identification of an obstacle, the system must promptly

generate an alternative trajectory that enables safe passage

around the object. This new path must be computed with

minimal latency to allow real-time adjustment of the robot’s

motion, thereby preventing collisions and maintaining a

smooth navigation trajectory.

Moreover, the robot must be capable of adapting to

dynamic changes in its environment. For instance, if a new

obstacle suddenly appears along its path, the robot must

rapidly detect the obstruction, compute an alternative route,

and adjust its trajectory in real time to ensure safe and

continuous navigation.

The fundamental concept of obstacle avoidance involves

moving toward the target point while dynamically adjusting

the trajectory whenever obstacles are detected along the

current path. A graphical representation of the path planning

and obstacle avoidance algorithm is presented in Fig. 1.

The sequence of obstacle detection and trajectory

adjustment constitutes an iterative process. The robot

continuously monitors its environment for potential

obstacles and performs real-time path corrections as

necessary until it successfully reaches the designated target

location. This iterative procedure highlights the dynamic

nature of autonomous navigation and emphasizes the critical

importance of robust obstacle detection and avoidance

mechanisms in ensuring the safe and efficient operation of

mobile robotic systems.

Fig. 1. Obstacle avoidance problem consists

of two subtasks: computing motion control

that avoids collisions with the obstacles gathered

by the sensors and driving the robot towards

target location

Object of research: The study focuses on real-time

obstacle avoidance algorithms for autonomous mobile

robots.

Subject of research: It specifically examines the

Hyperbolic Secant-based Artificial Potential Field Method

(APFM) and its simulation in ROS 2/Gazebo.

Purpose of research: The goal is to develop a faster, more

efficient path-planning solution while creating a stan-

dardized testing framework for future research.

Analysis of recent research and publications. The

Artificial Potential Field Method (APFM) is a well-

established technique in robotics, particularly in the domains

of path planning and obstacle avoidance. This approach was

first introduced by Khatib in 1984 [5].

In the APF method, a virtual potential field is constructed

wherein the target location generates an attractive force,

while obstacles in the environment produce repulsive forces.

The robot, or autonomous agent, is guided by the resultant

force derived from the combination of these influences. It

moves toward the target while simultaneously avoiding

obstacles under the effect of these virtual forces [5]. The

mathematical representations of these forces are provided in

equations (1)–(3).
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Despite its advantages, the traditional Artificial Potential

Field (APF) method exhibits several limitations. One notable

issue is the occurrence of local minima, where the robot

becomes trapped in a position that is not the target due to the

balancing of attractive and repulsive forces. Additionally, the
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classical APF approach may result in unreachable targets and

the generation of inefficient paths [6].

To address these challenges, several enhanced versions

of the APF method have been proposed. One such

modification, presented in [7], incorporates probabilistic

elements into the classical framework. The ODG-PF method

was specifically developed to improve obstacle detection and

calculate the likelihood of collision with detected obstacles.

This approach introduces novel formulations for both the

attractive and repulsive fields, as well as a new strategy for

direction determination.

The authors conducted extensive simulations and

experimental validations, comparing the ODG-PF method

against other potential field-based obstacle avoidance

techniques. The results demonstrated that the ODG-PF

approach outperformed alternative methods in most

evaluated scenarios.

Within this algorithm, a key component is the

computation of a repulsive field – a vector field representing

the force exerted to push the robot away from nearby

obstacles.

In [8], a more detailed review of the ODG-PF method

was provided, along with proposals for further research in

this direction. In particular, a mathematical model of the

Artificial Potential Field Method (APFM) was introduced,

utilizing the Laplace function to represent the repulsive field.

In this paper, we propose the use of the hyperbolic secant

function to model the repulsive force within the artificial

potential field framework.
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where kq corresponds to the central angle of the thk

obstacle, ks is half of angle occupied by the thk obstacle.

In the context of a sensor with a resolution of 1 degree,

the index can be interpreted as a discrete representation of

angular measurements within the 0 to 360-degree range.

Each Hyperbolic Secant function, corresponding to a

specific angle, contributes to the construction of the overall

repulsive field, thereby forming a vector field that actively

directs the robot away from detected obstacles.

A key parameter in this formulation is the coefficient

kA , which is carefully adjusted to ensure that the Hyperbolic

Secant function sufficiently covers the extent of the obstacle.

This adjustment guarantees an accurate representation of the

repulsive forces in the proximity of obstacles. The derivation

and appropriate selection of this coefficient represent a

critical component of the algorithm and merit detailed

examination.
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where
maxk kd d d= - , maxd is sensor range distance.

Given the necessity to account for the influence of each

individual obstacle, the overall repulsive field is computed

as the superposition of all repulsive fields generated by the

obstacles. Consequently, the resulting function is expressed

as a dependence on the angular variable q .
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The next stage involves the computation of the attractive

field, as defined by equation (7). This field represents the

force that draws the robot toward the desired direction of

motion. When combined with the repulsive field, the

attractive field shapes the robot’s trajectory, ensuring

obstacle avoidance while maintaining progress toward the

target location.
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arg min( )dir totalfq = (9)

Parameter g is selected experimentally and is set to 6.

Equation (8) represents total field produced by the system,

and the safe direction of robot movement is determined using

(9).

Evaluation framework. Numerous software platforms,

often referred to as middleware, have been developed to

introduce modular and adaptable features that simplify the

construction of robotic systems. Over time, some of these

middleware platforms have evolved into comprehensive

ecosystems, offering a wealth of utilities, algorithms, and

sample applications. Among them, the Robot Operating

System (ROS 1) stands out for its profound impact on the

robotics industry.

ROS 1 gained widespread popularity through the efforts

of the robotics incubator Willow Garage. While the system

achieved significant success in creating a high-quality and

high-performance framework, certain aspects – such as

security, network topology optimization, and system

uptime – were not primary focuses. Despite these

limitations, ROS 1 has left a considerable legacy across

nearly every sector involving intelligent machines. Its

commercial success was propelled by flagship projects that

enabled autonomous navigation, simulation, visualization,

control, and more. However, as commercial applications

matured into full-scale products, the foundational limitations

of ROS 1 as a research-oriented platform became

increasingly apparent. The demand for improved security,

greater reliability in heterogeneous environments, and robust

support for large-scale embedded systems necessitated a new

architectural approach. Consequently, many companies

developed workarounds on top of ROS 1 to build production-

ready applications.

Recognizing these limitations, the robotics community

initiated the development of ROS 2. Built from the ground

up, ROS 2 addresses critical requirements for modern robotic

systems, including enhanced security, real-time commu-

nication, system reliability, and scalability across distributed

and resource-constrained platforms. ROS 2 adopts the Data

Distribution Service (DDS) middleware standard, providing

high-performance and flexible communication essential for
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complex robotic deployments [9, 10]. Its improved modu-

larity, cross-platform support, and emphasis on production-

grade robustness make ROS 2 the framework of choice for

both academic research and industrial robotics applications.

The use of ROS, and particularly ROS 2, in the

implementation of robotic systems offers numerous

advantages. It accelerates the development process through

a rich ecosystem of open-source tools, libraries, and

algorithms. It also facilitates the integration of hetero-

geneous subsystems and ensures interoperability between

components, which is crucial for building reliable and

scalable robotic platforms. Furthermore, the active global

ROS community ensures continuous support, innovation,

and validation across a broad range of robotic domains.

The integration of ROS 2 as a unified middleware

platform for deploying practical outcomes brings significant

advancements towards sim-to-real experiences, enabling

researchers to test their concepts beyond controlled labo-

ratory environments. The mathematical model of the newly

proposed Hyperbolic Secant Artificial Potential Field

Method (APFM) was implemented as a shared C++ library,

facilitating its seamless integration with other software

components, including its incorporation into the ROS 2

ecosystem.

In order to preform simulation, we decided to choose

Gazebo simulator. Gazebo represents an optimal simulation

platform for integration with ROS 2 due to its high-fidelity

dynamic modeling, accurate sensor emulation, and native

compatibility with the ROS ecosystem. As the reference

simulator for ROS-based applications, it enables physically

realistic simulation of robotic systems, including multi-body

dynamics, environmental interactions, and sensor data

generation (e. g., depth cameras, LiDAR, inertial

measurement units). The Gazebo-ROS 2 interface provides

bi-directional communication through dedicated plugins,

ensuring temporal synchronization between simulated and

real-world control paradigms. This integration facilitates

robust validation of perception, planning, and control

algorithms prior to physical deployment, significantly

reducing development cycles. Furthermore, Gazebo’s

support for complex scenarios – including multi-agent

systems and dynamic environments – combined with ROS

2’s distributed computational architecture, offers a scalable

framework for advanced robotic research and system

verification. More detailed review of Gazebo and its

alternatives are presented in [11].

The next stage involved selecting a ROS-enabled

wheeled mobile robot platform. We conducted an analysis of

existing solutions and determined that the TurtleBot series is

among the most used platforms for research in the domain of

mobile wheeled robots. A study presented in [11] demon-

strates that the TurtleBot series is utilized in approximately

20 % of related academic publications, confirming its

suitability and convenience for scientific research.

Furthermore, the TurtleBot platforms offer native integration

with ROS 2 and Gazebo, significantly simplifying the setup

process. Comprehensive documentation, simulation models,

and software packages are readily available through the

official website and associated GitHub repositories, further

supporting ease of deployment.

TurtleBot3, in particular, represents an optimal choice for

academic and experimental purposes due to its modularity,

affordability, and extensive community support. It features

scalable hardware configurations, enabling researchers to

customize the robot according to specific research needs.

The platform is lightweight yet powerful, equipped with a

suite of sensors necessary for implementing and testing

autonomous navigation algorithms, including LIDAR, IMU,

and wheel encoders. Its seamless compatibility with ROS 2

facilitates rapid development, testing, and integration of

complex robotic applications, making TurtleBot3 an ideal

candidate for validating the proposed obstacle avoidance

algorithms within a realistic yet controllable experimental

environment.

Research results and their discussion  

To evaluate proposed mathematical model of Hyperbolic

Secant APFM we used virtual room with obstacles which is

presented on Fig. 2. Parameters and its values needed for

Hyperbolic Secant APFM are presented in table 1.

Fig. 2.Workplace configuration in Gazebo simulator /

h,3</YF4:U/O 4,.,S,Y, BD4DK,97V:

F B7=F1O6,4/ Gazebo

Fig. 2 presents the detailed workspace configuration

utilized within the Gazebo simulation environment for

evaluating the proposed mathematical model of the obstacle

avoidance method. In this experimental setup, the TurtleBot3

Burger robot is initially positioned at the center of the room,

visually represented as a small cylinder marked with a white

dot. The physical parameters of the TurtleBot3 Burger,

including dimensions, mass, and sensor specifications, were

derived from the official documentation and incorporated

into the simulation model to ensure accuracy and realism.

The surrounding environment consists of a square room

enclosed by walls and populated with multiple obstacles of

varying geometric shapes, specifically cylindrical and
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rectangular forms, thereby providing a diverse and challe-

nging setting for testing obstacle avoidance performance.

Additionally, the blue lines radiating from the center of

the robot represent the one-dimensional (1D) LiDAR path

rays. The LiDAR sensor resolution is configured to 1°,

ensuring high angular precision. In the present study, it is

assumed that a single LiDAR scan corresponds to a full

rotation of the sensor, thereby capturing a complete 360°

view of the environment.

Tab. 1. Hyperbolic Secant APFM parameters
and corresponding values

Parameter VALUE

Threshold distance 1 m

Robot diameter 0.2 m

LiDAR max range 6 m

LiDAR resolution –179–180, step 1°

Gamma 6

Goal direction

Robot linear speed

0°

0.1 m/s

Based on the specified configuration and parameter

values, the robot is expected to move forward toward the

wall while actively avoiding collisions with any obstacles

encountered along its path. A single iteration of the robot’s

navigation algorithm is presented in the pseudocode depicted

in Fig. 3.

Fig. 3. Pseudocode of general robot navigation algorithm

based APFM family algorithms

Next, we proceed to examine in detail the first three steps

of the proposed algorithm. At the initial timestamp 1t (i. e.,

the first iteration), the robot is positioned at the center of the

room, as illustrated in Fig. 2. The corresponding 1D LiDAR

scan data is presented in Fig. 4.

Fig. 4. 1D LiDAR scan at the timestamp t1.

Solid curve shows data from one complete

LiDAR scan. Dashed line indicates threshold

distance. Objects closer to the robot

then threshold distance are marked

as obstacles. Top-right corner picture depicts

the actual position of the robot

in simulator environment

Objects detected at distances smaller than this threshold

are classified as obstacles. Analysis of the LiDAR scan

reveals two distinct continuous regions falling below the

threshold, located approximately at angular intervals of

[–170°, –100°] and [+10°, +45°]. Based on this observation,

the Artificial Potential Field Method (APFM) is expected to

recognize two obstacles within these angular sectors. The

robot’s actual position within the simulation environment is

shown in the top-right inset of Fig. 4. It can be observed that

the obstacles identified by the APFM, depicted in red,

correspond accurately to the angular locations inferred from

the LiDAR scan, confirming the correctness of the obstacle

detection stage.

Fig. 5 illustrates the force distributions at an initial time

step. The repulsive force, represented by blue scatter circles,

exhibits two distinct peaks near &120° and +20°, corres-

ponding to the directions where obstacles are detected by the

LiDAR sensor. The attractive force, shown as a dashed black

line, follows a symmetric V-shaped profile with a minimum

at 0°, promoting motion toward the target. The total force,

indicated by green scatter triangles, combines the effects of

the repulsive and attractive fields. The minimum of the total

force is slightly shifted to approximately &15°, implying a

necessary deviation from the direct path to ensure safe

navigation around obstacles. The broader distribution of the

repulsive peaks contributes to an increased safety margin by

enlarging the obstacle avoidance zones. The broader shape

of the repulsive force peaks contributes to an increased safety

margin, effectively enlarging the obstacle avoidance zone

and enhancing the overall robustness of the navigation

strategy.
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Fig. 5. Calculated repulsive, attractive and total forces

at the timestamp t1

As outlined in the navigation algorithm presented in

Fig. 3, the robot initially performs a rotation toward the

calculated safe directional angle. This adjustment ensures

that its heading is reoriented to avoid the detected obstacles

effectively. Subsequently, the robot advances by moving

forward for a duration of one second, thereby making

incremental progress toward the target location. After

completing the forward movement, the robot executes a

corrective rotation to realign its heading with the original

target direction, thereby resuming its intended trajectory.

This sequence of operations is iterative, continuing

systematically until the robot either successfully reaches the

designated target location or encounters a local minimum,

where further progress becomes infeasible due to environ-

mental constraints.

Under the current experimental setup, the robot succe-

ssfully navigated the environment and reached the target in

28 discrete steps. To further validate the reliability and

performance of the proposed method, a detailed analysis of

two more specific iterations is proposed. The first analysis

will focus on an intermediate location between the starting

point and the target destination, specifically at timestamp

t16. The second analysis will examine the final approach to

the target location, recorded at timestamp t28 situated

adjacent to a wall.

In both cases, a comprehensive evaluation of the forces

acting on the robot during navigation will be performed.

Finally, the overall trajectory of the robot, visualized using

the RViz tool, will be thoroughly reviewed to assess the

smoothness of the proposed obstacle avoidance approach.

Analyzing the data presented in Fig. 6, a single

continuous region below the threshold line is observed,

approximately spanning the angular range of angles [–110°,

–45°]. Consequently, the APFM is expected to detect a single

obstacle. Furthermore, it is evident that the position of the

obstacle within the simulation environment corresponds

precisely to the angular locations identified in the LiDAR

scan.

Additionally, it is important to highlight that the detected

obstacle is located in close proximity to the robot, at an

approximate distance of 0.3 meters from the side of the

TurtleBot3. This close range implies that, during the obstacle

enlargement step, a wider peak will be generated in the force

calculation process, significantly influencing the resulting

repulsive force profile.

Fig. 6. 1D LiDAR scan at the timestamp t16. Solid curve

shows data from one complete LiDAR scan. Dashed

line indicates threshold distance. Objects closer

to the robot then threshold distance are marked

as obstacles. Top-right corner picture depicts

the actual position of the robot in simulator

environment

Fig. 7. Calculated repulsive, attractive and total forces

at the timestamp t16

Fig. 7 presents the force profiles at the later time instance.

In this case, the repulsive force shows a single pronounced

peak centered around &90°, indicating an isolated obstacle in

that direction. The attractive force maintains its V-shaped

configuration with its minimum at 0°, corresponding to the

goal direction. The total force also attains its minimum at 0°,
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suggesting that no significant obstacle interferes with the

direct path, and the robot can proceed straight toward the

target without requiring a heading adjustment. This situation

demonstrates the APFM’s capacity to maintain goal-directed

motion when environmental conditions permit.

Finally, Fig. 8 presents the LiDAR data sample captured

during the robot’s final step, at the point where it reached the

wall.

Fig. 8. 1D LiDAR scan at the timestamp t28. Solid curve

shows data from one complete LiDAR scan. Dashed

line indicates threshold distance. Objects closer

to the robot then threshold distance are marked

as obstacles. Top-right corner picture depicts

the actual position of the robot in simulator

environment

Analyzing the data presented in Fig. 8, two continuous

regions below the threshold line are observed, approximately

within the angular ranges [–10°, 60°] and [110°, 170°].

Accordingly, the APFM is expected to detect both obstacles.

Upon further examination of the plot, it becomes evident that

the first detected obstacle corresponds to a wall. This

conclusion is drawn based on the geometric characteristics

observed in the LiDAR scan, where the obstacle exhibits a

smooth, circular-like shape – a signature feature typically

associated with walls due to their uniform and continuous

surfaces.

The second continuous region identified in the LiDAR

data corresponds to another obstacle. Its angular location

suggests that it is positioned slightly behind the robot. This

inference is further supported by the visual representation of

the simulation environment shown in the top-right corner of

Fig. 8, where a wall is clearly positioned in front of the robot,

and an additional obstacle is situated slightly to the rear.

Fig. 9 captures the force field structure at a subsequent

stage. The repulsive force displays two significant peaks

around 90° and 150°, marking the presence of multiple

obstacles along the forward path. The attractive force retains

its canonical V-shaped profile, while the total force reveals a

minimum shifted to approximately &44°.

Fig. 9. Calculated repulsive, attractive and total forces

at the timestamp t28

This deviation indicates that the robot must adjust its

heading significantly to the left to circumvent the obstacles

safely. The resulting total force distribution highlights the

dynamic balance between obstacle avoidance and goal

attraction, enabling robust and adaptive navigation. Howe-

ver, since the robot has already reached the target location,

this calculated safe direction is disregarded. This decision

reflects the algorithm’s design to prioritize the final

destination once it is achieved, rather than continuing to

adjust navigation based on force computations.

Fig. 10 presents a trajectory visualization generated in

RViz, illustrating the robot’s navigation path.

Fig. 10. Traversed path visualization in RViz

The RViz visualization demonstrates the operational

efficacy of the implemented navigation system, showing

three key elements of the obstacle avoidance process. Green

vectors indicate real-time directional corrections where the

calculated safe navigation angle diverges from the target
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trajectory due to detected obstacles, reflecting the system’s

dynamic response to environmental constraints. Red markers

represent LiDAR-measured obstacle positions, forming a

point cloud that quantifies the robot’s perceptual field and

correlates with the repulsive potential field generated by our

APF implementation. The traversed path exhibits smooth

deviation patterns when encountering obstacles, confirming

proper repulsive force application, while minor oscillatory

artifacts suggest some room for parameter optimization. This

visualization provides empirical validation of the algo-

rithm’s capacity to maintain forward progress while exe-

cuting collision-free path modifications. The results confirm

the real-world applicability of Hyperbolic Secant APFM

modification in dynamic environments.

Computational efficiency. The computational perfor-

mance of Hyperbolic Secant and Gaussian repulsive force

models was evaluated through systematic benchmarking

under controlled virtualized conditions. The host system

featured an Intel Core i7-6700HQ mobile processor (4C/8T,

2.6–3.5 GHz) with 16GB DDR4-2666 RAM and Samsung

960 Pro NVMe SSD, running Windows 10 x64. Testing was

conducted on an Ubuntu 22.04 LTS x64 virtual machine

configured with 4 vCPUs and 5376MB RAM through

VirtualBox, using g++ 11.4.0 (Ubuntu 11.4.0-1ubun-

tu1~22.04) with standard libstdc++–11 libraries.

The benchmark protocol executed 710 iterations of each

force model ( 0, 1m s= = ) while maintaining rigorous

experimental controls. Volatile accumulators prevented

compiler optimization removal, and incremental input

adjustments ( 610x -D = ) mitigated caching artifacts.

As demonstrated in Table 1, the Hyperbolic Secant

implementation exhibited minimal performance penalties

when compiled with architecture-specific optimizations.

Under standard -O3 optimization, the sech model showed a

12.4 % time increase relative to the Gaussian baseline

(410 ms versus 365 ms). This overhead reduced to just 2.3 %

(347 ms versus 339 ms) when enabling –march=native.

Contrary to expectations, the addition of -ffast-math flags

increased the relative slowdown to 14.4 %, suggesting

interactions between aggressive floating-point optimizations

and the virtualized execution environment.

Table. 1. Computational performance comparison ( 710 iterations)

Optimization

configuration

Gaussian,

ms
Sech, ms

-O3 365 ± 2.1 410 ± 3.7 (+12.4 %)

-O3 -march= native 339 ± 1.8 347 ± 2.2 (+2.3 %)

-O3 -march=

native-ffast-math

322 ± 1.5 368 ± 2.9 (+14.4 %)

These results collectively indicate that while Hyperbolic

Secant models incur measurable but minor computational

overhead compared to Gaussian formulations, proper com-

piler targeting can reduce this penalty to negligible levels

(2.3 %). The unexpected performance degradation under –

ffast-math optimization warrants particular consideration for

virtualized development environments, suggesting that

standard optimization approaches may require validation

when deployed in such configurations.

Conclusion 

The Hyperbolic-Secant APFM represents a meaningful

advancement in obstacle avoidance algorithms, offering

distinct advantages in path planning quality. The intrinsic

properties of the Hyperbolic Secant function – particularly

its smooth gradient transitions and responsive behavior to

nearby obstacles – enable more natural navigation patterns

compared to Gaussian-based methods. This manifests in

visibly smoother trajectories that require fewer abrupt

corrections, especially when dealing with sharp-edged

obstacles or complex environmental features. The method’s

enhanced sensitivity to proximal obstacles allows for earlier

and more gradual course adjustments, reducing unnecessary

path oscillations. These improvements emerge from the

mathematical formulation itself rather than relying on

secondary systems or sensors. Future developments could

focus on optimizing the parameter selection process and

investigating the method’s behavior in more varied

environmental conditions, potentially expanding its

applicability to different robotic platforms and operational

scenarios. The approach maintains the computational

efficiency needed for real-time operation while delivering

acceptable navigation performance.
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