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SIMULATION-BASED EVALUATION OF HYPERBOLIC
SECANT POTENTIAL FIELD FOR REAL-TIME OBSTACLE AVOIDANCE

Obstacle avoidance is a fundamental capability for autonomous mobile robots, ensuring safe navigation in dynamic and
unstructured environments. This paper presents a novel approach to real-time obstacle avoidance based on an Artificial
Potential Field Method (APFM) utilizing a hyperbolic secant function. A mathematical formulation of the proposed model
is developed and analyzed. To validate the approach, a simulation framework was implemented using ROS 2, the Gazebo
simulator, and the TurtleBot3 Burger platform. Extensive simulations were conducted, generating LIDAR sample plots
alongside corresponding repulsive, attractive, and total potential field distributions, demonstrating the correctness and
effectiveness of the proposed method. Additionally, RViz visualization confirmed the smoothness of the robot’s path and
continuous heading adjustments over 28 navigation steps. To assess computational efficiency, execution times for evaluating
Gaussian and hyperbolic secant functions were measured using C++ implementations with varying compiler optimization
flags. The results indicate that the computational cost of the hyperbolic secant function is approximately 2—3 % lower than
that of the Gaussian, a negligible difference in practice. The findings support the suitability of the hyperbolic secant-based
APFM for real-time obstacle avoidance in robotic applications. The hyperbolic secant function offers a sharper decay near
the origin compared to the Gaussian distribution, resulting in stronger immediate repulsive forces when the robot is close to
an obstacle and rapidly diminishing influence at greater distances. This property provides improved responsiveness and local
obstacle avoidance without introducing excessive long-range effects that could unnecessarily distort the global path.
Additionally, the hyperbolic secant’s symmetric, heavy-tailed nature maintains smoothness in the potential field, ensuring
stable and predictable robot motion while enabling faster, more efficient trajectory adjustments in dynamic environments.

Keywords: artificial potential field method, cyber-physical system, edge computing, information technologies, IoT

concepts, obstacle avoidance, robotics.

Introduction

In the field of robotics, autonomous mobile robots
represent a major area of research and development. These
sophisticated systems are engineered to navigate inde-
pendently and to make context-specific decisions in real
time. This capability allows them to operate without human
intervention, dynamically adapting to their environments
based on continuous sensory input. Autonomous mobile
robots are utilized in a broad range of applications. Examples
include service robots in hospitality settings, such as waiter
robots that deliver food and beverages, as well as transport
robots employed in industrial environments to efficiently
move goods. A particularly notable example is autonomous
vehicles, commonly known as self-driving cars. These sys-
tems integrate advanced sensor technologies and compu-
tational algorithms to interpret their surroundings, enabling
them to navigate complex traffic environments and reach
their destinations without human control.

Such examples highlight the extensive applicability of
autonomous mobile robots and underscore their trans-
formative potential across multiple sectors, including hos-
pitality, logistics, and the automotive industry. The ongoing

development and refinement of these systems remain a
central focus of robotics research, with continuous efforts
aimed at enhancing their capabilities and expanding their
range of applications.

One of the core software components in autonomous
mobile robots is the set of algorithms dedicated to path
planning and obstacle avoidance. These algorithms are
fundamental to enabling critical functionalities such as
autonomous parking, evasive maneuvers during emergency
situations, and, ultimately, full autonomy in navigation and
control.

Path planning is generally classified into two main cate-
gories: global and local. Global path planning relies on data
from Geographic Information Systems (GIS) in combination
with global localization methods. This approach necessitates
that the robot possesses a comprehensive, large-scale
understanding of its environment, enabling navigation across
extended distances, such as traversing urban areas or
intercity routes.

In contrast, local path planning requires only the robot’s
relative position and real-time perception of obstacles within
its immediate surroundings. This type of planning focuses on
short-range navigation and dynamic interaction with the
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environment, such as avoiding pedestrians on a sidewalk or
maneuvering around other vehicles in traffic. Local path
planning is essential for ensuring safe and adaptive behavior
in unpredictable and rapidly changing environments.

A diverse array of algorithms has been developed to
address the challenges associated with both global and local
path planning. Each algorithm offers specific advantages and
exhibits particular limitations, and the choice of an
appropriate algorithm can significantly impact the effi-
ciency, reliability, and safety of autonomous navigation.
Comprehensive surveys detailing these path planning
techniques, their underlying methodologies, and their
application contexts are available in the existing literature [1,
2,3,4].

Obstacle detection and avoidance are critical components
of local path planning algorithms, playing an essential role
in ensuring the safety of both the autonomous system and its
surrounding environment. This field has been the subject of
extensive research over several decades, resulting in the
development of numerous methodological approaches.
Many of these techniques have proven effective and have
been successfully deployed in real-world applications.

Effective collision avoidance requires that a robot not
only detect obstacles but also dynamically recalculate its
path and adjust its trajectory in real time. Real-time
responsiveness is crucial for navigating safely and efficiently
through complex and dynamic environments.

The process of obstacle avoidance begins with the robot
detecting potential obstacles using its onboard sensors. Upon
identification of an obstacle, the system must promptly
generate an alternative trajectory that enables safe passage
around the object. This new path must be computed with
minimal latency to allow real-time adjustment of the robot’s
motion, thereby preventing collisions and maintaining a
smooth navigation trajectory.

Moreover, the robot must be capable of adapting to
dynamic changes in its environment. For instance, if a new
obstacle suddenly appears along its path, the robot must
rapidly detect the obstruction, compute an alternative route,
and adjust its trajectory in real time to ensure safe and
continuous navigation.

The fundamental concept of obstacle avoidance involves
moving toward the target point while dynamically adjusting
the trajectory whenever obstacles are detected along the
current path. A graphical representation of the path planning
and obstacle avoidance algorithm is presented in Fig. 1.

The sequence of obstacle detection and trajectory
adjustment constitutes an iterative process. The robot
continuously monitors its environment for potential
obstacles and performs real-time path corrections as
necessary until it successfully reaches the designated target
location. This iterative procedure highlights the dynamic
nature of autonomous navigation and emphasizes the critical
importance of robust obstacle detection and avoidance
mechanisms in ensuring the safe and efficient operation of
mobile robotic systems.

Mobile
Robot

Fig. 1. Obstacle avoidance problem consists
of two subtasks: computing motion control
that avoids collisions with the obstacles gathered
by the sensors and driving the robot towards
target location

Object of research: The study focuses on real-time
obstacle avoidance algorithms for autonomous mobile
robots.

Subject of research: It specifically examines the
Hyperbolic Secant-based Artificial Potential Field Method
(APFM) and its simulation in ROS 2/Gazebo.

Purpose of research: The goal is to develop a faster, more
efficient path-planning solution while creating a stan-
dardized testing framework for future research.

Analysis of recent research and publications. The
Artificial Potential Field Method (APFM) is a well-
established technique in robotics, particularly in the domains
of path planning and obstacle avoidance. This approach was
first introduced by Khatib in 1984 [5].

In the APF method, a virtual potential field is constructed
wherein the target location generates an attractive force,
while obstacles in the environment produce repulsive forces.
The robot, or autonomous agent, is guided by the resultant
force derived from the combination of these influences. It
moves toward the target while simultaneously avoiding
obstacles under the effect of these virtual forces [5]. The
mathematical representations of these forces are provided in
equations (1)—(3).
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Despite its advantages, the traditional Artificial Potential
Field (APF) method exhibits several limitations. One notable
issue is the occurrence of local minima, where the robot
becomes trapped in a position that is not the target due to the
balancing of attractive and repulsive forces. Additionally, the
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classical APF approach may result in unreachable targets and
the generation of inefficient paths [6].

To address these challenges, several enhanced versions
of the APF method have been proposed. One such
modification, presented in [7], incorporates probabilistic
elements into the classical framework. The ODG-PF method
was specifically developed to improve obstacle detection and
calculate the likelihood of collision with detected obstacles.
This approach introduces novel formulations for both the
attractive and repulsive fields, as well as a new strategy for
direction determination.

The authors conducted extensive simulations and
experimental validations, comparing the ODG-PF method
against other potential field-based obstacle avoidance
techniques. The results demonstrated that the ODG-PF
approach outperformed alternative methods
evaluated scenarios.

Within this algorithm, a key component is the
computation of a repulsive field — a vector field representing
the force exerted to push the robot away from nearby
obstacles.

In [8], a more detailed review of the ODG-PF method
was provided, along with proposals for further research in
this direction. In particular, a mathematical model of the
Artificial Potential Field Method (APFM) was introduced,
utilizing the Laplace function to represent the repulsive field.

In this paper, we propose the use of the hyperbolic secant
function to model the repulsive force within the artificial
potential field framework.

in  most

0, -0

£i0,)=4,- sech(%* b, )

O
where O, corresponds to the central angle of the &k,
obstacle, o, is half of angle occupied by the k, obstacle.

In the context of a sensor with a resolution of 1 degree,
the index can be interpreted as a discrete representation of
angular measurements within the 0 to 360-degree range.
Each Hyperbolic Secant function, corresponding to a
specific angle, contributes to the construction of the overall
repulsive field, thereby forming a vector field that actively
directs the robot away from detected obstacles.

A key parameter in this formulation is the coefficient
A, , which is carefully adjusted to ensure that the Hyperbolic

Secant function sufficiently covers the extent of the obstacle.
This adjustment guarantees an accurate representation of the
repulsive forces in the proximity of obstacles. The derivation
and appropriate selection of this coefficient represent a
critical component of the algorithm and merit detailed
examination.

4=t ©
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where di =d_ —d,, d,,
Given the necessity to account for the influence of each
individual obstacle, the overall repulsive field is computed

is sensor range distance.

max X

as the superposition of all repulsive fields generated by the
obstacles. Consequently, the resulting function is expressed
as a dependence on the angular variable 6 .

n Y 0, —0.
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The next stage involves the computation of the attractive
field, as defined by equation (7). This field represents the
force that draws the robot toward the desired direction of
motion. When combined with the repulsive field, the
attractive field shapes the robot’s trajectory, ensuring
obstacle avoidance while maintaining progress toward the
target location.
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Parameter y is selected experimentally and is set to 6.

Equation (8) represents total field produced by the system,
and the safe direction of robot movement is determined using
).

Evaluation framework. Numerous software platforms,
often referred to as middleware, have been developed to
introduce modular and adaptable features that simplify the
construction of robotic systems. Over time, some of these
middleware platforms have evolved into comprehensive
ecosystems, offering a wealth of utilities, algorithms, and
sample applications. Among them, the Robot Operating
System (ROS 1) stands out for its profound impact on the
robotics industry.

ROS 1 gained widespread popularity through the efforts
of the robotics incubator Willow Garage. While the system
achieved significant success in creating a high-quality and
high-performance framework, certain aspects — such as
security, network topology optimization, and system
uptime — were not primary focuses. Despite these
limitations, ROS 1 has left a considerable legacy across
nearly every sector involving intelligent machines. Its
commercial success was propelled by flagship projects that
enabled autonomous navigation, simulation, visualization,
control, and more. However, as commercial applications
matured into full-scale products, the foundational limitations
of ROS 1 as a research-oriented platform became
increasingly apparent. The demand for improved security,
greater reliability in heterogeneous environments, and robust
support for large-scale embedded systems necessitated a new
architectural approach. Consequently, many companies
developed workarounds on top of ROS 1 to build production-
ready applications.

Recognizing these limitations, the robotics community
initiated the development of ROS 2. Built from the ground
up, ROS 2 addresses critical requirements for modern robotic
systems, including enhanced security, real-time commu-
nication, system reliability, and scalability across distributed
and resource-constrained platforms. ROS 2 adopts the Data
Distribution Service (DDS) middleware standard, providing
high-performance and flexible communication essential for
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complex robotic deployments [9, 10]. Its improved modu-
larity, cross-platform support, and emphasis on production-
grade robustness make ROS 2 the framework of choice for
both academic research and industrial robotics applications.

The use of ROS, and particularly ROS 2, in the
implementation of robotic systems offers numerous
advantages. It accelerates the development process through
a rich ecosystem of open-source tools, libraries, and
algorithms. It also facilitates the integration of hetero-
geneous subsystems and ensures interoperability between
components, which is crucial for building reliable and
scalable robotic platforms. Furthermore, the active global
ROS community ensures continuous support, innovation,
and validation across a broad range of robotic domains.

The integration of ROS 2 as a unified middleware
platform for deploying practical outcomes brings significant
advancements towards sim-to-real experiences, enabling
researchers to test their concepts beyond controlled labo-
ratory environments. The mathematical model of the newly
proposed Hyperbolic Secant Artificial Potential Field
Method (APFM) was implemented as a shared C++ library,
facilitating its seamless integration with other software
components, including its incorporation into the ROS 2
ecosystem.

In order to preform simulation, we decided to choose
Gazebo simulator. Gazebo represents an optimal simulation
platform for integration with ROS 2 due to its high-fidelity
dynamic modeling, accurate sensor emulation, and native
compatibility with the ROS ecosystem. As the reference
simulator for ROS-based applications, it enables physically
realistic simulation of robotic systems, including multi-body
dynamics, environmental interactions, and sensor data
generation (e. g., depth cameras, LiDAR, inertial
measurement units). The Gazebo-ROS 2 interface provides
bi-directional communication through dedicated plugins,
ensuring temporal synchronization between simulated and
real-world control paradigms. This integration facilitates
robust validation of perception, planning, and control
algorithms prior to physical deployment, significantly
reducing development cycles. Furthermore, Gazebo’s
support for complex scenarios — including multi-agent
systems and dynamic environments — combined with ROS
2’s distributed computational architecture, offers a scalable
framework for advanced robotic research and system
verification. More detailed review of Gazebo and its
alternatives are presented in [11].

The next stage involved selecting a ROS-enabled
wheeled mobile robot platform. We conducted an analysis of
existing solutions and determined that the TurtleBot series is
among the most used platforms for research in the domain of
mobile wheeled robots. A study presented in [11] demon-
strates that the TurtleBot series is utilized in approximately
20 % of related academic publications, confirming its
suitability and convenience for scientific research.
Furthermore, the TurtleBot platforms offer native integration
with ROS 2 and Gazebo, significantly simplifying the setup
process. Comprehensive documentation, simulation models,

and software packages are readily available through the
official website and associated GitHub repositories, further
supporting ease of deployment.

TurtleBot3, in particular, represents an optimal choice for
academic and experimental purposes due to its modularity,
affordability, and extensive community support. It features
scalable hardware configurations, enabling researchers to
customize the robot according to specific research needs.
The platform is lightweight yet powerful, equipped with a
suite of sensors necessary for implementing and testing
autonomous navigation algorithms, including LIDAR, IMU,
and wheel encoders. Its seamless compatibility with ROS 2
facilitates rapid development, testing, and integration of
complex robotic applications, making TurtleBot3 an ideal
candidate for validating the proposed obstacle avoidance
algorithms within a realistic yet controllable experimental
environment.

Research results and their discussion

To evaluate proposed mathematical model of Hyperbolic
Secant APFM we used virtual room with obstacles which is
presented on Fig. 2. Parameters and its values needed for
Hyperbolic Secant APFM are presented in table 1.

Fig. 2. Workplace configuration in Gazebo simulator /
Kondiryparis podoyoro cepempoBuima
y cumyisitopi Gazebo

Fig. 2 presents the detailed workspace configuration
utilized within the Gazebo simulation environment for
evaluating the proposed mathematical model of the obstacle
avoidance method. In this experimental setup, the TurtleBot3
Burger robot is initially positioned at the center of the room,
visually represented as a small cylinder marked with a white
dot. The physical parameters of the TurtleBot3 Burger,
including dimensions, mass, and sensor specifications, were
derived from the official documentation and incorporated
into the simulation model to ensure accuracy and realism.
The surrounding environment consists of a square room
enclosed by walls and populated with multiple obstacles of
varying geometric shapes, specifically cylindrical and
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rectangular forms, thereby providing a diverse and challe-
nging setting for testing obstacle avoidance performance.

Additionally, the blue lines radiating from the center of
the robot represent the one-dimensional (1D) LiDAR path
rays. The LiDAR sensor resolution is configured to 1°,
ensuring high angular precision. In the present study, it is
assumed that a single LiDAR scan corresponds to a full
rotation of the sensor, thereby capturing a complete 360°
view of the environment.

Tab. 1. Hyperbolic Secant APFM parameters
and corresponding values

Parameter VALUE
Threshold distance Im
Robot diameter 0.2 m
LiDAR max range 6 m
LiDAR resolution —179-180, step 1°
Gamma 6
Goal direction 0°
Robot linear speed 0.1 m/s

Based on the specified configuration and parameter
values, the robot is expected to move forward toward the
wall while actively avoiding collisions with any obstacles
encountered along its path. A single iteration of the robot’s
navigation algorithm is presented in the pseudocode depicted
in Fig. 3.

Algorithm 1 General Robot Navigation Procedure Based on APFM

1: while the target location is not reached do

2 Step 1: Environment Scanning

3: Acquire 1D LiDAR sensor data

1 Identify obstacles within the sensitivity zone

5 Enlarge detected obstacles based on robot dimensions
6: Step 2: Force Computation

: Compute repulsive forces using Eq. (6)

8 Compute attractive force toward the target using Eq. (8)

9: Determine the resultant force vector using Eq. (9)

10:  Step 3: Safe Direction Evaluation

11: Calculate the safe movement angle according to Eq. (10)
12:  if the safe direction differs from the target direction then

13: Rotate the robot to align with the computed safe angle

14: Move forward for a predefined time interval (e.g., 1 second)
15: Reorient the robot back toward the original target direction
16:  else

17; Continue moving forward for the same time interval

18  end if

19: end while

Fig. 3. Pseudocode of general robot navigation algorithm
based APFM family algorithms

Next, we proceed to examine in detail the first three steps
of the proposed algorithm. At the initial timestamp ¢, (i. e.,
the first iteration), the robot is positioned at the center of the
room, as illustrated in Fig. 2. The corresponding 1D LiDAR
scan data is presented in Fig. 4.

6.0

i
o

w
w

Distance, m

"
=

(-)199.0 -89.3 0.5 90.3

Angle in degrees at timestamp (1)
BLIDAR data®Threshold distance

Fig. 4. 1D LiDAR scan at the timestamp .
Solid curve shows data from one complete
LiDAR scan. Dashed line indicates threshold
distance. Objects closer to the robot
then threshold distance are marked
as obstacles. Top-right corner picture depicts
the actual position of the robot
in simulator environment

Objects detected at distances smaller than this threshold
are classified as obstacles. Analysis of the LiDAR scan
reveals two distinct continuous regions falling below the
threshold, located approximately at angular intervals of
[-170°,-100°] and [+10°, +45°]. Based on this observation,
the Artificial Potential Field Method (APFM) is expected to
recognize two obstacles within these angular sectors. The
robot’s actual position within the simulation environment is
shown in the top-right inset of Fig. 4. It can be observed that
the obstacles identified by the APFM, depicted in red,
correspond accurately to the angular locations inferred from
the LiDAR scan, confirming the correctness of the obstacle
detection stage.

Fig. 5 illustrates the force distributions at an initial time
step. The repulsive force, represented by blue scatter circles,
exhibits two distinct peaks near —120° and +20°, corres-
ponding to the directions where obstacles are detected by the
LiDAR sensor. The attractive force, shown as a dashed black
line, follows a symmetric V-shaped profile with a minimum
at 0°, promoting motion toward the target. The total force,
indicated by green scatter triangles, combines the effects of
the repulsive and attractive fields. The minimum of the total
force is slightly shifted to approximately —15°, implying a
necessary deviation from the direct path to ensure safe
navigation around obstacles. The broader distribution of the
repulsive peaks contributes to an increased safety margin by
enlarging the obstacle avoidance zones. The broader shape
of the repulsive force peaks contributes to an increased safety
margin, effectively enlarging the obstacle avoidance zone
and enhancing the overall robustness of the navigation
strategy.
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Fig. 5. Calculated repulsive, attractive and total forces
at the timestamp #

As outlined in the navigation algorithm presented in
Fig. 3, the robot initially performs a rotation toward the
calculated safe directional angle. This adjustment ensures
that its heading is reoriented to avoid the detected obstacles
effectively. Subsequently, the robot advances by moving
forward for a duration of one second, thereby making
incremental progress toward the target location. After
completing the forward movement, the robot executes a
corrective rotation to realign its heading with the original
target direction, thereby resuming its intended trajectory.

This sequence of operations is iterative, continuing
systematically until the robot either successfully reaches the
designated target location or encounters a local minimum,
where further progress becomes infeasible due to environ-
mental constraints.

Under the current experimental setup, the robot succe-
ssfully navigated the environment and reached the target in
28 discrete steps. To further validate the reliability and
performance of the proposed method, a detailed analysis of
two more specific iterations is proposed. The first analysis
will focus on an intermediate location between the starting
point and the target destination, specifically at timestamp
t16. The second analysis will examine the final approach to
the target location, recorded at timestamp t28 situated
adjacent to a wall.

In both cases, a comprehensive evaluation of the forces
acting on the robot during navigation will be performed.
Finally, the overall trajectory of the robot, visualized using
the RViz tool, will be thoroughly reviewed to assess the
smoothness of the proposed obstacle avoidance approach.

Analyzing the data presented in Fig. 6, a single
continuous region below the threshold line is observed,
approximately spanning the angular range of angles [-110°,
—45°]. Consequently, the APFM is expected to detect a single
obstacle. Furthermore, it is evident that the position of the
obstacle within the simulation environment corresponds
precisely to the angular locations identified in the LiDAR
scan.

Additionally, it is important to highlight that the detected
obstacle is located in close proximity to the robot, at an
approximate distance of 0.3 meters from the side of the
TurtleBot3. This close range implies that, during the obstacle
enlargement step, a wider peak will be generated in the force
calculation process, significantly influencing the resulting
repulsive force profile.

60, M

o
n

o
—

Distance, m

-89.3 0.5 90.3
Angle in degrees at timestamp t(16)
ELiDAR data®Threshold distance

Fig. 6. 1D LiDAR scan at the timestamp #6. Solid curve
shows data from one complete LiDAR scan. Dashed
line indicates threshold distance. Objects closer
to the robot then threshold distance are marked
as obstacles. Top-right corner picture depicts
the actual position of the robot in simulator
environment
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Magnitude

9199.0 -89.3 0.5 .
Angle in degrees at t(16), safe angle: 0
BRepulsive force Total force MAttractive force

Fig. 7. Calculated repulsive, attractive and total forces
at the timestamp ¢16

Fig. 7 presents the force profiles at the later time instance.
In this case, the repulsive force shows a single pronounced
peak centered around —90°, indicating an isolated obstacle in
that direction. The attractive force maintains its V-shaped
configuration with its minimum at 0°, corresponding to the
goal direction. The total force also attains its minimum at 0°,
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suggesting that no significant obstacle interferes with the
direct path, and the robot can proceed straight toward the
target without requiring a heading adjustment. This situation
demonstrates the APFM’s capacity to maintain goal-directed
motion when environmental conditions permit.

Finally, Fig. 8 presents the LiDAR data sample captured
during the robot’s final step, at the point where it reached the
wall.

6.0

>
o))

oo
()

Distance, m

1.7

90.3
Angle in degrees at timestamp t£(28)

BLiDAR data®Threshold distance

-89.3 0.5

Fig. 8. 1D LiDAR scan at the timestamp #;. Solid curve
shows data from one complete LiDAR scan. Dashed
line indicates threshold distance. Objects closer
to the robot then threshold distance are marked
as obstacles. Top-right corner picture depicts
the actual position of the robot in simulator
environment

Analyzing the data presented in Fig. 8, two continuous
regions below the threshold line are observed, approximately
within the angular ranges [-10°, 60°] and [110°, 170°].
Accordingly, the APFM is expected to detect both obstacles.
Upon further examination of the plot, it becomes evident that
the first detected obstacle corresponds to a wall. This
conclusion is drawn based on the geometric characteristics
observed in the LiDAR scan, where the obstacle exhibits a
smooth, circular-like shape — a signature feature typically
associated with walls due to their uniform and continuous
surfaces.

The second continuous region identified in the LiDAR
data corresponds to another obstacle. Its angular location
suggests that it is positioned slightly behind the robot. This
inference is further supported by the visual representation of
the simulation environment shown in the top-right corner of
Fig. 8, where a wall is clearly positioned in front of the robot,
and an additional obstacle is situated slightly to the rear.

Fig. 9 captures the force field structure at a subsequent
stage. The repulsive force displays two significant peaks
around 90° and 150°, marking the presence of multiple
obstacles along the forward path. The attractive force retains
its canonical V-shaped profile, while the total force reveals a
minimum shifted to approximately —44°.

28.4

Magnitude
=
N
V 4

7.1

%90 893 90.3
Angle in degrees at t(28), safe angle: -42

BRepulsive force MTotal force MAttractive force

180.0

Fig. 9. Calculated repulsive, attractive and total forces
at the timestamp #2g

This deviation indicates that the robot must adjust its
heading significantly to the left to circumvent the obstacles
safely. The resulting total force distribution highlights the
dynamic balance between obstacle avoidance and goal
attraction, enabling robust and adaptive navigation. Howe-
ver, since the robot has already reached the target location,
this calculated safe direction is disregarded. This decision
reflects the algorithm’s design to prioritize the final
destination once it is achieved, rather than continuing to
adjust navigation based on force computations.

Fig. 10 presents a trajectory visualization generated in
RViz, illustrating the robot’s navigation path.

.:.-N.m

»t

LiDAR sample

heading vector

Fig. 10. Traversed path visualization in RViz

The RViz visualization demonstrates the operational
efficacy of the implemented navigation system, showing
three key elements of the obstacle avoidance process. Green
vectors indicate real-time directional corrections where the
calculated safe navigation angle diverges from the target
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trajectory due to detected obstacles, reflecting the system’s
dynamic response to environmental constraints. Red markers
represent LiDAR-measured obstacle positions, forming a
point cloud that quantifies the robot’s perceptual field and
correlates with the repulsive potential field generated by our
APF implementation. The traversed path exhibits smooth
deviation patterns when encountering obstacles, confirming
proper repulsive force application, while minor oscillatory
artifacts suggest some room for parameter optimization. This
visualization provides empirical validation of the algo-
rithm’s capacity to maintain forward progress while exe-
cuting collision-free path modifications. The results confirm
the real-world applicability of Hyperbolic Secant APFM
modification in dynamic environments.

Computational efficiency. The computational perfor-
mance of Hyperbolic Secant and Gaussian repulsive force
models was evaluated through systematic benchmarking
under controlled virtualized conditions. The host system
featured an Intel Core 17-6700HQ mobile processor (4C/8T,
2.6-3.5 GHz) with 16GB DDR4-2666 RAM and Samsung
960 Pro NVMe SSD, running Windows 10 x64. Testing was
conducted on an Ubuntu 22.04 LTS x64 virtual machine
configured with 4 vCPUs and 5376MB RAM through
VirtualBox, using g++ 11.4.0 (Ubuntu 11.4.0-1ubun-
tul~22.04) with standard libstdc++—11 libraries.

The benchmark protocol executed 107 iterations of each
force model (u=0,0 =1) while maintaining rigorous

experimental controls. Volatile accumulators prevented
compiler optimization removal, and incremental input
adjustments ( Ax =107°) mitigated caching artifacts.

As demonstrated in Table 1, the Hyperbolic Secant
implementation exhibited minimal performance penalties
when compiled with architecture-specific optimizations.
Under standard -O3 optimization, the sech model showed a
12.4 % time increase relative to the Gaussian baseline
(410 ms versus 365 ms). This overhead reduced to just 2.3 %
(347 ms versus 339 ms) when enabling —march=native.
Contrary to expectations, the addition of -ffast-math flags
increased the relative slowdown to 14.4 %, suggesting
interactions between aggressive floating-point optimizations
and the virtualized execution environment.

Table. 1. Computational performance comparison (107 iterations)

Optimization Gaussian,
. Sech, ms
configuration ms
-03 365+2.1 | 410+3.7 (+12.4 %)
-O3 -march= native 339+£1.8 347 £2.2 (+2.3 %)
-O3 -march= 322+ 1.5 | 368 +2.9 (+14.4 %)
native-ffast-math

These results collectively indicate that while Hyperbolic
Secant models incur measurable but minor computational
overhead compared to Gaussian formulations, proper com-
piler targeting can reduce this penalty to negligible levels
(2.3 %). The unexpected performance degradation under —

ffast-math optimization warrants particular consideration for
virtualized development environments, suggesting that
standard optimization approaches may require validation
when deployed in such configurations.

Conclusion

The Hyperbolic-Secant APFM represents a meaningful
advancement in obstacle avoidance algorithms, offering
distinct advantages in path planning quality. The intrinsic
properties of the Hyperbolic Secant function — particularly
its smooth gradient transitions and responsive behavior to
nearby obstacles — enable more natural navigation patterns
compared to Gaussian-based methods. This manifests in
visibly smoother trajectories that require fewer abrupt
corrections, especially when dealing with sharp-edged
obstacles or complex environmental features. The method’s
enhanced sensitivity to proximal obstacles allows for earlier
and more gradual course adjustments, reducing unnecessary
path oscillations. These improvements emerge from the
mathematical formulation itself rather than relying on
secondary systems or sensors. Future developments could
focus on optimizing the parameter selection process and
investigating the method’s behavior in more varied
environmental conditions, potentially expanding its
applicability to different robotic platforms and operational
scenarios. The approach maintains the computational
efficiency needed for real-time operation while delivering
acceptable navigation performance.
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Jlvgiecokuii Hayionanvruuil ynisepcumem imeni leana @panka, Jlveie, Yrpaina

MOJE/IOBAHHA TA OTHIOBAHHA METOAY WTYYHUX ITOTEHLIAJIbHUX ITOJIIB
HA OCHOBITHIEPBOJIITYHOT'O CEKAHCA A1 YHUKHEHHA NNEPEIIKO /Y
Y PEXXMMI PEAJIBHOT'O YACY

VHUKHEHHS NEpelIKo]] € (pyHIaMEHTAIbHOK 3/aTHICTIO aBTOHOMHHMX MOOUIBHUX POOOTIB, 110 3a0e3neuye Oe3neuny
HaBIirauilo y JMHaMi4HUX Ta HECTPYKTYPOBAHUX CEpelOBUILAX. Y Liil poOOTi 3aIIpOnOHOBAHO HOBU MiXiJ 1O YHUKHEHHS
HEPELIKO Y PEXKHUMI pealbHOro 4acy Ha OCHOBI METOAY IITY4YHUX NoTeHLianbHuX noiiB (Artificial Potential Field Method,
APFM), sikuii BUKOPUCTOBY€E (YHKIIiIO TinepOoiuHOro cexanca. Po3po0ieHo Ta nmpoaHalizoBaHO MaTEMaTU4HY MOJEINb
3aIPOIIOHOBAHOr0 MeToy. Jlis nepeBipku e(heKTUBHOCTI MiAX04Y peanizoBaHO BipTyalbHe cepenoBulle Ha ocHOBi ROS 2,
cumyisitopa Gazebo Ta ruiatgopmu TurtleBot3 Burger. 3nilicHeHO MOZEIIOBaHHS, Y MEXax SKOro rno0ynoBaHo rpadiku
Bubipok nanux i3 LiDAR cencopa pa3oMm i3 BiJMOBIAHUMH MOIYJSIMH BiJAIITOBXYBAJIBHOTO, MPUTZIYBAJbHOTO Ta
3arajJbHOTO TOTCHLIHHKUX TIOMIB, MO MIATBEPIWIO TPABHIBHICTH 1 JIEBICTh 3aMpPOINOHOBAHOTO MiaAXoay. JlomaTkoBO
Bisyaumizaiisi B RViz npojeMoHcTpyBasia IIaBHICTh TPAEKTOPIT pyxy poOoTa Ta Oe3nepepBHi KOPUTYBaHHS KYpCY MPOTITOM
28 HaBiramiiHuX KpokiB. J[yis O1LiHIOBaHHS 00YHCITIOBATILHOT €DEKTHBHOCTI BUMIPSIHO Yac BUKOHAHHS 00YHCIICHb (QYHKIIIH
Tayca Ta rinep6oiyHOTrO CeKaHca 3a JI0TOMOror peanizaiiii Ha C++ i3 pisHUME MapaMeTpamMu ONTHUMI3ALT KOMIIUIATOPA.
PesynpraTn mokaszany, oo OOYMCITIOBAIFHHN Yac TinepOOIiYHOTO cekaHca MPHOIM3HO Ha 2—3 % HIDKYUHA MOPIBHSIHO 3
¢yukuiero ayca, 1110 Ha MPAKTUI[ € HE3HAYHOK PI3HMICK HA PIBHI MOXHOKM BUMIiprOBaHb. OTpUMaHI pe3yabTaTH
MiATBEP/UKYIOTh JOUUIBbHICTh BUKOpHcTaHHS APFM Ha OCHOBI TinepOosiYHOTO CeKaHca JJIsi YHHUKHEHHS HEepelIkos y
PEXKUMI peaTbHOTO Yacy B POOOTOTEXHIYHUX CHCTEMAX.

®OyHK1is rinepOoIIiYHOro ceKkanca Mae CTPIMKILIMIA criaj moOym3y HydIst HOPIBHSHO i3 (yHKuiero ["ayca, mo 3ade3neuye
CWJIBHIII MUTTEBI BIIIITOBXYBaJIbHI CHIJIM MiJl 4ac HAOIMKEHHsT poOOTa JI0 MEePEIIKOAN Ta NIBU/KE 3MEHIICHHS BIUIMBY Ha
BEJIMKHUX BiJCTaHsAX. Taka BIACTUBICT IiJIBUIIYE YyTIUBICT CUCTEMH Ta JIOKAJIbHE YHUKHEHHS HEPEIIKO 0e3 CTBOPCHHS
HaJMIpPHUX JIOBFOCTPOKOBUX €(EKTiB, Ki MOIJIU O CIIOTBOPUTU INI00AIbHY TPAaeKTOpito. KpiM TOro, CUMETPUYHICTD 1 BaxKKi
“XBOCTU” PO3MOJLTY TinepOOIiYHOrO CeKaHCa CIPUSIOTH 30€PEkKEHHIO IUIABHOCTI MOTEHLIAIBLHOIO 10JIs, 3a0e3nedyoun
cTablnpHUI Ta nepeadauyBaHuii pyX po0oTa, a TAKOXK MIBH/IIC i e(EKTHBHIIIEC KOPUTYBAHHS TPAEKTOPIl B AWHAMIYHHX
YMOBaX.

Knruosi cnosa: MEeTo 1 ITYYHUX MOTEHINIAILHUX TMOJIIB, KiOepdiznuHa cucTemMa, 00UMCIICHHS Ha KIHIIEBUX PUCTPOSIX,
iHpopmaniitHi TexHosorii, konuenii [oT pilieHb, yHUKHEHHS IEPEIIKO, pOOOTOTEXHIKA.
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