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The article presents research results on the influence of technological parameters on the techni-
cal and environmental characteristics of low-carbon ready-mix concretes. The study examines the im-
pact of aggregate gradation, cement content, lignosulfonate or polycarboxylate modifiers, and wet fly
ash additives on concrete properties. The research demonstrates that clinker- and CO,-intensity indi-
cators collectively determine the clinker efficiency of concrete. It was established that optimizing ag-
gregate granulometry through the introduction of 2—5 mm crushed stone fraction in combination with
a polycarboxylate superplasticizer contributes to the formation of a dense microstructure in the ce-
mentitious matrix. This approach ensures obtaining the specified concrete strength class with reduced
cement consumption. The research confirms that the rational combination of technological factors af-
fecting concrete mixtures opens prospects for creating modern low-carbon ready-mix concretes that
meet sustainable development requirements.
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Introduction

The relevance of the work — the problem of climate change caused by increased carbon dioxide
(CO,) emissions is one of the largest environmental threats of our time (Schneider M., 2019). According
to international research, anthropogenic CO, emissions caused by industry, transportation, and energy are
the main causes of global warming and climate balance disruption, (Watari T., 2022, Promise D.). In
Ukraine, there is an increase in industrial CO, emissions, and this problem requires active intervention
and solution searching (Sanytsky M. a.o., 2021). One of the main sources of CO, in the construction
sector is the production of building materials, particularly concrete production. The main component of
concrete is Portland cement — one of the most carbon-intensive materials, accounting for about 8 % of
global carbon dioxide emissions (Damineli B., 2010; Scrivener K., 2018).

According to the requirements of the Paris Agreement, adopted in the UN Framework Convention
on Climate Change (UNFCCC), from 2020 to 2050, it is necessary to implement a global low-carbon
development strategy aimed at limiting the increase in the planet's average temperature to a level signifi-
cantly lower than 2 °C (Sabbie A., 2017). By 2030, CEMBUREAU plans to reduce CO, emissions during
concrete production and construction by 40 %. Specific CO, emissions should be reduced to 83.4 kg CO,
per 1 ton of concrete (Althoey F., 2023). To reduce the ECO, indicator, partial replacement of Portland
cements in concrete with active mineral additives, particularly thermal power plant fly ash, is envisioned,
which is a relevant approach to achieving balanced development in construction (De Grazia, 2023).

To implement the Paris Agreement in the context of measures to reduce climate changes, Ukraine
must complete a series of conceptual tasks and strategic steps, including activating the implementation of
low-carbon development principles. To achieve this task in the construction industry, several approaches
are being considered. Thus, optimization of aggregate composition, that is, the correct selection of differ-
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ent sand and gravel fractions, will minimize the specific surface areas of aggregates in concrete, increas-
ing its density and reducing cement binder consumption (Sanytsky M. a.o., 2024).

One of the main directions in concrete science is the use of plasticizing additives, such as lignosul-
fonates and polycarboxylate ethers, which have different effects on the strength of low-carbon concretes.
The main difference between these two types of plasticizing additives lies in their effectiveness and im-
pact on early concrete strength. Lignosulfonates provide a moderate plasticizing effect but can reduce
early strength, while polycarboxylate ethers provide a significant plasticizing effect and increase the final
concrete strength. Therefore, identifying the effects of plasticizing additives contributes to developing
methods to increase concrete mixture mobility, which positively affects concrete strength and durability
(Rykhlitska O. a.o., 2022). Adding thermal power plant fly ash to the modified concrete mixture provides
not only cement savings but also environmental benefits.

The design level of strength and operational properties of low-carbon concretes is achieved through
quality composition design, selection of modifying additives, care, bringing the quality of concrete products
to the necessary technical condition at the operation stage, and economic efficiency (Kumar A., 2023). One
of the most promising ways to achieve this task is to replace part of the cement with other components that
have a lower carbon footprint. Such a solution not only reduces CO, levels but is also capable of affecting
the final product cost, reducing expenses for cement — one of the most expensive components of the con-
crete mixture. The obtained results can be used in various construction areas where environmental friendli-
ness and reduction of production costs are important (Giergiczny Z., 2020; Zunino F.).

The aim of this work is to assess the impact of aggregate grain composition and modifiers on tech-
nical and environmental performance indicators of low-carbon concretes.

Materials and Methods

For the research, Portland cement CEM II/A-LL 42.5R with an activity of 52.0 MPa was used.
Chemical composition of Portland cement clinker in %: CaO = 66.18; SiO, = 21.44; AlLO; = 5.22;
Fe,O3= 4.84; MgO = 0.95; SO; = 0.72; R,0 = 0.65. Mineralogical content in %: C3;S = 62.2;
C,S =15.18; C4AF = 12.8. For the production of commercial concrete, quartz sands from the Mykolaiv
deposit were used with a fineness modulus of FM = 1.70. For research, granite crushed stone of two
fractions was applied: 2—5 mm and 5-20 mm. The grain composition of the aggregates is shown in Fig. 1.
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The calculation of the sieve distribution curve for the fine and coarse aggregate mixture (Fig. 2)
was conducted in accordance with DSTU-N B V.2.7-299:2013 (Guidelines for Determining Heavy Con-
crete Composition, Chapter 7, Section 7.4). The graphical dependence shows the cumulative percentage
of particles passing through sieves of various sizes, ranging from 0.16 mm to 20 mm. The granulometric
composition curve of the aggregates characterizes the actual aggregate mixture (sand, crushed stone
5-20 mm, and crushed stone 2—5 mm) used to obtain concrete. As shown in Fig. 2, b, the designed curve of
the aggregate mixture grain composition indicates a satisfactory distribution of particles across different size
ranges, which is crucial for ensuring the workability of the concrete mixture and concrete strength.
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Fig. 2. Grain composition curves of mixtures sand — crushed stone 5-20 (a)
and sand — crushed stone 2—5 — crushed stone 5-20 (b)

As an active mineral additive to the concrete mixture, wet fly ash was added, the sieving results of
which are presented in Fig. 3, a, b. The specific surface area of the fine fraction of this fly ash is
390 m*/kg. This indicates that wet fly ash as an active mineral additive can improve concrete performance
(Sanytsky M. a.o., 2024).
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Fig. 3. Scattering curve (a) and fractional composition of wet fly ash (b)

To improve the quality indicators of concrete mixtures and concretes, a lignosulfonate plasticizer
Centrament N9 and a polycarboxylate superplasticizer Muraplast FK 59 were used. The technical charac-
teristics of the additives are as follows: Centrament N9: p = 1.145-1.155 kg/dm?; dosage 2—15 g per 1 kg
of cement; maximum chloride content — <0.1 %, alkali content — <1.0 %; Muraplast FK 59: p = 1.07—
1.13 kg/dm?; dosage 2-20 g per 1 kg of cement; maximum chloride content — <0.1 %, alkali content —
<4.0 % (MC-Bauchemie Technical Sheets).

Results and discussion

To determine the optimal composition of low-carbon concretes of strength class C20/25, five con-
crete mixture compositions with different cement consumption were developed and investigated. Calcula-
tion of the control composition per 1 m® of concrete according to the Bolomey formula showed a Portland
cement consumption of 350 kg at W/C = 0.62. The experimental study was based on a comparative analy-
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sis of concrete characteristics with different compositions to determine the most effective combination of
components for achieving optimal strength and environmental performance.

The efficiency criteria for plasticizing additives during concrete mixture testing at constant water-
cement ratio and consistency can be evaluated according to DSTU B V.2.7-171:2008. During the experi-
mental studies, the following indicators were determined for each composition:

— Cone slump; bulk density; compressive strength at different hardening periods; environmental
performance indicators (carbon footprint).

— Concrete mixture compositions are presented in Fig. 4. The workability of mixtures I-V was
CS = 21 cm, with the following average densities: Composition I: p = 2384 kg/m*; Composition II:
p = 2410 kg/m?; Composition III: p = 2420 kg/m?; Composition IV: p = 2432 kg/m?; Composition V:
p = 2434 kg/m®.
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Fig. 4. Concrete compositions by mass

As shown in Fig. 5, for the control composition with Portland cement CEM II/A-LL 42.5
consumption at 350 kg/m* and a water-cement ratio of 0.62, a strength of 37.91 MPa is achieved after 28
days of hardening. At the same time, with the introduction of plasticizing additives due to the water-
reducing effect, an increase in concrete strength is achieved, which allows reducing Portland cement
consumption in concrete by 15-20 % while maintaining the specified concrete class. The proposed
concrete composition optimization, which includes reducing Portland cement consumption by 23 % (from
350 to 270 kg/m?) by introducing moistened fly ash at 50 kg/m®, optimizing aggregate granulometry, and
using the MC Muraplast FK 59 superplasticizer, provides an economic effect. Simultaneously, the
strength of concrete compositions IV and V with PCE additive increased to 43.9 and 44.65 MPa after 28
days, respectively. However, this superplasticizer can cause a retarding effect, which leads to some
reduction in the early strength of the above concretes.
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The environmental indicators (Fig. 6) of the concrete compositions were determined taking into ac-
count the clinker content in Portland cement CEM II/A-LL 42.5R at the level of 80 %. It follows that the
clinker and CO, intensity indicators decrease for compositions with modifier additives. Thus, composi-
tion ¥, compared with composition I, is characterized by a reduced value of clinker and CO, intensity by
34 %, which indicates a significant environmental effect.
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Fig. 6. Clinker intensity (a) and CO, intensity (b) of concrete after 28 days of hardening

By the method of quantitative X-ray phase analysis using the Rietveld method for the cementing
matrix of sample V, a relatively high content of ettringite (14.9 %) was established. Ettringite is a hydra-
tion product formed as a result of reactions between cement, calcium sulfate, and water. The elevated
content of calcium carbonate CaCOj is 25.8 %, resulting from limestone additives in the cement composi-
tion and carbonization of part of the calcium hydroxide. Calcium hydroxide Ca(OH), (13.3 %) is also
recorded — a product of the alite phase hydrolysis. The diffractogram also reveals silica (SiO,, 18.7 %) as
part of the fine aggregate — sand.

Thus, the introduction of plasticizing additives in low-carbon concrete affects the rheology of the
mixture, structure compaction, and hydration processes, leading to increased concrete strength. Concrete
with LS additive is more affordable and suitable for standard construction works but requires more time
to gain strength. Concrete with PCE is more effective in the long-term perspective, providing increased
strength and ensuring significant CO, reduction due to lower cement consumption (Nagrockiené D.,
2013; Dvorkin L. 2023). Minimizing cement content by introducing mineral additives (wet fly ash) and
effective plasticizers ensures achieving an environmentally optimal composition of low-carbon concrete
and achieving an economic effect of 320 UAH/m?. With an annual production of 30,000 m® of concrete,
the total CO, emissions reduction will be 1,737 tons, which is a significant contribution to the sustainable
development of the construction industry.

Conclusions

The use of Centrament N9 plasticizer in Composition III showed a significant positive effect. By
reducing water consumption by 9.5 % and cement by 5.7 %, the concrete strength at 28 days increased to
42.65 MPa, which is 19 % higher than the baseline composition. The application of Muraplast EK59 su-
perplasticizer in composition [V proved even more effective — with a reduction in water consumption by
18.6 % and cement by 17.1 %, strength reached 44.65 MPa, which is 25 % higher than the baseline com-
position.

The proposed optimization of concrete composition, which includes reducing Portland cement con-
sumption by 23 % (from 350 to 270 kg/m?®), introducing 50 kg/m? of moistened fly ash, optimizing aggre-
gate granulometry, and using MC Muraplast FK 59 superplasticizer, allowed achieving technical and
economic effects. From a technical perspective, the developed concrete composition demonstrates im-
provement in key characteristics: compressive strength increased by 23 % (from 35.68 to 43.98 MPa),
clinker intensity decreased by 34 % (from 7.4 to 4.9 kg/(m*-MPa)), and CO, intensity also reduced by
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34 % (from 6.4 to 4.2 kg/(m*-MPa)). The ecological aspect of the development is characterized by a sig-
nificant reduction in the production carbon footprint. A comprehensive analysis of the obtained results
convincingly proves that the developed concrete composition using moistened fly ash from the Burshtyn
Thermal Power Plant is a technically effective, economically profitable, and environmentally appropriate
solution that meets modern construction industry requirements and sustainable development principles.

Prospects for further research

Increasing the clinker efficiency of concretes is achieved through a combination of a number of
technological factors that determine the creation of a dense cementing matrix structure. In further re-
search, the influence of various types of low-emission cements and modifiers on the durability of low-
carbon concretes should be presented with the aim of improving their operational reliability (Dvorkin L.,
2023).
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VY cTaTTi HaBeEHO Pe3yabTATH JIOCHIPKEHb BIUIMBY TEXHOJOTTYHUX YAHHUKIB HA TEXHIYHI Ta E€KOJIO-
TiYHl iHAWKATOpH e(pEeKTHBHOCTI OETOHIB. PO3IIISIHYTO BILIMB I'paHYJOMETPHYHOTO CKIIQAy 3allOBHIOBAUIB,
BUTpaTH IIEMEHTY, JIIHOCYIb(OHATHUX a00 TMONiKapOOKCHIIATHUX MOAM(IKATOPIB, JT00aBKH 3BOJIOXKEHOL
30JIU-BUHECEHHS] Ha BJACTHBOCTI OeToHIB. JlocmiDkeHHS JEMOHCTpYeE, IO MOKa3HUKH KiiHkep- Ta CO,-
IHTEHCHBHOCTI Y CYKYITHOCTI BHM3HAQ4YalOTh KIIIHKep-e(EeKTUBHICTH OeTOHy. Bukopucranus niraocyibdo-
HatHoro mactudikaropa Centrament N9 mi1st 6eToHy mokasaso, o 3a 3HWKEHHs BUTpaTu Boau Ha 9,5 % ta
neMeHTy Ha 5,7 %, MinHIicTh OeToHy Ha 28-My 100y 3pocia 1o 42,65 MIla, mo Ha 19 % nepeBuinye mokas-
HUKH KOHTPOJIBHOI'O CKJary. BcTaHOBIEHO, O ONTUMI3Allis TpaHyJIOMETpii 3aIlI0BHIOBAYIB Yepe3 BBEICHHS
mebeHeBol (ppakmii 2—5 MM y ITO€IHAHHI 13 MONIKapOOKCHIIATHUM CyNepIuiacTU]iKaTopoM crpusie Gopmy-
BaHHIO IIUIBHOI MIKPOCTPYKTYPH LEMEHTYIOUOi MaTpuii. 3amporoHOBAaHO CKiIagu OETOHY 31 3HIKEHOO
BHUTpaTOl0 mopTiaanaieMenty Ha 23 % (Bim 350 mo 270 kr/m®) 3a paxyHOK BBEICHHS 30JIM-BUHECECHHS
3BOJIOXKEHOI B KiJIbKOCTi 50 Kr/M>, onTuMi3auii rpaHyI0MeTpii 3aII0BHIOBAYiB Ta 3aCTOCYBaHHSI CyIEpPILIACTH-
¢ikatopa MC Muraplast FK 59, mo namo 3mory IOCSAITH TEXHIYHOTO Ta €KOHOMIiYHOro edekriB. 3
TEXHIYHOTO MOIIISAY, po3po0sieHHH ckiax OETOHY NEMOHCTPYE IOKpAIEHHS OCHOBHUX XapaKTEepUCTHK:
MIIIHICTh Ha CTHCK 3pocia Ha 23 % (3 35,68 no 43,98 MIla), kiniHKep-IHTCHCUBHICTh 3HU3MIACh Ha 34 % (3
7,4 no 4,9 xr/(m*-MIla)), a CO,-iHTeHCHBHICTh 3MeHIMnach Ha 34 % (3 6,4 no 4,2 kr/(m*Mlla)). Takwuii
miaxia 3a0e3nedye OTpUMAaHHS 33JaHOrO KJIacy MIITHOCTI OETOHY 3a 3HWKEHOI BHTPATH IIeMeHTY. MiHiMi-
3allis BMICTY LIEMEHTY BBEJCHHSIM aKTHBHOI MiHEpaIbHOI I00aBKH (3BOJIOXKEHOI 30JIM-BHHECEHHS) Ta e(eK-
TUBHHX CYIEpIUIacTU(IKATOpIB 3a0e3reuye Ofep)KaHHS EKOJOTIYHO ONTHMAaJbHOTO CKIIAJy HU3BKOBYTIIE-
LIEBOTO GETOHY 3 JOCSTHEHHSIM eKOHOMiuHOro edexty 320 rpr/m’. JlOCHiIKEHHS MATBEPIKYE, IO PaIfio-
HallbHe KOMOIHYBaHHS TEXHOJIOTIYHHMX (DaKTOpiB BIUIMBY Ha OETOHHI CyMilli BiKpUBA€ IEPCIIEKTHBU
CTBOPEHHS CYy4YaCHHUX HU3BKOBYIJIEIIEBUX TOBAPHHUX OETOHIB, SIKi BiJIIOBIIAIOTH BUMOTaM CTaJIOro PO3BUTKY.

Ku1104o0Bi cii0Ba: HU3BKOBYIJIEHIEBi TOBApHi 0€TOHU, TPaAHYJIOMETPUYHUIA CKJIAJ] 3aNI0BHIOBAYiB,
JirHocyjbGoHaTH Ta NMOJMIKAPOOKCUJIATHI eTepH, 3BOJIOKEHA 30J1a-BUHECEHHS, iHAUKATOPH e(eKTHB-
HocTi, mokazHuku emicii CO,.



