
INFORMATION SYSTEMS AND NETWORKS
Issue 17, 2025

https://doi.org/10.23939/sisn2025.17.170

UDС 004.89

DEVELOPMENT OF A UNIFIED OUTPUT FORMAT
FOR TEXT PARSERS IN THE ONTOLOGY CONSTRUCTION SYSTEM

FROM TEXT DOCUMENTS

Andrii Chornyi1, Dmytro Dosyn2

1, 2 Lviv Polytechnic National University,
Information Systems and Networks Department, Lviv, Ukrainе,

1 E-mail: andrii.o.chornyi@lpnu.ua, ORCID: 0009-0007-4005-4088
2 E-mail: dmytro.h.dosyn@lpnu.ua, ORCID: 0000-0003-4040-4467

© Chornyi A., Dosyn D., 2025

The challenge of effectively constructing ontologies from text documents remains unresolved,
posing a critical gap in modern knowledge extraction methodologies. One of the primary obstacles is the
lack of a standardized output format across different NLP tools, particularly text parsers, which serve as
the foundational step in multi-stage knowledge extraction processes. While several widely used text
parsers exist, each excels in specific functions, making it beneficial to leverage multiple parsers for more
comprehensive ontology construction. However, this approach introduces the issue of reconciling their
disparate output formats.

To address this challenge, we propose using a graph database to store parser outputs in a subject-
predicate-object triple format, enabling seamless integration and further processing through rule-based
transformations using SPARQL queries. A key advantage of this approach is the ability to execute new
transformation rules dynamically, allowing for greater flexibility and efficiency in ontology generation.

As part of our research, we developed an intelligent agent in Java capable of constructing semantic
graphs from natural language text using a rule-based approach. The agent was employed to evaluate the
relationship between the execution time of syntax-semantic transformation rules and variables such as
text corpus size and dataset sample dimensions. This evaluation was made possible through the
implementation of first-level reflection for the studied transformation rule.

The results demonstrate that our approach – standardizing parser outputs via a graph database –
roves effective in terms of both computational complexity and processing speed. By streamlining the
ontology construction process, our method paves the way for advanced automated learning of intelligent
agents based on textual information, unlocking new possibilities for modern science in the realm of
knowledge extraction and representation.

Keywords - natural language processing, ontology, automatic ontology construction, automated
learning, syntax-semantic patterns.

Problem statement

In today's information society, most of the knowledge is represented in the form of unstructured texts.
The effective extraction of structured information from such sources is critically important for various fields,
including science, business, and technology. Natural Language Processing (NLP) methods play a key role in
this process, providing tools for analyzing and interpreting textual data. In other words, they open the door
to opportunities for automating the process of text comprehension (Shaptala, 2023). This paves the way for
the automatic learning of intelligent agents across different subject domains, ranging from general
knowledge to highly specialized fields.

Developmen of a unified output format for text parsers in the ontology construction system… 171

One of the promising directions is the use of ontologies for knowledge formalization, which enables
structuring information and facilitating its further utilization. Ontologies provide a shared understanding of a
subject domain and promote the integration of data from various sources. Therefore, the development of a tool
for the automatic generation of ontologies based on unstructured text is a relevant research topic (Hlybovets &
Bobko, 2012). In addition to enabling machine interpretation, it also makes automated logical inference possible.

The process of automatically constructing ontologies from unstructured texts faces several challenges.
Among them is the lack of unified standards (Lytvyn & Cherna, 2014), particularly the diversity of formats
and structures in the source data obtained from various NLP tools, which complicates further analysis. The
use of graph databases, such as Apache Jena Fuseki, can facilitate the efficient storage and processing of
unified data (in RDF format), which simplifies the construction of syntactic-semantic patterns using
SPARQL queries (Haiko, 2023).

Analysis of Recent Studies and Publications

• Overview of existing Text Parsers.

The process of automatically constructing an ontology from natural texts is a multi-stage pipeline of
methods based on t he Methodology of Ontology Learning (Asim, Wasim, Khan, Mahmood, & Abbasi,
2018). In general, these methods can be divided into two groups: natural text processing methods and
ontology construction methods [3]. The first group is applied at the initial stage of the process. The author
of (Asim, Wasim, Khan, Mahmood, & Abbasi, 2018) logically concludes that achieving higher accuracy in
ontology learning requires effective preprocessing of data using high-quality linguistic methods.

The linguistic methods that make up t his first group are integrated into text parsers – software
components or tools that analyze textual data, breaking it down into structured elements based on predefined
rules or formats. Parsers transform unstructured or semi-structured textual data into a more processable
format, such as tree structures, arrays, or other data representations.

In modern Natural Language Processing (NLP), there is a wide range of text parsers classified based on
different methods and approaches, with a detailed analysis provided in the article (Shvorob, 2015). Generally,
parsers can be divided into two main categories: statistical and rule-based. Statistical parsers leverage machine
learning techniques to analyze text, while rule-based parsers rely on predefined grammatical rules. Some modern
parsers combine both approaches to achieve higher accuracy and efficiency.

Based on data from open Internet sources (Zezula, 2020) (Kumari, 2024), a list of relevant parsers is
provided. The relevance of these libraries was verified by checking the date of the last update in their
respective GitHub repositories. The criterion for relevance is that the latest commit must have been made no
earlier than six months ago, meaning no older than July 2024.

Table 1

List of relevant text parsers

Library Language License Type Commercial use
NLTK Python Apache 2.0* Restricted*
spaCy Python MIT Allowed

scikit-learn Python BSD Allowed
gensim Python LGPL Allowed

TextBlob Python MIT Allowed
CoreNLP Java GPL Restricted**
OpenNLP Java Apache 2.0 Allowed
PyTorch Python BSD Allowed
Stanza Python Apache 2.0** Restricted**
GATE Java LGPL-3 Allowed

*: NLTK is licensed for non-commercial use, but commercial licenses are available for some corpora.
**: Stanford provides paid licenses for commercial use of CoreNLP and Stanza.

172 A. Chornyi, D. Dosyn

The scientific interest among the libraries listed in Table 1 is drawn to Stanford CoreNLP, NLTK,
Apache OpenNLP, spaCy, and Gate. Specifically, the study (Schmitt, Kubler, Robert, Papadakis, & LeTraon,
2019) is dedicated to examining these parsers, comparing them as software for Named Entity Recognition
(NER). The authors emphasize the importance of NER as a key stage in Natural Language Processing (NLP)
systems, which allows for the identification and classification of entities (such as persons, places, etc.) in the
text. The primary goal of the study (Schmitt, Kubler, Robert, Papadakis, & LeTraon, 2019) is to objectively
assess the performance of these five popular NER systems. The authors felt the need for a replicated study
due to significant discrepancies in the results found in other sources. Researchers used two different corpora
(CoNLL2003 and GMB) to evaluate the performance of the software.

According to the results of the study (Schmitt, Kubler, Robert, Papadakis, & LeTraon, 2019), Stanford
CoreNLP demonstrated the most stable performance, surpassing other programs by 15-30%. However, there
are significant discrepancies between the results of this and other studies, which can reach up to 66%. The
summarized results of the study, based on the criteria of performance, cost, documentation, and the ability
to recognize major entity types (person, organization, location), are presented in Table 2.

Table 2

The summarized results of the experimental study
(Schmitt, Kubler, Robert, Papadakis, & LeTraon, 2019)

Parameter Stanford
CoreNLP NLTK OpenNLP SpaCy Gate

Performance Best Moderate Moderate High Moderate

License GNU GPL Apache 2.0 Apache 2.0 MIT GPL v3

Documentation Comprehensive Wide Limited Comprehensive Limited

Entity Support PER, ORG,
LOC

PER, ORG,
LOC

PER, ORG,
LOC

PER, ORG,
LOC + GPE

PER, ORG,
LOC

In the work (Dosyn, Daradkeh, Kovalevych, Luchkevych, & Kis, 2022), a similar list of parsers is

discussed as the most relevant, supplemented by the Link Grammar Parser library, which was initially built
in ANSI C as the formal grammar system Link Grammar. During its development, it became part of the Java
RelEx (RelEx Dependency Relationship Extractor) distribution. The authors of this work provide additional
characteristics of the parsers, which play an important role in the development and research of automatic
ontology construction from text, specifically algorithms, classifiers, and the presence of the OWL API.

Table 3

Additional parser parameters presented in the work
(Dosyn, Daradkeh, Kovalevych, Luchkevych, & Kis, 2022).

Parameter Stanford
CoreNLP NLTK OpenNLP SpaCy Gate

Algorithms CRF Max. entropy Max. entropy Neural (2.0) JAPE

Classifiers CoNLL,
MUC6-7, ACE StanfordNER OntoNotes

OWL API + – + - +

Developmen of a unified output format for text parsers in the ontology construction system… 173

The authors of the article (Basaraba, Bets, & Bets, 2024), which discusses the issues of recognizing
and decoding phraseological units, also consider these five libraries as NLP tools for solving the task they
set, briefly presenting their general functional characteristics.

A detailed assessment of the functional capabilities of each of the parsers listed above was conducted
through an analysis of information from open sources, including the official resources of each library
(Stanford CoreNLP website, n.d.) (NTLK website, n.d.) (Apache Open NLP Website, n.d.) (spaCy website,
n.d.) (GATE website, n.d.). For convenience of evaluation, the results of this analysis are presented in the
comparative table below.

Table 4

Comparative table of the functional capabilities of text parsers.

NLP Component Stanford
CoreNLP NLTK OpenNLP SpaCy GATE

Tokenization Yes Yes Yes Yes Yes

Sentence splitting Yes Yes Yes Yes Yes

POS tagging
 (Part-of-Speech) Yes Yes Yes Yes Yes

Lemmatization Yes Yes – Yes Yes

Stemming – Yes – – Yes

Named entity recognition
(NER) Yes Yes Yes Yes Yes

Syntactic dependency
parsing Yes Yes – Yes Yes

Semantic role labeling Yes – – – –

Chunking
(Phrase grouping) – Yes Yes – Yes

Word vectorization
(Word Embeddings) – – – Yes –

Coreference resolution Yes – – – Yes

Sentiment analysis Yes – – Yes -

Ability to train custom
models Yes Limited Yes Yes Yes

Based on the data presented in Table 4, it can be concluded that none of the parsers provides a complete

spectrum of text analysis. On the other hand, returning to the previously mentioned quote from the author
(Asim, Wasim, Khan, Mahmood, & Abbasi, 2018), for higher accuracy in ontology learning, effective
preprocessing of data is necessary. Greater efficiency in data preprocessing can be achieved through a more
comprehensive text analysis. Therefore, an important task for the ontology construction system from text is
to ensure the capability of processing output data from different parsers.

174 A. Chornyi, D. Dosyn

• Overview of existing approaches to ontology construction from text.

The main idea of this research was formed based on the CROCUS project (Cognition of Relations
Over Concepts Using Semantics), described in the works (Dosyn, Daradkeh, Kovalevych, Luchkevych, &
Kis, 2022) (Dosyn & Lytvyn, 2021). This project is dedicated to the automated learning of ontologies from
text. Its main goal is to develop a system capable of automatically extracting semantic relationships in texts
and forming hierarchical knowledge structures for specific users. The authors emphasize the assessment of
the relevance of information specifically for the individual user. The proposed CROCUS project is built in
Java using the Link Grammar Parser and WordNet API. The research (Dosyn, Daradkeh, Kovalevych,
Luchkevych, & Kis, 2022) outlines two main approaches to detecting semantic relationships in texts, namely:

analysis of sentence component trees to identify explicit relationships;
use of a n aive Bayes classifier to detect implicit semantic relationships, which requires a deeper
analysis of sentence parts.
In the work (Mousavi, Kerr, Iseli, & Zaniolo, 2014), the OntoHarvester system is proposed, which

presents a new (at the time) approach to automatically creating domain ontologies from a small corpus of
texts using deep NLP analysis. The OntoHarvester system begins with a small set of concepts (seeds) and
iteratively expands the ontology by adding new terms that have strong semantic connections with the existing
concepts. According to the authors, this approach allows for the creation of comprehensive ontologies from
small text corpora, while remaining resilient to noise and focused on a specific domain. The OntoHarvester
work is based on the following steps:

Construction of TextGraphs – using the SemScape system to create graphs that represent grammatical
relationships between terms in the text.
Extraction of ontological relationships – using graph templates (GD-rules) to identify relationships
such as part_of and type_of.
Extraction of new concepts – adding new terms to the ontology if they have strong connections with
existing concepts.
Detection of new types of relationships – identifying new types of relationships between existing
concepts to further expand the ontology.
According to the research findings, the authors (Mousavi, Kerr, Iseli, & Zaniolo, 2014) claim that their

proposed approach achieves higher accuracy and coverage compared to other methods and demonstrates
resilience to noise in the text while being able to create complex ontologies from small text corpora. This
result is achieved using GD-rules (Graph Domain Rules or GD Rules).

According to the authors (Mousavi, Kerr, Iseli, & Zaniolo, 2014), GD-rules are more powerful
compared to traditional approaches that use tree-like templates or regular expressions. They allow for
accounting for complex grammatical structures in the text, significantly improving the accuracy of extracting
ontological relationships. Moreover, unlike statistical methods, GD-rules do not require large volumes of
data for training, making them more practical for working with small text corpora.

A similar inductive approach based on linguistic patterns is discussed in the article (Doroshenko, 2018)
for extracting factual information. The authors present some basic correspondences between linguistic
templates and their ontological interpretation in canonical form.

Another relevant practical idea and its research, related to the field of ontology construction from text,
are presented in the article (Zlatareva & Amin, 2021). The authors propose the creation of a question-
answering (QA) system, built on the principle of converting queries formulated in natural language into
SPARQL queries, which are used in semantic web applications to retrieve data from graph databases. A vast
number of such resources are interconnected through the Linked Open Data Cloud (Linked Open Data Cloud,
без дати) and provide users with direct access to thousands of RDF/RDFS datasets via SPARQL endpoints.
The main problem addressed by this work lies in the difficulty for regular users to use the SPARQL query
language.

The proposed methodology involves converting an unstructured natural language question into
structured constructs that can be processed by a machine, like previous works, using a rule-based approach.

Developmen of a unified output format for text parsers in the ontology construction system… 175

The use of machine learning (ML) systems, such as BERT (Devlin, Chang, Lee, & Toutanova, 2019),
is another approach widely applied in ontology building systems from unstructured text, often in combination
with rule-based approaches.

The importance of ML components in solving the task of ontology building from text is also confirmed
by the authors of (Basaraba, Bets, & Bets, 2024), who in their study attempt to address the issue of
recognizing and decoding phraseological units. This problem is more related to general NLP, but it can serve
as a foundation for recognizing indirect statements made in a specific context, applicable to a wide range of
NLP applications.

Formulation of the Article’s Objective

The aim of this work is to unify the output data format of text parsers within an ontology construction
system from textual documents and explore approaches for the automatic extraction of semantic relationships
from unstructured texts using syntactic-semantic patterns (Vovnianka, Dosyn, & Kovalevych, 2014)
(Mousavi, Kerr, Iseli, & Zaniolo, 2014). Additionally, it seeks to address the problem of the lack of unified
standards by integrating syntactic parsing results into graph databases (RDF) and leveraging SPARQL
queries to identify and apply syntactic-semantic patterns.

Main Results

• Selection of technologies for the ontology construction system.

Based on the data presented in Table 4 and the core idea of continuing the CROCUS project (Dosyn,
Daradkeh, Kovalevych, Luchkevych, & Kis, 2022) (Dosyn & Lytvyn, 2021), the development and research
of an ontology construction system from text have been initiated using the Stanford CoreNLP text parser
(Stanford CoreNLP website, n.d.). This choice is driven by factors such as relevance, functional
completeness, and the technological stack, particularly the use of Java. Another crucial factor in selecting
this parser is the comprehensiveness of its documentation, as noted in Table 2.

Additionally, the findings of the comparative study (Nanavati & Ghodasara, 2015) were considered,
which analyzed two popular natural language processing (NLP) tools – Stanford NLP and Apache OpenNLP
– focusing on their efficiency in part-of-speech (POS) tagging. According to results of the study (CoreNLP
vs Apache OpenNLP, n.d.), if accuracy and speed are the priority, Stanford NLP is the better choice. Publicly
available sources indicate that this preference is widely supported by users. As stated in (CoreNLP vs Apache
OpenNLP, n.d.), at the time of writing this article, the popularity of Stanford NLP significantly exceeded that
of Apache OpenNLP, with a ratio of 9.2 to 6.8.

The analytical review (Manning, et al., 2014) was also taken into account, in which the authors
highlight the strengths of Stanford NLP, namely: ease of use, a universal interface, high-quality analysis,
flexibility, support for multiple languages, and open-source availability.

According to the classification proposed by the authors (Yunchyk, Kunanets, Pasichnyk, & Fedoniuk,
2021), the formal task of developing a text-based ontology construction system is to create an artificial,
virtual, reactive intelligent agent with a learning function based on unstructured texts.

From a software architecture perspective, such a system is a modular intelligent agent based on the
principles and analysis proposed in (Chornyi, 2024), which explores the principles of building intelligent
agents, emphasizing their adequacy and functionality.

In order to implement multi-agent capability (Chornyi, 2024), two communication interfaces were
created using widely known modern protocols: REST API and SPARQL. These interfaces can be used for
both agent-to-agent and human-to-agent communication. This approach enabled the development of a multi-
agent system with either hierarchical (command-subordinate) or peer-to-peer relationships between agents.

The REST API module is implemented using the Java framework Spring Boot, which is widely
adopted and has comprehensive documentation.

176 A. Chornyi, D. Dosyn

The SPARQL endpoint is implemented using the Apache Jena Fuseki module, which serves as a
SPARQL server. In this case, it functions as an in-memory server for storing and processing the agent’s
(ontology-building system’s) operational graph data. Apache Jena Fuseki enables the creation of a standalone
server, which can later be used for permanent data storage and for handling large volumes of data. This
provides an alternative to Neo4J, as proposed in (Chornyi, 2024).

All these modules are integrated into a multi-tier modular architecture, allowing seamless expansion
of the agent's functionality by adding new modules and layers.

The task of integrating multiple NLP modules into a single system faces the problem of the lack of
unified standards (Lytvyn & Cherna, 2014), the solution to which, within the context of building an ontology
from text, is the unification of the output data format of NLP systems.

• Solution to the problem of unifying the output data of text parsers.

As mentioned earlier, based on the data in Table 4, it is evident that for the most accurate semantic
analysis of text, it makes sense to use multiple parsers. Additionally, comparing the results of the same
analysis from different parsers will provide a higher reliability score for the outcome.

The idea of integrating different parsers into the software code of a single intelligent agent has led to
the problem of processing their output data, as the data representation formats in different parsers vary. Since
the CROCUS system's technological stack is based on the Java programming language, below is an overview
table of the data structures of the CoreNLP, OpenNLP, and GATE text parsers, as potential candidates for
modular integration into the developing intelligent agent system.

Table 5

Data Structures (Classes) of Text Parsers in Java.

Parser
Output Data CoreNLP OpenNLP GATE

Text Document CoreDocument SentenceSample Document

1 2 3 4

Text Annotations: boundaries,
type, and additional features Annotation AnnotationSet

Tokens with annotations: parts
of speech, lemmas, named

entities, etc.
CoreLabel POSSample Annotation

Attributes and characteristics
of annotations in key-value

format
CoreMap FeatureMap FeatureMap

Dependency graph between
words in a sentence SemanticGraph – –

Tree structure representing
sentence syntax parsing Tree(Constituency Parse) Parse -

Represents extracted triples
from text: subject, predicate,

object
RelationTriple (OpenIE) – –

Representation of relations
between words referring to the

same entity, i.e., for
coreference resolution

CorefChain – –

Developmen of a unified output format for text parsers in the ontology construction system… 177

Continuation of Тable 5

1 2 3 4

Marks the boundaries of a text
substring corresponding to a

certain annotation
Span Span -

Marks the affiliation to a
phrase (named entity or noun

phrase)
– ChunkSample –

Represents an event with its
characteristics

– Event –

Represents a sequence of
elements (e.g., tokens and
their tags) for storage and

further processing

– Sequence –

Represents a collection of text
documents that may contain
annotations and are used for
text processing and analysis

– – Corpus

Represents an individual
element of text (e.g., word or

character) that is part of a
document and may have
associated annotations

– – Node

Contains the textual content of
the document

– – DocumentContent

Working with the representations of output data from text parsers presented in Table 5 is somewhat

complicated by the lack of unification – all this data is objects of Java classes, not united by an abstract
structure. Specifically, each NLP tool (CoreNLP, OpenNLP, GATE) uses its own data structure, which does
not always align with others. For example, CoreNLP has Annotation, GATE has AnnotationSet, and
OpenNLP does not have a clear equivalent. This complicates the integration of results from different parsers
and their interaction with other systems.

Moreover, these structures are of different types and often represent tree-like or list-based data
constructs, which makes them rigidly tied to a specific order and hierarchy of data. For example, a syntactic
tree (Tree or Parse) stores the structure of a sentence, which can be difficult to use for deeper analysis,
especially when there is a need to analyze other data or relationships simultaneously.

Since the data in this representation are Java objects, the use of rule-based approaches for ontology
construction from text is complicated by excessive dependence on the code of the intelligent agent program,
thereby nearly making automatic learning impossible due to the need for recompilation.

Serialization into XML or JSON format could partially solve the problem of data storage and
transmission between different modules or agents (actors), but it does not provide sufficient flexibility. This
approach merely "freezes" the structure in its current form, without allowing for dynamic changes or
transformations. Furthermore, for further processing of such data, deserialization is required, which
necessitates that each actor knows the structure of all the data, or serialization must be performed with
conversion into a single format.

178 A. Chornyi, D. Dosyn

The serialization operation has the following mathematical representation:

𝑆𝑆(𝑜𝑜) = 𝑓𝑓(𝑜𝑜) → 𝐷𝐷,

where 𝑜𝑜 – object; 𝑓𝑓(𝑜𝑜) – transformation function into the data format 𝐷𝐷 (e.g., JSON), which is typically
linear in complexity 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 – size of the object, or the number of elements (objects or data structures)
that need to be serialized or deserialized.

Deserialization represents the inverse operation:

𝑜𝑜′ = 𝑓𝑓−1(𝐷𝐷),

where 𝑜𝑜′ – reconstructed object; 𝑓𝑓−1(𝐷𝐷) – inverse deserialization operation.
The complexity of the serialization-deserialization approach is as follows:
Serialization: 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 is the number of elements that need to be processed.
Deserialization: 𝑂𝑂(𝑛𝑛), since all object fields must be read and reconstructed.
Searching for relationships between entities: 𝑂𝑂(𝑛𝑛2) or even 𝑂𝑂(𝑛𝑛3), as the entire volume of
deserialized data needs to be analyzed.
Thus, the overall complexity of this approach is as follows:
Optimistic scenario: 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛2) = 𝑶𝑶�𝒏𝒏𝟐𝟐�.
Pessimistic scenario: 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛3) = 𝑶𝑶�𝒏𝒏𝟑𝟑�.
Thus, in addition to the aforementioned limitations, this approach has several drawbacks related to the

complexity of algorithms, which are further exacerbated by data storage challenges due to the need for full
deserialization during searches and complete file rewrites even for partial modifications. Converting text
parser data into a g raph using a g raph database (e.g., Apache Jena Fuseki or Neo4j) provides a way to
overcome these drawbacks.

This paper proposes representing elements such as words, entities, and annotations as graph nodes,
while relationships between them are represented as edges. This approach enables a more natural
representation of non-linear connections (e.g., dependencies between words in different parts of a sentence
or coreference between entities). The graph-based representation of text parser data thus serves as a unified
data format that is comprehensible to all actors, as it is fundamentally based on a simple subject-predicate-
object triple structure.

The main operations when working with a graph are:
adding a node

V𝑖𝑖 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑘𝑘},

where 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑘𝑘 – attributes of the node (e.g., token, POS tag), which can also be represented as nodes.
adding an edge

𝐸𝐸𝑖𝑖𝑖𝑖 = �𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗,𝑅𝑅�,

where 𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 – nodes; 𝑅𝑅 – type of relationship (e.g., syntactic dependency).
searching for a connection

𝑇𝑇�𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗� = min
𝑃𝑃

� 𝜔𝜔𝑘𝑘𝑘𝑘
(𝑉𝑉𝑘𝑘,𝑉𝑉𝑚𝑚)∈𝑃𝑃

,

where 𝑃𝑃 – path between 𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗, and 𝜔𝜔𝑘𝑘𝑘𝑘 – weight of the edge.
The complexity of the graph-based approach is as follows:
Adding a node or edge: 𝑂𝑂(1)
Searching for neighboring nodes: 𝑂𝑂(1) (on average, for a well-structured graph).

Developmen of a unified output format for text parsers in the ontology construction system… 179

Searching for relationships between entities: 𝑂𝑂(log𝑛𝑛) or 𝑂𝑂(𝑑𝑑),
where 𝑛𝑛 – number of nodes; 𝑑𝑑 – degree of the node:

𝑑𝑑 =
2𝐸𝐸
𝑉𝑉

,

V – total number of nodes (vertices) in the graph;
E – total number of edges (connections) in the graph.
Thus, a graph database (DB) provides faster access to information, reducing the complexity of

searching from 𝑂𝑂(𝑛𝑛2) (during deserialization) to 𝑂𝑂(log𝑛𝑛) or even 𝑂𝑂(1), depending on the structure of the
graph. Therefore, the overall complexity of this approach will be:

𝑀𝑀𝑀𝑀𝑀𝑀�𝑂𝑂(log𝑛𝑛),𝑂𝑂(1)�.

On the other hand, serialization-deserialization is suitable for data storage and transmission but is
inefficient for analysis and quick access.

Furthermore, a graph DB allows for easy formulation, storage, and application of rules in a rule-based
approach to ontology construction from text, where a rule can be represented in the following form:

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠�𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠� → 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖(𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠),

where 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠, 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 – queries (select, insert respectively) to the graph database; 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 – syntactic relationship
graph, and 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 – semantic relationship graph.

A set of rules 𝑄𝑄 = {𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑘𝑘}, where 𝑄𝑄𝑖𝑖 = (𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 , 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖) can easily be stored, transmitted, and
applied, as the rules themselves are textual data in well-known formats, such as SPARQL or Cypher.
Moreover, one of the most important aspects is that the graph DBMS, like other DBMSs, serves as a query
interpreter. Therefore, adding new rules does not require any compilation and can be done "on the fly" during
the functioning of the intelligent agent. This feature opens up wide opportunities for the automatic learning
of the ontology construction system from text.

The graph structure also facilitates the training of neural networks, which can be used as an ML module
in the intelligent agent. This is because vector representations can be easily formed (e.g., through GNN –
Graph Neural Networks) and algorithms can be applied to find connections, hidden patterns, clustering, or
inductive learning.

Thus, the use of a graph database enables the unification of data represented in different structures
within a si ngle parser, as well as data from different parsers (CoreNLP, OpenNLP, GATE), even those
implemented in a different technological stack, such as NLTK and SpaCy.

• The implementation of a rule-based approach for ontology construction from text using a syntactic
graph.

After the output data from the text parsers was converted to the RDF graph format using a graph
database, the rule-based approach for ontology construction from text represents a typical ETL (Extract,
Transform, Load) process, as shown in Error! Reference source not found..

Fig. 1. Typical ETL process diagram.

180 A. Chornyi, D. Dosyn

The formalization of syntactic-semantic rules in the form of ETL processes opens new horizons in the

research and development of intelligent agents capable of learning from unstructured text documents.
In particular, the division of ETL stages at the application level of the intelligent agent enables the

evaluation of each rule by parallelizing the data recording processed at each of these stages, as shown in
Fig. 2. This, in turn, opens opportunities for analyzing the effectiveness of each rule without increasing the
complexity of the main algorithm, keeping it at the level of 𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂(log𝑛𝑛),𝑂𝑂(1)).

From an epistemological point of view, this approach represents an implementation of the first-level
reflection of the intelligent agent, which in this case is expressed in the agent's ability to evaluate its own
activities, specifically the process of constructing an ontology from text.

Fig. 2. ETL diagram of the rule-based approach with first-level reflection.

In order to analyze this approach, a study of the syntactic-semantic rule was conducted with the

following logic:
if there is a "compound" relationship between nodes in the syntactic graph, and the subject and object
of this relationship are connected to the literal "PERSON" via the relationship
NamedEntityTagAnnotation, then create a node of type "person" in the semantic graph. The name of
this node will be the subject of the "compound" relationship, and the surname will be the object of the
"compound" relationship. The result for the sentence "Alice Johnson prepared a detailed report for the
upcoming meeting." is shown in Fig. 3.

Fig. 3. The result of applying the person extraction rule to a sentence.

Developmen of a unified output format for text parsers in the ontology construction system… 181

This rule is implemented at the graph database level using the SPARQL query provided below. The
relative simplicity of this rule allowed for its execution without dividing the ETL processes at the application
level. This implementation enabled the analysis to be conducted without the technological delays that would
have been introduced by Java code execution.

In the provided SPARQL code for the "person" entity extraction rule, the ETL processes (Extract,
Transform, Load) and the reflection blocks are highlighted with comments.

PREFIX crocus: http://crocus.science/
DROP GRAPH <http://localhost:3330/opgraph/statrule>;
INSERT
{
//----- LOAD -----
 GRAPH <http://localhost:3330/opgraph/semgraph>
 {
 ?fulln ?firstName ?fn .
 ?fulln ?lastName ?ln .
 ?fulln ?rdfType ?rdfPerson .
 }
//----- Reflection -----
 GRAPH <http://localhost:3330/opgraph/statout>
 {
 ?fulln ?firstName ?fn .
 ?fulln ?lastName ?ln .
 ?fulln ?rdfType ?rdfPerson .
 }
 GRAPH <http://localhost:3330/opgraph/statin>
 {
 ?subject ?compound ?object .
 ?subject ?namedEntityTag ?parserTypePerson .
 ?object ?namedEntityTag ?parserTypePerson .
 }
 GRAPH <http://localhost:3330/opgraph/statrule>
 {
 ?ruleId ?ruleStart ?startTime .
 }
}
WHERE
{
 GRAPH <http://localhost:3330/opgraph/syngraph>
 {
 BIND(NOW() AS ?startTime)
//----- EXTRACT -----
 BIND(<http://nlp.stanford.edu#compound> AS ?compound)
 BIND(<http://nlp.stanford.edu#NamedEntityTagAnnotation> AS
?namedEntityTag)
 BIND("PERSON" AS ?parserTypePerson)

 ?subject ?compound ?o . BIND(IRI(?o) AS ?object)
 ?subject ?namedEntityTag ?parserTypePerson .
 ?object ?namedEntityTag ?parserTypePerson .

//----- TRANSFORM -----
 BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId)
 BIND(IRI(crocus:startTime) AS ?ruleStart)
 BIND(<rdf:typeof> AS ?rdfType)
 BIND("person" AS ?rdfPerson)
 BIND(IRI(CONCAT("crocus:", REPLACE(STR(?object), ".*[/#]", ""),
"_", REPLACE(STR(?subject), ".*[/#]", ""))) AS ?fulln)
 BIND(<crocus:firstname> AS ?firstName)
 BIND(<crocus:lastname> AS ?lastName)
 BIND(?object AS ?fn)

http://crocus.science/

182 A. Chornyi, D. Dosyn

 BIND(?subject AS ?ln)
 }
};
//----- Reflection -----
INSERT
{
 GRAPH <http://localhost:3330/opgraph/statrule>
 {
 ?ruleId ?ruleEnd ?endTime .
 ?ruleId ?ruleDuration ?duration .
 }
}
WHERE
{
 GRAPH <http://localhost:3330/opgraph/statrule>
 {
 ?rule ?ruleStart ?startTime .
 }
 BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId)
 FILTER(?rule = ?ruleId)
 FILTER(?ruleStart = IRI(crocus:startTime))
 BIND(IRI(crocus:endTime) AS ?ruleEnd)
 BIND(IRI(crocus:duration) AS ?ruleDuration)
 BIND(NOW() AS ?endTime)
 BIND((?endTime - ?startTime) AS ?duration)
};

In scope of this SPARQL script, writing of input and output data of the rule into the graphs statin

(Extract stage) and statout (Load stage) is being performed, as shown in Fig. 2, along with the execution
duration of the rule into the statrule graph (Transform stage).

The study was started with a text corpus of 20 sentences, adding one sentence at a time from 1 to 20.
However, this volume of text did not lead to significant changes in the execution time of the rule, sufficient
for analysis. Therefore, a nonlinear increment was applied, doubling the number of sentences in the text
corpus at each subsequent step up to 640 sentences. To better understand the actual volume of the text corpus,
it should be noted that 80 sentences correspond to approximately one page in A4 format with 1 cm margins
on all sides, using 12 pt Times New Roman font.

The text data was generated using an LLM system with the following requirements: each sentence
must mention one person in the format of a combination of <FirstName LastName>, each of which
(combination) should be unique.

As a result of the experiment, the performance characteristics of the person entity extraction rule,
presented above in the SPARQL script, were obtained (Table 6).

Table 6

The dependence of the execution time of the rule on the quantitative characteristics
of the working graphs.

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

1 0.026 0.022 83 251 3 3 4 3
2 0.003 0.027 147 463 5 6 7 6
3 0.002 0.021 218 692 7 9 10 9
4 0.003 0.020 282 915 9 12 13 12
5 0.003 0.029 342 1116 11 15 16 15
6 0.003 0.028 391 1280 13 18 19 18

Developmen of a unified output format for text parsers in the ontology construction system… 183

Continuation of Тable 5

1 2 3 4 5 6 7 8 9
7 0.005 0.038 466 1518 15 21 22 21
8 0.004 0.031 521 1707 17 24 25 24
9 0.004 0.041 575 1894 19 27 28 27
10 0.004 0.028 633 2090 21 30 31 30
11 0.005 0.029 690 2282 23 33 34 33
12 0.003 0.042 743 2454 25 36 37 36
13 0.004 0.038 814 2684 27 39 40 39
14 0.004 0.031 867 2849 29 42 43 42
15 0.003 0.039 915 3007 31 45 46 45
16 0.002 0.042 978 3206 33 48 49 48
17 0.003 0.047 1049 3436 35 51 52 51
18 0.002 0.048 1105 3627 37 54 54 55
19 0.003 0.037 1169 3834 39 57 58 57
20 0.003 0.043 1233 4046 41 60 61 60
40 0.005 0.049 2306 7456 77 116 117 120
80 0.010 0.059 4327 13237 96 176 177 243

160 0.013 0.078 7689 21790 100 255 256 468
320 0.064 0.100 13556 35359 102 384 385 849
640 0.088 0.133 31732 76519 147 567 568 1263

 𝑟𝑟(𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 0.93 0.95 0.93 0.98 0.98 0.96
 𝑟𝑟(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) 0.93 0.93 0.73 0.91 0.91 0.94

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – the number of sentences in the text corpus;
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 – the execution time of the rule (script) in the incremental sentence adding mode;
𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 – the execution time of the rule (script) in the full text corpus adding mode;
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 – the total number of nodes in the syntactic graph;
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 – the total number of edges (relations) in the syntactic graph;
𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 – the number of nodes extracted by the rule from the syntactic graph during the Extract
stage;
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 – the number of edges (relations) extracted from the syntactic graph during the Extract stage;
𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 – the number of nodes stored by the rule in the semantic graph during the Load stage;
𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 – the number of edges (relations) stored by the rule in the semantic graph during the Load stage;
𝑟𝑟�𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� – the Pearson linear correlation vector between 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and the parameters 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠, 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, and 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿;
𝑟𝑟(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) – the Pearson linear correlation vector between 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 and the parameters 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠, 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 та 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.
The correlation between the execution time and the quantitative parameters of the working graphs of

the syntactic-semantic transformation was calculated separately, based on the data from Table 6, and is not
part of the rule. This indicator was calculated additionally to better understand which specific characteristics
of the working graphs and queries have a greater impact on the performance of the syntactic-semantic rules
in the proposed approach.

The correlation values indicate that the execution time of the rule is directly dependent on the size of
the working graphs and the samples. However, when the entire text corpus is loaded at once and the rule is
executed, the execution time is more strongly dependent on the number of edges (connections) in the sample

184 A. Chornyi, D. Dosyn

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 at the Extract stage (pattern matching in the syntactic graph). In contrast, during incremental
analysis, which involved gradually increasing the size of the text corpus by adding new sentences to the
existing ones and executing the rule at each stage, a stronger dependency of the execution time was observed
on the number of edges (relations) in the sample 𝑬𝑬𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 at the Load stage (inserting into semantic graph).

This pattern indicates the presence of a caching function in the graph database server used in the study
(Apache Jena Fuseki), as, with the incremental increase in the text corpus volume, the syntactic analysis data
from the previous step were not deleted. Accordingly, the data of the query at the Extract stage of the
investigated rule at each step (except for the first one) was partially cached.

Analyzing this information on the charts shown in Fig. 4, a sharp increase (by 5 times) in the execution
time of the transformation (rule) was observed after the text corpus was increased from 160 sentences to 320.
This clearly indicates a cache memory overflow in the graph database server.

Fig. 4. The charts of the results of the person extraction rule execution (Table 6).

To further investigate the impact of data caching in the graph database server on the execution time of

syntactic-semantic rules, an additional study was conducted. The essence of this study was to analyze the
change in execution time during repeated rule executions. The results of this study are presented in Table 7.
The research algorithm involved repeating the rule execution ten times, measuring the time after its initial
execution on the freshly loaded syntactic graph for different text corpus volumes.

Table 7

The impact of caching on the repeated execution of the syntactic-semantic rule.

𝑵𝑵𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑻𝑻𝟏𝟏 𝑻𝑻𝟐𝟐 𝑻𝑻𝟑𝟑 𝑻𝑻𝟒𝟒 𝑻𝑻𝟓𝟓 𝑻𝑻𝟔𝟔 𝑻𝑻𝟕𝟕 𝑻𝑻𝟖𝟖 𝑻𝑻𝟗𝟗 𝑻𝑻𝟏𝟏𝟏𝟏
1 0.022 0.005 0.003 0.003 0.003 0.005 0.003 0.001 0.003 0.002 0.001
2 0.027 0.003 0.004 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002
3 0.021 0.005 0.003 0.002 0.003 0.002 0.004 0.003 0.005 0.002 0.003
4 0.020 0.004 0.003 0.004 0.003 0.002 0.002 0.003 0.002 0.002 0.002
5 0.029 0.005 0.004 0.003 0.004 0.004 0.001 0.003 0.004 0.003 0.004
6 0.028 0.009 0.006 0.004 0.005 0.004 0.007 0.003 0.005 0.005 0.003
7 0.038 0.008 0.005 0.006 0.005 0.004 0.003 0.005 0.003 0.003 0.005
8 0.031 0.006 0.005 0.005 0.005 0.005 0.004 0.005 0.003 0.003 0.003
9 0.041 0.006 0.006 0.005 0.005 0.003 0.004 0.003 0.006 0.005 0.005
10 0.028 0.008 0.006 0.004 0.003 0.005 0.004 0.004 0.005 0.005 0.003
11 0.029 0.006 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004
12 0.042 0.011 0.007 0.007 0.005 0.005 0.005 0.005 0.005 0.003 0.003
13 0.038 0.010 0.005 0.006 0.005 0.004 0.005 0.004 0.005 0.004 0.003
14 0.031 0.006 0.006 0.005 0.004 0.003 0.003 0.005 0.004 0.004 0.004
15 0.039 0.009 0.006 0.005 0.004 0.003 0.004 0.004 0.004 0.004 0.003

Developmen of a unified output format for text parsers in the ontology construction system… 185

Continuation of Тable 5

1 2 3 4 5 6 7 8 9 10 11 12
16 0.042 0.009 0.013 0.008 0.003 0.006 0.007 0.006 0.002 0.004 0.003
17 0.047 0.011 0.005 0.005 0.004 0.006 0.005 0.004 0.003 0.005 0.003
18 0.048 0.008 0.007 0.007 0.006 0.005 0.003 0.004 0.003 0.003 0.002
19 0.037 0.008 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003
20 0.043 0.009 0.007 0.007 0.004 0.005 0.009 0.005 0.006 0.004 0.004
40 0.049 0.016 0.011 0.012 0.011 0.009 0.005 0.006 0.007 0.005 0.006
80 0.059 0.019 0.020 0.012 0.010 0.011 0.013 0.011 0.009 0.008 0.009

160 0.078 0.034 0.030 0.023 0.023 0.020 0.019 0.016 0.016 0.016 0.015
320 0.100 0.041 0.033 0.030 0.031 0.025 0.027 0.022 0.024 0.025 0.022
640 0.133 0.054 0.043 0.043 0.034 0.035 0.033 0.032 0.031 0.030 0.031

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – the number of sentences in the text corpus;
𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓– the execution time of the rule after the addition of the text corpus and its initial execution;
𝑇𝑇1 …𝑇𝑇10 – the execution time of the rule during each subsequent repetition attempt.
As shown in Table 7, each subsequent execution of the rule is faster until a certain minimum is reached,

which further confirms the presence of a query caching function that helps optimize rule-oriented methods
for ontology construction from text. For clarity, a chart depicting the change in execution time depending on
the number of repetitions is provided. The chart includes data on the nonlinear increase in the volume of the
text corpus (20, 40, 80, 160, 320, and 640 sentences), as this is where the time deviation is the most
noticeable.

Fig. 5. The dependence of the rule execution time on the number of repetitions.

It is evident that data caching occurs at the Extract stage (Fig. 1. Typical ETL process diagram.), and

each subsequent execution of the rule is several times faster. Therefore, for optimizing the performance of
rule-based approaches for ontology construction from text, it makes sense to group rules based on the
similarity of input data (samples at the Extract stage). This approach significantly speeds up the execution
of syntactic-semantic transformations, as grouping the rules means that each subsequent rule has a partially
or fully cached set of input data.

186 A. Chornyi, D. Dosyn

Conclusions

The construction of an ontology from textual documents is a crucial task in the process of automated
learning for intelligent agents. Solving this problem opens new possibilities for building systems with a
causal type of reasoning, which, unlike probabilistic models – an analogy of collective thinking – lays the
foundation for implementing logical inference processes and searching for the optimal strategy of an
intelligent agent.

This article proposes an approach that significantly advances the solution to this problem. The
proposed approach aims to enhance the analysis of textual information by unifying data from different text
parsers to extract a greater number of syntactic and semantic characteristics. A graph database is suggested
as an operational repository for storing the output data of text parsers, bringing them into the simple and
widely recognized RDF format, with an atomic structure in the form of the triple "subject-predicate-object."
Such unification enables further interpretation and processing of text parser data by various systems.

Additionally, the article presents the concept of constructing a semantic graph, which serves as the
basis for ontology representation. The proposed concept follows a rule-based approach to constructing
semantic structures from syntactic graphs using ETL processes and SPARQL queries. This formalization of
rules opens new horizons for automated learning of an intelligent agent, as rules in the form of SPARQL
scripts can be easily added and instantly interpreted "on the fly."

Furthermore, the implementation of first-level reflection for the studied rule allowed for an assessment
of the execution time dependence on the volume of the text corpus and the size of data samples at different
ETL process stages. The results of the experimental study clearly demonstrate the impact of data sample
caching on rule execution time. This paves the way for optimizing the rule-based process of ontology
construction from text by properly formalizing and clustering rules based on the similarity of input data
samples obtained from text parsers.

REFERENCES

1. Apache Open NLP Website. (n.d.). (Apache) Retrieved from https://opennlp.apache.org/
2. Asim, M. N., Wasim, M., Khan, M. U., Mahmood, W., & Abbasi, H. M. (2018). A survey of ontology learning

techniques and applications. Database: The Journal of Biological Databases and Curation, 2018(bay101).
doi:10.5120/2610-3642

3. Basaraba, I., Bets, I., & Bets, Y. (2024). Current trends in the recognition and decoding of phraseological units.
Current Issues of the Humanities, 74(1), 211-216. doi:10.24919/2308-4863/74-1-29

4. Chornyi, A. (2024). Development of an adequate intellectual agent for a wide subject area as a model for further
scientific research. Abstract. Retrieved from https://www.academia.edu/127201897

5. CoreNLP vs Apache OpenNLP. (n.d.). (Awsome Java) Retrieved from https://java.libhunt.com/compare-corenlp-
vs-apache-opennlp

6. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. 2019 Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2019), pp. 4171-4186.
doi:10.48550/arXiv.1810.04805

7. Doroshenko, A. (2018). Development of information technology for intellectual analysis of factographic
information. Bionics of Intelligence, 1 (90), 116-121. doi:10.11591/eei.v11i5.3075

8. Dosyn, D., & Lytvyn, V. (2021). Models and methods for determining the usefulness of ontological knowledge:
Monograph. Lviv: "Novyy svit – 2000".

9. Dosyn, D., Daradkeh, Y., Kovalevych, V., Luchkevych, M., & Kis, Y. (2022). Domain Ontology Learning using
Link Grammar Parser and WordNet. MoMLeT+DS 2022: 4-th International Workshop on Modern Machine
Learning Technologies and Data Science. Leiden-Lviv, The Netherlands-Ukraine. Retrieved from https://ceur-
ws.org/Vol-3312/paper2.pdf

10. GATE website. (n.d.). Retrieved from https://gate.ac.uk/
11. Haiko, C. (2023). Ontology-driven means for processing and presentation of large arrays of unstructured texts.

Innovative Technologies and Scientific Solutions for Industries, 2(24), 27-38. doi:10.30837/ITSSI.2023.24.027
12. Hlybovets, M., & Bobko, O. (2012). The methods of automatic ontology generation. NaUKMA Research Papers.

Computer Science, 138, 61-67. Retrieved from https://ekmair.ukma.edu.ua/handle/123456789/1917

Developmen of a unified output format for text parsers in the ontology construction system… 187

13. Kumari, P. (2024, October 26). 7 Top NLP Libraries For NLP Development. Retrieved from
https://www.labellerr.com/blog/top-7-nlp-libraries-for-nlp-development

14. Linked Open Data Cloud. (n.d.). Retrieved from https://www.lod-cloud.net/
15. Lytvyn, V., & Cherna, T. (2014). The problem of automated development of a basic ontology. Journal of Lviv

Polytechnic National University "Information Systems and Networks", 805, 306–315.
16. Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The Stanford CoreNLP

Natural Language Processing Toolkit. Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, (pp. 55-60). Baltimore, Maryland, USA. doi:10.3115/v1/P14-
5010

17. Mousavi, H., Kerr, D., Iseli, M., & Zaniolo, C. (2014). Harvesting Domain Specific Ontologies from Text.
International Conference on Semantic Computing. Newport Beach, CA, USA. doi:10.1109/ICSC.2014.12

18. Nanavati, J., & Ghodasara, Y. (2015, November). A Comparative Study of Stanford NLP and Apache. International
Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, 5(5), 57-60. Retrieved from
https://www.ijsce.org/wp-content/uploads/papers/v5i5/E2744115515.pdf

19. NTLK website. (n.d.). (NLTK Project) Retrieved from https://www.nltk.org/
20. Schmitt, X., Kubler, S., Robert, J., Papadakis, M., & LeTraon, Y. (2019). A Replicable Comparison Study of NER

Software: StanfordNLP, NLTK, OpenNLP, SpaCy, Gate. Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS). Granada, Spain. doi:10.1109/SNAMS.2019.8931850

21. Shaptala, R. (2023). Dictionary embeddings for document classification in low-resource natural language
processing. – Qualification scientific work as manuscript. Kyiv. Отримано з https://ela.kpi.ua/items/14de271d-
5971-4cdc-92e6-8e645336332d

22. Shvorob, I. (2015). Comparative analysis of methods for syntactic parsing of texts. Journal of Lviv Polytechnic
National University "Information Systems and Networks", 814, 197-202. Retrieved from
http://nbuv.gov.ua/UJRN/VNULPICM_2015_814_22

23. spaCy website. (n.d.). Retrieved from https://spacy.io/
24. Stanford CoreNLP website. (n.d.). Retrieved from https://stanfordnlp.github.io/CoreNLP/
25. Vovnianka, R., Dosyn, D., & Kovalevych, V. (2014). The method of knowledge extraction from text documents.

Journal of Lviv Polytechnic National University "Information Systems and Networks", 783, 302–312.
26. Yunchyk, V., Kunanets, N., Pasichnyk, V., & Fedoniuk, A. (2021, 10). Analysis of artificial intellectual agents for

e-learning systems. Journal of Lviv Polytechnic National University "Information Systems and Networks", 10, 41-
57. doi:10.23939/sisn2021.10.041

27. Zezula, T. (2020, August 29). 15 Natural Language Processing Libraries Worth a Try. Retrieved from
https://www.tomaszezula.com/natural-language-processing-libraries

28. Zlatareva, N., & Amin, D. (2021). Processing Natural Language Queries in Semantic Web Applications. The 7th
World Congress on Electrical Engineering and Computer Systems and Science (EECSS’21).
doi:10.11159/cist21.108

РОЗРОБЛЕННЯ ЄДИНОГО ФОРМАТУ ВИХІДНИХ ДАНИХ
ДЛЯ ТЕКСТОВИХ ПАРСЕРІВ В СИСТЕМІ ПОБУДОВИ ОНТОЛОГІЇ

З ТЕКСТОВИХ ДОКУМЕНТІВ

Андрій Чорний1, Дмитро Досин2

1, 2 Національний університет “Львівська політехніка”,
кафедра інформаційних систем та мереж, Львів, Україна

1 E-mail: andrii.o.chornyi@lpnu.ua, ORCID: 0009-0007-4005-4088
2 E-mail: dmytro.h.dosyn@lpnu.ua, ORCID: 0000-0003-4040-4467

© Чорний А., Досин Д., 2025

Проблема відсутності ефективних засобів побудови онтологій з текстових документів все ще
залишається невирішеною. Її розв'язання стикається з низкою викликів, зокрема, відсутністю
єдиного формату вихідних даних різних NLP інструментів, зокрема текстових парсерів, які є

188 A. Chornyi, D. Dosyn

першою ланкою в багатоетапному процесі видобування знань. На сьогоднішній день існує
декілька популярних текстових парсерів, кожен з яких має свої особливості та переваги у
реалізації окремих функцій. З метою ефективнішого вирішення проблеми побудови онтології з
тексту доцільним є використання декількох текстових парсерів, що породжує проблему узгод-
ження форматів вихідних даних цих NLP інструментів.

Для вирішення задачі уніфікації формату вихідних даних текстових парсерів,
запропоновано використання графової бази даних для їх збереження у форматі триплета суб’єкт-
предикат-об’єкт з метою подальшого опрацювання з використанням правило-орієнтованих
трансформацій на основі SPARQL запитів. Суттєвою перевагою такого підходу є можливість
виконання кожного нового правила "на льоту".

В рамках дослідження розроблено інтелектуального агента на мові Java, здатного будувати
семантичні графи з природомовного тексту на основі правило-орієнтованого підходу. За допо-
могою розробленого інтелектуального агента проведено оцінку залежності часу виконання
правила синтаксично-семантичної трансформації від об’єму текстового корпусу та розмірів
вибірок даних. Дане оцінювання стало можливим за рахунок імплементованої рефлексії першого
рівня для досліджуваного правила трансформації.

За результатами дослідження, запропонований підхід уніфікації вихідних даних текстових
парсерів з використанням графової бази даних показав свою ефективність з точки зору складності
операції та швидкодії. Розроблений підхід побудови онтології з тексту відкриває перед сучасною
наукою нові горизонти для автоматизованого навчання інтелектуального агента на основі
текстової інформації.

Ключові слова – опрацювання природної мови, онтологія, автоматична побудова онтології,
автоматизоване навчання, синтаксично-семантичні шаблони

	Макет
	UDС 004.89
	DEVELOPMENT OF A UNIFIED OUTPUT FORMAT FOR TEXT PARSERS IN THE ONTOLOGY CONSTRUCTION SYSTEM FROM TEXT DOCUMENTS
	Andrii Chornyi1, Dmytro Dosyn2
	РОЗРОБЛЕННЯ ЄДИНОГО ФОРМАТУ ВИХІДНИХ ДАНИХ ДЛЯ ТЕКСТОВИХ ПАРСЕРІВ В СИСТЕМІ ПОБУДОВИ ОНТОЛОГІЇ З ТЕКСТОВИХ ДОКУМЕНТІВ
	Андрій Чорний1, Дмитро Досин2

