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The challenge of effectively constructing ontologies from text documents remains unresolved, 
posing a critical gap in modern knowledge extraction methodologies. One of the primary obstacles is the 
lack of a standardized output format across different NLP tools, particularly text parsers, which serve as 
the foundational step in multi-stage knowledge extraction processes. While several widely used text 
parsers exist, each excels in specific functions, making it beneficial to leverage multiple parsers for more 
comprehensive ontology construction. However, this approach introduces the issue of reconciling their 
disparate output formats. 

To address this challenge, we propose using a graph database to store parser outputs in a subject-
predicate-object triple format, enabling seamless integration and further processing through rule-based 
transformations using SPARQL queries. A key advantage of this approach is the ability to execute new 
transformation rules dynamically, allowing for greater flexibility and efficiency in ontology generation. 

As part of our research, we developed an intelligent agent in Java capable of constructing semantic 
graphs from natural language text using a rule-based approach. The agent was employed to evaluate the 
relationship between the execution time of syntax-semantic transformation rules and variables such as 
text corpus size and dataset sample dimensions. This evaluation was made possible through the 
implementation of first-level reflection for the studied transformation rule. 

The results demonstrate that our approach – standardizing parser outputs via a graph database – 
roves effective in terms of both computational complexity and processing speed. By streamlining the 
ontology construction process, our method paves the way for advanced automated learning of intelligent 
agents based on textual information, unlocking new possibilities for modern science in the realm of 
knowledge extraction and representation. 

Keywords - natural language processing, ontology, automatic ontology construction, automated 
learning, syntax-semantic patterns. 

 

Problem statement 

In today's information society, most of the knowledge is represented in the form of unstructured texts. 
The effective extraction of structured information from such sources is critically important for various fields, 
including science, business, and technology. Natural Language Processing (NLP) methods play a key role in 
this process, providing tools for analyzing and interpreting textual data. In other words, they open the door 
to opportunities for automating the process of text comprehension (Shaptala, 2023). This paves the way for 
the automatic learning of intelligent agents across different subject domains, ranging from general 
knowledge to highly specialized fields. 
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One of the promising directions is the use of ontologies for knowledge formalization, which enables 
structuring information and facilitating its further utilization. Ontologies provide a shared understanding of a 
subject domain and promote the integration of data from various sources. Therefore, the development of a tool 
for the automatic generation of ontologies based on unstructured text is a relevant research topic (Hlybovets & 
Bobko, 2012). In addition to enabling machine interpretation, it also makes automated logical inference possible. 

The process of automatically constructing ontologies from unstructured texts faces several challenges. 
Among them is the lack of unified standards (Lytvyn & Cherna, 2014), particularly the diversity of formats 
and structures in the source data obtained from various NLP tools, which complicates further analysis. The 
use of graph databases, such as Apache Jena Fuseki, can facilitate the efficient storage and processing of 
unified data (in RDF format), which simplifies the construction of syntactic-semantic patterns using 
SPARQL queries (Haiko, 2023). 

 

Analysis of Recent Studies and Publications 

• Overview of existing Text Parsers. 

The process of automatically constructing an ontology from natural texts is a multi-stage pipeline of 
methods based on t he Methodology of Ontology Learning (Asim, Wasim, Khan, Mahmood, & Abbasi, 
2018). In general, these methods can be divided into two groups: natural text processing methods and 
ontology construction methods [3]. The first group is applied at the initial stage of the process. The author 
of (Asim, Wasim, Khan, Mahmood, & Abbasi, 2018) logically concludes that achieving higher accuracy in 
ontology learning requires effective preprocessing of data using high-quality linguistic methods. 

The linguistic methods that make up t his first group are integrated into text parsers – software 
components or tools that analyze textual data, breaking it down into structured elements based on predefined 
rules or formats. Parsers transform unstructured or semi-structured textual data into a more processable 
format, such as tree structures, arrays, or other data representations. 

In modern Natural Language Processing (NLP), there is a wide range of text parsers classified based on 
different methods and approaches, with a detailed analysis provided in the article (Shvorob, 2015). Generally, 
parsers can be divided into two main categories: statistical and rule-based. Statistical parsers leverage machine 
learning techniques to analyze text, while rule-based parsers rely on predefined grammatical rules. Some modern 
parsers combine both approaches to achieve higher accuracy and efficiency. 

Based on data from open Internet sources (Zezula, 2020) (Kumari, 2024), a list of relevant parsers is 
provided. The relevance of these libraries was verified by checking the date of the last update in their 
respective GitHub repositories. The criterion for relevance is that the latest commit must have been made no 
earlier than six months ago, meaning no older than July 2024. 

 
Table 1  

List of relevant text parsers 

Library Language License Type Commercial use 
NLTK Python Apache 2.0* Restricted* 
spaCy Python MIT Allowed 

scikit-learn Python BSD Allowed 
gensim Python LGPL Allowed 

TextBlob Python MIT Allowed 
CoreNLP Java GPL Restricted** 
OpenNLP Java Apache 2.0 Allowed 
PyTorch Python BSD Allowed 
Stanza Python Apache 2.0** Restricted** 
GATE Java LGPL-3 Allowed 

*: NLTK is licensed for non-commercial use, but commercial licenses are available for some corpora. 
**: Stanford provides paid licenses for commercial use of CoreNLP and Stanza. 
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The scientific interest among the libraries listed in Table 1 is drawn to Stanford CoreNLP, NLTK, 
Apache OpenNLP, spaCy, and Gate. Specifically, the study (Schmitt, Kubler, Robert, Papadakis, & LeTraon, 
2019) is dedicated to examining these parsers, comparing them as software for Named Entity Recognition 
(NER). The authors emphasize the importance of NER as a key stage in Natural Language Processing (NLP) 
systems, which allows for the identification and classification of entities (such as persons, places, etc.) in the 
text. The primary goal of the study (Schmitt, Kubler, Robert, Papadakis, & LeTraon, 2019) is to objectively 
assess the performance of these five popular NER systems. The authors felt the need for a replicated study 
due to significant discrepancies in the results found in other sources. Researchers used two different corpora 
(CoNLL2003 and GMB) to evaluate the performance of the software. 

According to the results of the study (Schmitt, Kubler, Robert, Papadakis, & LeTraon, 2019), Stanford 
CoreNLP demonstrated the most stable performance, surpassing other programs by 15-30%. However, there 
are significant discrepancies between the results of this and other studies, which can reach up to 66%. The 
summarized results of the study, based on the criteria of performance, cost, documentation, and the ability 
to recognize major entity types (person, organization, location), are presented in Table 2. 

 
Table 2 

The summarized results of the experimental study  
(Schmitt, Kubler, Robert, Papadakis, & LeTraon, 2019) 

Parameter Stanford 
CoreNLP NLTK OpenNLP SpaCy Gate 

Performance Best Moderate Moderate High Moderate 

License GNU GPL Apache 2.0 Apache 2.0 MIT GPL v3 

Documentation Comprehensive Wide Limited Comprehensive Limited 

Entity Support PER, ORG, 
LOC 

PER, ORG, 
LOC 

PER, ORG, 
LOC 

PER, ORG, 
LOC + GPE 

PER, ORG, 
LOC 

 
In the work (Dosyn, Daradkeh, Kovalevych, Luchkevych, & Kis, 2022), a similar list of parsers is 

discussed as the most relevant, supplemented by the Link Grammar Parser library, which was initially built 
in ANSI C as the formal grammar system Link Grammar. During its development, it became part of the Java 
RelEx (RelEx Dependency Relationship Extractor) distribution. The authors of this work provide additional 
characteristics of the parsers, which play an important role in the development and research of automatic 
ontology construction from text, specifically algorithms, classifiers, and the presence of the OWL API. 

 
Table 3 

Additional parser parameters presented in the work 
(Dosyn, Daradkeh, Kovalevych, Luchkevych, & Kis, 2022). 

Parameter Stanford 
CoreNLP NLTK OpenNLP SpaCy Gate 

Algorithms CRF Max. entropy Max. entropy Neural (2.0) JAPE 

Classifiers CoNLL, 
MUC6-7, ACE StanfordNER   OntoNotes   

OWL API + – + - + 
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The authors of the article (Basaraba, Bets, & Bets, 2024), which discusses the issues of recognizing 
and decoding phraseological units, also consider these five libraries as NLP tools for solving the task they 
set, briefly presenting their general functional characteristics. 

A detailed assessment of the functional capabilities of each of the parsers listed above was conducted 
through an analysis of information from open sources, including the official resources of each library 
(Stanford CoreNLP website, n.d.) (NTLK website, n.d.) (Apache Open NLP Website, n.d.) (spaCy website, 
n.d.) (GATE website, n.d.). For convenience of evaluation, the results of this analysis are presented in the 
comparative table below. 

Table 4 

Comparative table of the functional capabilities of text parsers. 

NLP Component Stanford 
CoreNLP NLTK OpenNLP SpaCy GATE 

Tokenization Yes Yes Yes Yes Yes 

Sentence splitting Yes Yes Yes Yes Yes 

POS tagging 
 (Part-of-Speech) Yes Yes Yes Yes Yes 

Lemmatization Yes Yes – Yes Yes 

Stemming – Yes – – Yes 

Named entity recognition 
(NER) Yes Yes Yes Yes Yes 

Syntactic dependency 
parsing Yes Yes – Yes Yes 

Semantic role labeling Yes – – – – 

Chunking  
(Phrase grouping) – Yes Yes – Yes 

Word vectorization  
(Word Embeddings) – – – Yes – 

Coreference resolution Yes – – – Yes 

Sentiment analysis Yes – – Yes - 

Ability to train custom 
models Yes Limited Yes Yes Yes 

 
Based on the data presented in Table 4, it can be concluded that none of the parsers provides a complete 

spectrum of text analysis. On the other hand, returning to the previously mentioned quote from the author 
(Asim, Wasim, Khan, Mahmood, & Abbasi, 2018), for higher accuracy in ontology learning, effective 
preprocessing of data is necessary. Greater efficiency in data preprocessing can be achieved through a more 
comprehensive text analysis. Therefore, an important task for the ontology construction system from text is 
to ensure the capability of processing output data from different parsers. 
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• Overview of existing approaches to ontology construction from text. 

The main idea of this research was formed based on the CROCUS project (Cognition of Relations 
Over Concepts Using Semantics), described in the works (Dosyn, Daradkeh, Kovalevych, Luchkevych, & 
Kis, 2022) (Dosyn & Lytvyn, 2021). This project is dedicated to the automated learning of ontologies from 
text. Its main goal is to develop a system capable of automatically extracting semantic relationships in texts 
and forming hierarchical knowledge structures for specific users. The authors emphasize the assessment of 
the relevance of information specifically for the individual user. The proposed CROCUS project is built in 
Java using the Link Grammar Parser and WordNet API. The research (Dosyn, Daradkeh, Kovalevych, 
Luchkevych, & Kis, 2022) outlines two main approaches to detecting semantic relationships in texts, namely: 

analysis of sentence component trees to identify explicit relationships; 
use of a n aive Bayes classifier to detect implicit semantic relationships, which requires a deeper 
analysis of sentence parts. 
In the work (Mousavi, Kerr, Iseli, & Zaniolo, 2014), the OntoHarvester system is proposed, which 

presents a new (at the time) approach to automatically creating domain ontologies from a small corpus of 
texts using deep NLP analysis. The OntoHarvester system begins with a small set of concepts (seeds) and 
iteratively expands the ontology by adding new terms that have strong semantic connections with the existing 
concepts. According to the authors, this approach allows for the creation of comprehensive ontologies from 
small text corpora, while remaining resilient to noise and focused on a specific domain. The OntoHarvester 
work is based on the following steps: 

Construction of TextGraphs – using the SemScape system to create graphs that represent grammatical 
relationships between terms in the text. 
Extraction of ontological relationships – using graph templates (GD-rules) to identify relationships 
such as part_of and type_of. 
Extraction of new concepts – adding new terms to the ontology if they have strong connections with 
existing concepts. 
Detection of new types of relationships – identifying new types of relationships between existing 
concepts to further expand the ontology. 
According to the research findings, the authors (Mousavi, Kerr, Iseli, & Zaniolo, 2014) claim that their 

proposed approach achieves higher accuracy and coverage compared to other methods and demonstrates 
resilience to noise in the text while being able to create complex ontologies from small text corpora. This 
result is achieved using GD-rules (Graph Domain Rules or GD Rules). 

According to the authors (Mousavi, Kerr, Iseli, & Zaniolo, 2014), GD-rules are more powerful 
compared to traditional approaches that use tree-like templates or regular expressions. They allow for 
accounting for complex grammatical structures in the text, significantly improving the accuracy of extracting 
ontological relationships. Moreover, unlike statistical methods, GD-rules do not require large volumes of 
data for training, making them more practical for working with small text corpora. 

A similar inductive approach based on linguistic patterns is discussed in the article (Doroshenko, 2018) 
for extracting factual information. The authors present some basic correspondences between linguistic 
templates and their ontological interpretation in canonical form. 

Another relevant practical idea and its research, related to the field of ontology construction from text, 
are presented in the article (Zlatareva & Amin, 2021). The authors propose the creation of a question-
answering (QA) system, built on the principle of converting queries formulated in natural language into 
SPARQL queries, which are used in semantic web applications to retrieve data from graph databases. A vast 
number of such resources are interconnected through the Linked Open Data Cloud (Linked Open Data Cloud, 
без дати) and provide users with direct access to thousands of RDF/RDFS datasets via SPARQL endpoints. 
The main problem addressed by this work lies in the difficulty for regular users to use the SPARQL query 
language. 

The proposed methodology involves converting an unstructured natural language question into 
structured constructs that can be processed by a machine, like previous works, using a rule-based approach. 
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The use of machine learning (ML) systems, such as BERT (Devlin, Chang, Lee, & Toutanova, 2019), 
is another approach widely applied in ontology building systems from unstructured text, often in combination 
with rule-based approaches. 

The importance of ML components in solving the task of ontology building from text is also confirmed 
by the authors of (Basaraba, Bets, & Bets, 2024), who in their study attempt to address the issue of 
recognizing and decoding phraseological units. This problem is more related to general NLP, but it can serve 
as a foundation for recognizing indirect statements made in a specific context, applicable to a wide range of 
NLP applications. 

 

Formulation of the Article’s Objective 

The aim of this work is to unify the output data format of text parsers within an ontology construction 
system from textual documents and explore approaches for the automatic extraction of semantic relationships 
from unstructured texts using syntactic-semantic patterns (Vovnianka, Dosyn, & Kovalevych, 2014) 
(Mousavi, Kerr, Iseli, & Zaniolo, 2014). Additionally, it seeks to address the problem of the lack of unified 
standards by integrating syntactic parsing results into graph databases (RDF) and leveraging SPARQL 
queries to identify and apply syntactic-semantic patterns. 

 

Main Results 

• Selection of technologies for the ontology construction system. 

Based on the data presented in Table 4 and the core idea of continuing the CROCUS project (Dosyn, 
Daradkeh, Kovalevych, Luchkevych, & Kis, 2022) (Dosyn & Lytvyn, 2021), the development and research 
of an ontology construction system from text have been initiated using the Stanford CoreNLP text parser 
(Stanford CoreNLP website, n.d.). This choice is driven by factors such as relevance, functional 
completeness, and the technological stack, particularly the use of Java. Another crucial factor in selecting 
this parser is the comprehensiveness of its documentation, as noted in Table 2. 

Additionally, the findings of the comparative study (Nanavati & Ghodasara, 2015) were considered, 
which analyzed two popular natural language processing (NLP) tools – Stanford NLP and Apache OpenNLP 
– focusing on their efficiency in part-of-speech (POS) tagging. According to results of the study (CoreNLP 
vs Apache OpenNLP, n.d.), if accuracy and speed are the priority, Stanford NLP is the better choice. Publicly 
available sources indicate that this preference is widely supported by users. As stated in (CoreNLP vs Apache 
OpenNLP, n.d.), at the time of writing this article, the popularity of Stanford NLP significantly exceeded that 
of Apache OpenNLP, with a ratio of 9.2 to 6.8. 

The analytical review (Manning, et al., 2014) was also taken into account, in which the authors 
highlight the strengths of Stanford NLP, namely: ease of use, a universal interface, high-quality analysis, 
flexibility, support for multiple languages, and open-source availability. 

According to the classification proposed by the authors (Yunchyk, Kunanets, Pasichnyk, & Fedoniuk, 
2021), the formal task of developing a text-based ontology construction system is to create an artificial, 
virtual, reactive intelligent agent with a learning function based on unstructured texts. 

From a software architecture perspective, such a system is a modular intelligent agent based on the 
principles and analysis proposed in (Chornyi, 2024), which explores the principles of building intelligent 
agents, emphasizing their adequacy and functionality. 

In order to implement multi-agent capability (Chornyi, 2024), two communication interfaces were 
created using widely known modern protocols: REST API and SPARQL. These interfaces can be used for 
both agent-to-agent and human-to-agent communication. This approach enabled the development of a multi-
agent system with either hierarchical (command-subordinate) or peer-to-peer relationships between agents. 

The REST API module is implemented using the Java framework Spring Boot, which is widely 
adopted and has comprehensive documentation. 
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The SPARQL endpoint is implemented using the Apache Jena Fuseki module, which serves as a 
SPARQL server. In this case, it functions as an in-memory server for storing and processing the agent’s 
(ontology-building system’s) operational graph data. Apache Jena Fuseki enables the creation of a standalone 
server, which can later be used for permanent data storage and for handling large volumes of data. This 
provides an alternative to Neo4J, as proposed in (Chornyi, 2024). 

All these modules are integrated into a multi-tier modular architecture, allowing seamless expansion 
of the agent's functionality by adding new modules and layers. 

The task of integrating multiple NLP modules into a single system faces the problem of the lack of 
unified standards (Lytvyn & Cherna, 2014), the solution to which, within the context of building an ontology 
from text, is the unification of the output data format of NLP systems. 

• Solution to the problem of unifying the output data of text parsers. 

As mentioned earlier, based on the data in Table 4, it is evident that for the most accurate semantic 
analysis of text, it makes sense to use multiple parsers. Additionally, comparing the results of the same 
analysis from different parsers will provide a higher reliability score for the outcome. 

The idea of integrating different parsers into the software code of a single intelligent agent has led to 
the problem of processing their output data, as the data representation formats in different parsers vary. Since 
the CROCUS system's technological stack is based on the Java programming language, below is an overview 
table of the data structures of the CoreNLP, OpenNLP, and GATE text parsers, as potential candidates for 
modular integration into the developing intelligent agent system. 

 
Table 5 

Data Structures (Classes) of Text Parsers in Java. 

Parser 
Output Data CoreNLP OpenNLP GATE 

Text Document CoreDocument SentenceSample Document 

1 2 3 4 

Text Annotations: boundaries, 
type, and additional features Annotation  AnnotationSet 

Tokens with annotations: parts 
of speech, lemmas, named 

entities, etc. 
CoreLabel POSSample Annotation 

Attributes and characteristics 
of annotations in key-value 

format 
CoreMap FeatureMap FeatureMap 

Dependency graph between 
words in a sentence SemanticGraph – – 

Tree structure representing 
sentence syntax parsing Tree(Constituency Parse) Parse - 

Represents extracted triples 
from text: subject, predicate, 

object 
RelationTriple (OpenIE) – – 

Representation of relations 
between words referring to the 

same entity, i.e., for 
coreference resolution 

CorefChain – – 
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Continuation of Тable 5 

1 2 3 4 

Marks the boundaries of a text 
substring corresponding to a 

certain annotation 
Span Span - 

Marks the affiliation to a 
phrase (named entity or noun 

phrase) 
– ChunkSample – 

Represents an event with its 
characteristics 

– Event – 

Represents a sequence of 
elements (e.g., tokens and 
their tags) for storage and 

further processing 

– Sequence – 

Represents a collection of text 
documents that may contain 
annotations and are used for 
text processing and analysis 

– – Corpus 

Represents an individual 
element of text (e.g., word or 

character) that is part of a 
document and may have 
associated annotations 

– – Node 

Contains the textual content of 
the document 

– – DocumentContent 

 
Working with the representations of output data from text parsers presented in Table 5 is somewhat 

complicated by the lack of unification – all this data is objects of Java classes, not united by an abstract 
structure. Specifically, each NLP tool (CoreNLP, OpenNLP, GATE) uses its own data structure, which does 
not always align with others. For example, CoreNLP has Annotation, GATE has AnnotationSet, and 
OpenNLP does not have a clear equivalent. This complicates the integration of results from different parsers 
and their interaction with other systems. 

Moreover, these structures are of different types and often represent tree-like or list-based data 
constructs, which makes them rigidly tied to a specific order and hierarchy of data. For example, a syntactic 
tree (Tree or Parse) stores the structure of a sentence, which can be difficult to use for deeper analysis, 
especially when there is a need to analyze other data or relationships simultaneously. 

Since the data in this representation are Java objects, the use of rule-based approaches for ontology 
construction from text is complicated by excessive dependence on the code of the intelligent agent program, 
thereby nearly making automatic learning impossible due to the need for recompilation. 

Serialization into XML or JSON format could partially solve the problem of data storage and 
transmission between different modules or agents (actors), but it does not provide sufficient flexibility. This 
approach merely "freezes" the structure in its current form, without allowing for dynamic changes or 
transformations. Furthermore, for further processing of such data, deserialization is required, which 
necessitates that each actor knows the structure of all the data, or serialization must be performed with 
conversion into a single format. 
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The serialization operation has the following mathematical representation: 

𝑆𝑆(𝑜𝑜) = 𝑓𝑓(𝑜𝑜) → 𝐷𝐷, 

where 𝑜𝑜 – object; 𝑓𝑓(𝑜𝑜) – transformation function into the data format 𝐷𝐷 (e.g., JSON), which is typically 
linear in complexity 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 – size of the object, or the number of elements (objects or data structures) 
that need to be serialized or deserialized. 

Deserialization represents the inverse operation: 

𝑜𝑜′ = 𝑓𝑓−1(𝐷𝐷), 

where 𝑜𝑜′ – reconstructed object; 𝑓𝑓−1(𝐷𝐷) – inverse deserialization operation. 
The complexity of the serialization-deserialization approach is as follows: 
Serialization: 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 is the number of elements that need to be processed. 
Deserialization: 𝑂𝑂(𝑛𝑛), since all object fields must be read and reconstructed. 
Searching for relationships between entities: 𝑂𝑂(𝑛𝑛2) or even 𝑂𝑂(𝑛𝑛3), as the entire volume of 
deserialized data needs to be analyzed. 
Thus, the overall complexity of this approach is as follows: 
Optimistic scenario: 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛2) = 𝑶𝑶�𝒏𝒏𝟐𝟐�. 
Pessimistic scenario: 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑛𝑛3) = 𝑶𝑶�𝒏𝒏𝟑𝟑�. 
Thus, in addition to the aforementioned limitations, this approach has several drawbacks related to the 

complexity of algorithms, which are further exacerbated by data storage challenges due to the need for full 
deserialization during searches and complete file rewrites even for partial modifications. Converting text 
parser data into a g raph using a g raph database (e.g., Apache Jena Fuseki or Neo4j) provides a way to 
overcome these drawbacks. 

This paper proposes representing elements such as words, entities, and annotations as graph nodes, 
while relationships between them are represented as edges. This approach enables a more natural 
representation of non-linear connections (e.g., dependencies between words in different parts of a sentence 
or coreference between entities). The graph-based representation of text parser data thus serves as a unified 
data format that is comprehensible to all actors, as it is fundamentally based on a simple subject-predicate-
object triple structure. 

The main operations when working with a graph are: 
adding a node 

V𝑖𝑖 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑘𝑘}, 

where 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑘𝑘 – attributes of the node (e.g., token, POS tag), which can also be represented as nodes. 
adding an edge 

𝐸𝐸𝑖𝑖𝑖𝑖 = �𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗,𝑅𝑅�, 

where 𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗 – nodes; 𝑅𝑅 – type of relationship (e.g., syntactic dependency). 
searching for a connection 

𝑇𝑇�𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗� = min
𝑃𝑃

� 𝜔𝜔𝑘𝑘𝑘𝑘
(𝑉𝑉𝑘𝑘,𝑉𝑉𝑚𝑚)∈𝑃𝑃

, 

where 𝑃𝑃 – path between 𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗, and 𝜔𝜔𝑘𝑘𝑘𝑘 – weight of the edge. 
The complexity of the graph-based approach is as follows: 
Adding a node or edge: 𝑂𝑂(1) 
Searching for neighboring nodes: 𝑂𝑂(1) (on average, for a well-structured graph). 
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Searching for relationships between entities: 𝑂𝑂(log𝑛𝑛) or 𝑂𝑂(𝑑𝑑),  
where 𝑛𝑛 – number of nodes; 𝑑𝑑 – degree of the node: 

𝑑𝑑 =
2𝐸𝐸
𝑉𝑉

, 

V – total number of nodes (vertices) in the graph; 
E – total number of edges (connections) in the graph. 
Thus, a graph database (DB) provides faster access to information, reducing the complexity of 

searching from 𝑂𝑂(𝑛𝑛2) (during deserialization) to 𝑂𝑂(log𝑛𝑛) or even 𝑂𝑂(1), depending on the structure of the 
graph. Therefore, the overall complexity of this approach will be: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑂𝑂(log𝑛𝑛),𝑂𝑂(1)�. 

On the other hand, serialization-deserialization is suitable for data storage and transmission but is 
inefficient for analysis and quick access. 

Furthermore, a graph DB allows for easy formulation, storage, and application of rules in a rule-based 
approach to ontology construction from text, where a rule can be represented in the following form: 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠�𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠� → 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖(𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠), 

where 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠, 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 – queries (select, insert respectively) to the graph database; 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 – syntactic relationship 
graph, and 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 – semantic relationship graph. 

A set of rules 𝑄𝑄 = {𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑘𝑘}, where 𝑄𝑄𝑖𝑖 = (𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 , 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖) can easily be stored, transmitted, and 
applied, as the rules themselves are textual data in well-known formats, such as SPARQL or Cypher. 
Moreover, one of the most important aspects is that the graph DBMS, like other DBMSs, serves as a query 
interpreter. Therefore, adding new rules does not require any compilation and can be done "on the fly" during 
the functioning of the intelligent agent. This feature opens up wide opportunities for the automatic learning 
of the ontology construction system from text. 

The graph structure also facilitates the training of neural networks, which can be used as an ML module 
in the intelligent agent. This is because vector representations can be easily formed (e.g., through GNN – 
Graph Neural Networks) and algorithms can be applied to find connections, hidden patterns, clustering, or 
inductive learning. 

Thus, the use of a graph database enables the unification of data represented in different structures 
within a si ngle parser, as well as data from different parsers (CoreNLP, OpenNLP, GATE), even those 
implemented in a different technological stack, such as NLTK and SpaCy. 

• The implementation of a rule-based approach for ontology construction from text using a syntactic 
graph. 

After the output data from the text parsers was converted to the RDF graph format using a graph 
database, the rule-based approach for ontology construction from text represents a typical ETL (Extract, 
Transform, Load) process, as shown in Error! Reference source not found.. 

 

 
Fig. 1. Typical ETL process diagram. 
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The formalization of syntactic-semantic rules in the form of ETL processes opens new horizons in the 

research and development of intelligent agents capable of learning from unstructured text documents. 
In particular, the division of ETL stages at the application level of the intelligent agent enables the 

evaluation of each rule by parallelizing the data recording processed at each of these stages, as shown in 
Fig.  2. This, in turn, opens opportunities for analyzing the effectiveness of each rule without increasing the 
complexity of the main algorithm, keeping it at the level of 𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂(log𝑛𝑛),𝑂𝑂(1)). 

From an epistemological point of view, this approach represents an implementation of the first-level 
reflection of the intelligent agent, which in this case is expressed in the agent's ability to evaluate its own 
activities, specifically the process of constructing an ontology from text. 

 

 
Fig. 2. ETL diagram of the rule-based approach with first-level reflection. 

 
In order to analyze this approach, a study of the syntactic-semantic rule was conducted with the 

following logic: 
if there is a "compound" relationship between nodes in the syntactic graph, and the subject and object 
of this relationship are connected to the literal "PERSON" via the relationship 
NamedEntityTagAnnotation, then create a node of type "person" in the semantic graph. The name of 
this node will be the subject of the "compound" relationship, and the surname will be the object of the 
"compound" relationship. The result for the sentence "Alice Johnson prepared a detailed report for the 
upcoming meeting." is shown in Fig. 3. 
 

 
Fig. 3. The result of applying the person extraction rule to a sentence. 
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This rule is implemented at the graph database level using the SPARQL query provided below. The 
relative simplicity of this rule allowed for its execution without dividing the ETL processes at the application 
level. This implementation enabled the analysis to be conducted without the technological delays that would 
have been introduced by Java code execution. 

In the provided SPARQL code for the "person" entity extraction rule, the ETL processes (Extract, 
Transform, Load) and the reflection blocks are highlighted with comments. 

PREFIX crocus: http://crocus.science/ 
DROP GRAPH <http://localhost:3330/opgraph/statrule>; 
INSERT  
{  
//----- LOAD ----- 
 GRAPH <http://localhost:3330/opgraph/semgraph>  
 { 
  ?fulln ?firstName ?fn .  
  ?fulln ?lastName ?ln .  
  ?fulln ?rdfType ?rdfPerson . 
 } 
//----- Reflection ----- 
 GRAPH <http://localhost:3330/opgraph/statout>  
 { 
  ?fulln ?firstName ?fn .  
  ?fulln ?lastName ?ln .  
  ?fulln ?rdfType ?rdfPerson . 
 } 
 GRAPH <http://localhost:3330/opgraph/statin>  
 { 
  ?subject ?compound       ?object . 
  ?subject ?namedEntityTag ?parserTypePerson .  
  ?object  ?namedEntityTag ?parserTypePerson . 
 } 
 GRAPH <http://localhost:3330/opgraph/statrule> 
 { 
  ?ruleId ?ruleStart ?startTime . 
 } 
}  
WHERE 
{ 
 GRAPH <http://localhost:3330/opgraph/syngraph>  
 {  
  BIND(NOW() AS ?startTime) 
//----- EXTRACT ----- 
  BIND(<http://nlp.stanford.edu#compound> AS ?compound) 
  BIND(<http://nlp.stanford.edu#NamedEntityTagAnnotation> AS 
?namedEntityTag) 
  BIND("PERSON" AS ?parserTypePerson) 
   
  ?subject ?compound       ?o .  BIND(IRI(?o) AS ?object) 
  ?subject ?namedEntityTag ?parserTypePerson .  
  ?object  ?namedEntityTag ?parserTypePerson . 
   
//----- TRANSFORM ----- 
  BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId) 
  BIND(IRI(crocus:startTime) AS ?ruleStart) 
  BIND(<rdf:typeof> AS ?rdfType) 
  BIND("person" AS ?rdfPerson) 
  BIND(IRI(CONCAT("crocus:", REPLACE(STR(?object), ".*[/#]", ""), 
"_",  REPLACE(STR(?subject), ".*[/#]", ""))) AS ?fulln) 
  BIND(<crocus:firstname> AS ?firstName) 
  BIND(<crocus:lastname> AS ?lastName) 
  BIND(?object  AS ?fn) 

http://crocus.science/
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  BIND(?subject AS ?ln) 
 } 
}; 
//----- Reflection ----- 
INSERT  
{  
 GRAPH <http://localhost:3330/opgraph/statrule> 
 { 
  ?ruleId ?ruleEnd ?endTime . 
  ?ruleId ?ruleDuration ?duration . 
 } 
} 
WHERE 
{ 
 GRAPH <http://localhost:3330/opgraph/statrule> 
 { 
  ?rule ?ruleStart ?startTime . 
 } 
 BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId) 
 FILTER(?rule = ?ruleId) 
 FILTER(?ruleStart = IRI(crocus:startTime)) 
 BIND(IRI(crocus:endTime) AS ?ruleEnd) 
 BIND(IRI(crocus:duration) AS ?ruleDuration) 
 BIND(NOW() AS ?endTime) 
 BIND((?endTime - ?startTime) AS ?duration) 
}; 
 
In scope of this SPARQL script, writing of input and output data of the rule into the graphs statin 

(Extract stage) and statout (Load stage) is being performed, as shown in Fig. 2, along with the execution 
duration of the rule into the statrule graph (Transform stage). 

The study was started with a text corpus of 20 sentences, adding one sentence at a time from 1 to 20. 
However, this volume of text did not lead to significant changes in the execution time of the rule, sufficient 
for analysis. Therefore, a nonlinear increment was applied, doubling the number of sentences in the text 
corpus at each subsequent step up to 640 sentences. To better understand the actual volume of the text corpus, 
it should be noted that 80 sentences correspond to approximately one page in A4 format with 1 cm margins 
on all sides, using 12 pt Times New Roman font. 

The text data was generated using an LLM system with the following requirements: each sentence 
must mention one person in the format of a combination of <FirstName LastName>, each of which 
(combination) should be unique. 

As a result of the experiment, the performance characteristics of the person entity extraction rule, 
presented above in the SPARQL script, were obtained (Table 6). 

 
Table 6 

The dependence of the execution time of the rule on the quantitative characteristics  
of the working graphs. 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

         
1 0.026 0.022 83 251 3 3 4 3 
2 0.003 0.027 147 463 5 6 7 6 
3 0.002 0.021 218 692 7 9 10 9 
4 0.003 0.020 282 915 9 12 13 12 
5 0.003 0.029 342 1116 11 15 16 15 
6 0.003 0.028 391 1280 13 18 19 18 
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Continuation of Тable 5 

1 2 3 4 5 6 7 8 9 
7 0.005 0.038 466 1518 15 21 22 21 
8 0.004 0.031 521 1707 17 24 25 24 
9 0.004 0.041 575 1894 19 27 28 27 
10 0.004 0.028 633 2090 21 30 31 30 
11 0.005 0.029 690 2282 23 33 34 33 
12 0.003 0.042 743 2454 25 36 37 36 
13 0.004 0.038 814 2684 27 39 40 39 
14 0.004 0.031 867 2849 29 42 43 42 
15 0.003 0.039 915 3007 31 45 46 45 
16 0.002 0.042 978 3206 33 48 49 48 
17 0.003 0.047 1049 3436 35 51 52 51 
18 0.002 0.048 1105 3627 37 54 54 55 
19 0.003 0.037 1169 3834 39 57 58 57 
20 0.003 0.043 1233 4046 41 60 61 60 
40 0.005 0.049 2306 7456 77 116 117 120 
80 0.010 0.059 4327 13237 96 176 177 243 

160 0.013 0.078 7689 21790 100 255 256 468 
320 0.064 0.100 13556 35359 102 384 385 849 
640 0.088 0.133 31732 76519 147 567 568 1263 

               
 𝑟𝑟(𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 0.93 0.95 0.93 0.98 0.98 0.96 
 𝑟𝑟(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) 0.93 0.93 0.73 0.91 0.91 0.94 

 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – the number of sentences in the text corpus; 
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 – the execution time of the rule (script) in the incremental sentence adding mode; 
𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 – the execution time of the rule (script) in the full text corpus adding mode; 
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 – the total number of nodes in the syntactic graph; 
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 – the total number of edges (relations) in the syntactic graph; 
𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 – the number of nodes extracted by the rule from the syntactic graph during the Extract 
stage; 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 – the number of edges (relations) extracted from the syntactic graph during the Extract stage; 
𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 – the number of nodes stored by the rule in the semantic graph during the Load stage; 
𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 – the number of edges (relations) stored by the rule in the semantic graph during the Load stage; 
𝑟𝑟�𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� – the Pearson linear correlation vector between 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and the parameters 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠, 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, and 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿; 
𝑟𝑟(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) – the Pearson linear correlation vector between 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 and the parameters 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠,  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠, 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 та 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 
The correlation between the execution time and the quantitative parameters of the working graphs of 

the syntactic-semantic transformation was calculated separately, based on the data from Table 6, and is not 
part of the rule. This indicator was calculated additionally to better understand which specific characteristics 
of the working graphs and queries have a greater impact on the performance of the syntactic-semantic rules 
in the proposed approach. 

The correlation values indicate that the execution time of the rule is directly dependent on the size of 
the working graphs and the samples. However, when the entire text corpus is loaded at once and the rule is 
executed, the execution time is more strongly dependent on the number of edges (connections) in the sample 
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𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 at the Extract stage (pattern matching in the syntactic graph). In contrast, during incremental 
analysis, which involved gradually increasing the size of the text corpus by adding new sentences to the 
existing ones and executing the rule at each stage, a stronger dependency of the execution time was observed 
on the number of edges (relations) in the sample 𝑬𝑬𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 at the Load stage (inserting into semantic graph). 

This pattern indicates the presence of a caching function in the graph database server used in the study 
(Apache Jena Fuseki), as, with the incremental increase in the text corpus volume, the syntactic analysis data 
from the previous step were not deleted. Accordingly, the data of the query at the Extract stage of the 
investigated rule at each step (except for the first one) was partially cached. 

Analyzing this information on the charts shown in Fig. 4, a sharp increase (by 5 times) in the execution 
time of the transformation (rule) was observed after the text corpus was increased from 160 sentences to 320. 
This clearly indicates a cache memory overflow in the graph database server. 

 

 
Fig. 4. The charts of the results of the person extraction rule execution (Table 6). 

 
To further investigate the impact of data caching in the graph database server on the execution time of 

syntactic-semantic rules, an additional study was conducted. The essence of this study was to analyze the 
change in execution time during repeated rule executions. The results of this study are presented in Table 7. 
The research algorithm involved repeating the rule execution ten times, measuring the time after its initial 
execution on the freshly loaded syntactic graph for different text corpus volumes. 

 
Table 7 

The impact of caching on the repeated execution of the syntactic-semantic rule. 

𝑵𝑵𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑻𝑻𝟏𝟏 𝑻𝑻𝟐𝟐 𝑻𝑻𝟑𝟑 𝑻𝑻𝟒𝟒 𝑻𝑻𝟓𝟓 𝑻𝑻𝟔𝟔 𝑻𝑻𝟕𝟕 𝑻𝑻𝟖𝟖 𝑻𝑻𝟗𝟗 𝑻𝑻𝟏𝟏𝟏𝟏 
1 0.022 0.005 0.003 0.003 0.003 0.005 0.003 0.001 0.003 0.002 0.001 
2 0.027 0.003 0.004 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 
3 0.021 0.005 0.003 0.002 0.003 0.002 0.004 0.003 0.005 0.002 0.003 
4 0.020 0.004 0.003 0.004 0.003 0.002 0.002 0.003 0.002 0.002 0.002 
5 0.029 0.005 0.004 0.003 0.004 0.004 0.001 0.003 0.004 0.003 0.004 
6 0.028 0.009 0.006 0.004 0.005 0.004 0.007 0.003 0.005 0.005 0.003 
7 0.038 0.008 0.005 0.006 0.005 0.004 0.003 0.005 0.003 0.003 0.005 
8 0.031 0.006 0.005 0.005 0.005 0.005 0.004 0.005 0.003 0.003 0.003 
9 0.041 0.006 0.006 0.005 0.005 0.003 0.004 0.003 0.006 0.005 0.005 
10 0.028 0.008 0.006 0.004 0.003 0.005 0.004 0.004 0.005 0.005 0.003 
11 0.029 0.006 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 
12 0.042 0.011 0.007 0.007 0.005 0.005 0.005 0.005 0.005 0.003 0.003 
13 0.038 0.010 0.005 0.006 0.005 0.004 0.005 0.004 0.005 0.004 0.003 
14 0.031 0.006 0.006 0.005 0.004 0.003 0.003 0.005 0.004 0.004 0.004 
15 0.039 0.009 0.006 0.005 0.004 0.003 0.004 0.004 0.004 0.004 0.003 
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Continuation of Тable 5 

1 2 3 4 5 6 7 8 9 10 11 12 
16 0.042 0.009 0.013 0.008 0.003 0.006 0.007 0.006 0.002 0.004 0.003 
17 0.047 0.011 0.005 0.005 0.004 0.006 0.005 0.004 0.003 0.005 0.003 
18 0.048 0.008 0.007 0.007 0.006 0.005 0.003 0.004 0.003 0.003 0.002 
19 0.037 0.008 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 
20 0.043 0.009 0.007 0.007 0.004 0.005 0.009 0.005 0.006 0.004 0.004 
40 0.049 0.016 0.011 0.012 0.011 0.009 0.005 0.006 0.007 0.005 0.006 
80 0.059 0.019 0.020 0.012 0.010 0.011 0.013 0.011 0.009 0.008 0.009 

160 0.078 0.034 0.030 0.023 0.023 0.020 0.019 0.016 0.016 0.016 0.015 
320 0.100 0.041 0.033 0.030 0.031 0.025 0.027 0.022 0.024 0.025 0.022 
640 0.133 0.054 0.043 0.043 0.034 0.035 0.033 0.032 0.031 0.030 0.031 

 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – the number of sentences in the text corpus; 
𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓– the execution time of the rule after the addition of the text corpus and its initial execution; 
𝑇𝑇1 …𝑇𝑇10 – the execution time of the rule during each subsequent repetition attempt. 
As shown in Table 7, each subsequent execution of the rule is faster until a certain minimum is reached, 

which further confirms the presence of a query caching function that helps optimize rule-oriented methods 
for ontology construction from text. For clarity, a chart depicting the change in execution time depending on 
the number of repetitions is provided. The chart includes data on the nonlinear increase in the volume of the 
text corpus (20, 40, 80, 160, 320, and 640 sentences), as this is where the time deviation is the most 
noticeable. 

 

 
Fig. 5. The dependence of the rule execution time on the number of repetitions. 

 
It is evident that data caching occurs at the Extract stage (Fig. 1. Typical ETL process diagram.), and 

each subsequent execution of the rule is several times faster. Therefore, for optimizing the performance of 
rule-based approaches for ontology construction from text, it makes sense to group rules based on the 
similarity of input data (samples at the Extract stage). This approach significantly speeds up the execution 
of syntactic-semantic transformations, as grouping the rules means that each subsequent rule has a partially 
or fully cached set of input data. 
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Conclusions 

The construction of an ontology from textual documents is a crucial task in the process of automated 
learning for intelligent agents. Solving this problem opens new possibilities for building systems with a 
causal type of reasoning, which, unlike probabilistic models – an analogy of collective thinking – lays the 
foundation for implementing logical inference processes and searching for the optimal strategy of an 
intelligent agent. 

This article proposes an approach that significantly advances the solution to this problem. The 
proposed approach aims to enhance the analysis of textual information by unifying data from different text 
parsers to extract a greater number of syntactic and semantic characteristics. A graph database is suggested 
as an operational repository for storing the output data of text parsers, bringing them into the simple and 
widely recognized RDF format, with an atomic structure in the form of the triple "subject-predicate-object." 
Such unification enables further interpretation and processing of text parser data by various systems. 

Additionally, the article presents the concept of constructing a semantic graph, which serves as the 
basis for ontology representation. The proposed concept follows a rule-based approach to constructing 
semantic structures from syntactic graphs using ETL processes and SPARQL queries. This formalization of 
rules opens new horizons for automated learning of an intelligent agent, as rules in the form of SPARQL 
scripts can be easily added and instantly interpreted "on the fly." 

Furthermore, the implementation of first-level reflection for the studied rule allowed for an assessment 
of the execution time dependence on the volume of the text corpus and the size of data samples at different 
ETL process stages. The results of the experimental study clearly demonstrate the impact of data sample 
caching on rule execution time. This paves the way for optimizing the rule-based process of ontology 
construction from text by properly formalizing and clustering rules based on the similarity of input data 
samples obtained from text parsers. 
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Проблема відсутності ефективних засобів побудови онтологій з текстових документів все ще 
залишається невирішеною. Її розв'язання стикається з низкою викликів, зокрема, відсутністю 
єдиного формату вихідних даних різних NLP інструментів, зокрема текстових парсерів, які є 
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першою ланкою в багатоетапному процесі видобування знань. На сьогоднішній день існує 
декілька популярних текстових парсерів, кожен з яких має свої особливості та переваги у 
реалізації окремих функцій. З метою ефективнішого вирішення проблеми побудови онтології з 
тексту доцільним є використання декількох текстових парсерів, що породжує проблему узгод-
ження форматів вихідних даних цих NLP інструментів.  

Для вирішення задачі уніфікації формату вихідних даних текстових парсерів, 
запропоновано використання графової бази даних для їх збереження у форматі триплета суб’єкт-
предикат-об’єкт з метою подальшого опрацювання з використанням правило-орієнтованих 
трансформацій на основі SPARQL запитів. Суттєвою перевагою такого підходу є можливість 
виконання кожного нового правила "на льоту".  

В рамках дослідження розроблено інтелектуального агента на мові Java, здатного будувати 
семантичні графи з природомовного тексту на основі правило-орієнтованого підходу. За допо-
могою розробленого інтелектуального агента проведено оцінку залежності часу виконання 
правила синтаксично-семантичної трансформації від об’єму текстового корпусу та розмірів 
вибірок даних. Дане оцінювання стало можливим за рахунок імплементованої рефлексії першого 
рівня для досліджуваного правила трансформації.  

За результатами дослідження, запропонований підхід уніфікації вихідних даних текстових 
парсерів з використанням графової бази даних показав свою ефективність з точки зору складності 
операції та швидкодії. Розроблений підхід побудови онтології з тексту відкриває перед сучасною 
наукою нові горизонти для автоматизованого навчання інтелектуального агента на основі 
текстової інформації. 

Ключові слова – опрацювання природної мови, онтологія, автоматична побудова онтології, 
автоматизоване навчання, синтаксично-семантичні шаблони
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