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Abstract. Remote photoplethysmography (rPPG) has become a promising non-contact technology for cardiovascular 
monitoring, but the accuracy of spectral peak detection remains unpredictable due to motion artifacts, noise, and camera signal quality. 
Traditional methods often fail to localize and identify heart rate peaks in the presence of such disturbances. The aim of the study is to 
develop a wavelet approach to improve the reliability of rPPG spectral peak analysis by using a continuous wavelet transform (CWT) 
for accurate frequency-time localization, followed by systematic peak identification and verification using a medical-grade pulse 
oximeter. The rPPG signals were acquired under controlled conditions, processed using CWT to improve spectral characteristics, and 
subjected to a peak detection algorithm optimized for heart rate estimation. Wavelet coherence was used to evaluate the agreement 
between the peaks obtained with rPPG and the reference pulse oximeter data. The experimental results demonstrated that CWT-based 
peak localization achieved an average absolute error of 2.1 BPM compared to the pulse oximeter, with a coherence of 0.53 under 
steady-state conditions. The proposed method demonstrated improved robustness to motion artifacts compared to conventional 
Fourier-based approaches, especially in low-light or low signal quality scenarios. The proposed wavelet transform structure improves 
the accuracy and reliability of rPPG spectral peak detection, bridging the gap between non-contact measurements and clinical pulse 
oximetry. This research extends the potential of rPPG for real-world applications, such as remote health monitoring and wearable 
devices. 
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Photoplethysmography (rPPG), signal processing, spectral analysis, wavelet transform. 

 
1. Introduction 

Recent advances have brought remote photople-
thysmography (rPPG) to the forefront of non-contact car-
diovascular monitoring technologies [1]. Using conven-
tional cameras, rPPG facilitates accurate measurements of 
vital signs such as heart rate and blood oxygenation levels 
[2]. However, rPPG signals exhibit a high degree of vul-
nerability to motion artifacts, ambient light fluctuations, 
and low signal-to-noise ratios (SNR), which hinders 
accurate detection of spectral peaks and extraction of 
physiological parameters. Conventional signal processing 
techniques [3, 4], including fast Fourier transform (FFT) 
and time-domain peak detection, often face difficulties 
and inaccuracies in reliably extracting pulse peaks under 
these challenging conditions. This limitation limits the 
clinical applicability of rPPG systems. 

Recent advances in time-frequency analysis, 
particularly those using wavelet transforms [5], represent a 
robust solution for processing signals characterized by 
high variability and low stationarity, such as in the case of 
rPPG. The developed method, based on the continuous 
wavelet transform (CWT), provides spectral localization 
compared to the fast Fourier transform (FFT), thus 
providing adaptive resolution in different frequency 
ranges. This property makes CWT particularly suitable for 
analyzing rPPG signals, where the impulse components 

can be noisy or due to motion interference or camera 
artifacts [6]. Although wavelet-based methods have been 
investigated in other biosignal applications, their potential 
to improve rPPG peak detection and validation on 
clinical-grade devices remains underexploited. 

2. Drawbacks 

Accurate identification of rPPG spectral peaks 
faces significant challenges due to numerous factors: 
ambient light variations and low light degrade the signal-
to-noise ratio (SNR), especially affecting darker skin tones 
due to differential light absorption characteristics, while 
specular reflections introduce nonlinear artifacts that 
distort the pulsatile components [7]. Motion artifacts [8], 
including both substantial subject displacement and subtle 
physiological tremors (or motion of the unmounted 
camera), often dominate the signal spectrum, hiding true 
cardiac peaks and complicating time-frequency analysis. 
Hardware limitations impose fundamental constraints [9], 
as low-resolution cameras (<720 p) reduce the accuracy of 
the spatial signal, and frame rates below 30fps result in 
temporal smoothing. At the same time, consumer 
sensors – devices intended for mass use, such as smart-
phones or webcams – have a higher noise level compared 
to medical-grade equipment that is specially designed for 
high-precision diagnostics and meets strict quality and 
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reliability standards in the healthcare sector. Algorith-
mically, CWT-based methods, while outperforming Fou-
rier approaches [10] for non-stationary signals, exhibit sen-
sitivity to the choice of the underlying wavelet and scaling 
parameters, often requiring scenario-specific optimization, 
while spectral interference from motion harmonics often 
generates false peaks that cause problems with automated 
identification. These complex limitations highlight the need 
for advanced motion compensation techniques, optimized 
hardware configurations, and signal processing to achieve 
clinical reliability in a real-world environment. 

3. Goal of the Study 

The main objective of this research is to develop 
and validate a CWT-based method for accurate locali-
zation and identification of spectral peaks in rPPG signals. 
The proposed approach combines optimized wavelet para-
meter selection with improved peak detection algorithms 
using the wavelet energy component of the rPPG signal. 
Developed method should improve the robustness of the 

rPPG signal to common noise sources as well as low-
quality camera artifacts. An important aspect of the study 
is the comparison of the developed method with 
synchronized pulse oximeter measurements (a contact 
medical device), which are the clinical standard. Such a 
comparison will allow assessing the accuracy of the 
method under various conditions, including motion and 
low perfusion. 

4. Datasets and Ethics 

The research was conducted on the UBFC-rPPG 
[11], PURE [12], SCAMPS [13], UBFC-Phys [14] 
datasets, as well as internal recordings using a Google 
Pixel 4 mobile phone. The studied data sets (Table 1) 
contain over 120 videos, in which 62 subjects are present. 
The video data contain different characteristics of 
cameras, lighting, premises, resolution and number of 
frames per second. In total, videos with Standard 
Definition (SD), High Definition (HD), and Full High 
Definition (FullHD) resolutions were analyzed. 

 
Table 1. Open source datasets 
 

Dataset Objects Camera Signal 

PURE 10 Objects 
59 videos 

480p@30fps 
Lossless PNG images 

GT PPG @60Hz 

MAHNOB HCI  27 Objects 
627 videos 

780 ×580P@51fps 
H.264 format 

GT PPG @256Hz 

COHFACE 40 Objects 
164 videos 

480р@20fps 
MPEG4 Part 2format 

GT PPG @256Hz 

MMSE-HR 40 Objects 
102 videos 

1040×1392@25fps 
JPEG Images 

GT HR @1kHz 

Vicar PPG 10 Objects 
20 videos 

720р@20fps 
H.264 format 

GT PPG @60Hz 

SCAMPS 10 Objects 
59 videos 

720р@20fps 
H.264 format 

GT PPG @30Hz 

UBFC-rPPG 42 Objects 
42 videos 

480p@30fps GT PPG @30/60Hz 

UBFC-Phys 50 Objects 
159 videos 

480p@30fps 
Raw video format 

(lossless) 

GT PPG @30/60Hz 

 
5. Research Contributions and Methodology 
The research presents a block diagram of a wavelet 

transform-based method for reliable detection of spectral 
peaks of the rPPG signal. The developed method 
combines the advantages of discrete wavelet transform 
(DWT) filtering and continuous wavelet transform (CWT) 
scalogram analysis. The methodology uses Symlet5 
(sym5) and Discrete Meyer (dmey) wavelets to initially 
reduce signal noise, cut off the part of the signal with 
noise, and then perform time-frequency analysis based on 
Morlet wavelets to localize peaks. This hybrid approach 

eliminates the critical limitations of conventional Fourier-
based methods when processing non-stationary rPPG 
signals in real-world applications. 

6. Wavelet method for detecting peaks in 
rPPG signal 

Accurate peak detection in remote photoplethys-
mography (rPPG) signals remains challenging due to 
noise, motion artifacts, and varying camera characteristics. 
The developed method presents a robust wavelet trans-
form-based approach that combines discrete wavelet trans-
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form (DWT) denoising and continuous wavelet transform 
(CWT) spectral analysis to improve peak detection in 
rPPG signals. The analysis uses Symlet5 (sym5) and 
Discrete Meyer (dmey) wavelets for signal preprocessing, 
followed by Morlet-based time-frequency decomposition 
for accurate peak localization. The well-known peak 
detection method CWT [16] is based on finding ridge 
lines in the continuous wavelet transform (CWT) matrix 
and then filtering them. This algorithm works with a 
variety of signals, but its accuracy for rPPG signals from 
low-quality cameras (15 FPS with SD quality) is 
experimentally 68.1 %. The proposed method aims to 
integrate additional steps to improve the accuracy of rPPG 
peak identification in order to create an updated algorithm. 

The rPPG signal processing flow starts with DWT-based 
preprocessing using 6-level decomposition with sym5/ 
dmey wavelets [15]. The detail coefficients (d1-d5) are 
subjected to BandPass filtering (0.5–4 Hz) to suppress 
high-frequency noise while preserving the impulse 
harmonics, followed by reconstruction with modified 
approximation coefficients (d4) to stabilize the baseline, 
as well as zeroing the wavelet coefficients of the first 
decomposition level (d1). This step provides a 62 % 
reduction in high-frequency noise [16], and zeroing the 
first-level coefficients cuts off the bulk of the high-
frequency noise obtained from low-quality cameras. The 
developed method is depicted in Fig. 1 as a structural 
diagram of peak detection in the rPPG signal. 

 

 

Fig. 1. Structural block diagram of the developed method for detecting peaks in the rPPG signal 

At the peak detection stage of the filtered signal 
(rPPG), the main task is to accurately identify local 
extrema corresponding to key phase changes in the 
cardiac signal (e. g., systolic (S) and diastolic (O) peaks). 
For this, a combination of continuous wavelet transform 
(CWT) and backbone analysis is used, which allows an 
increase in the robustness of the algorithm to noise and 
motion artifacts [17]. 

Thus, the next step is the peak detection stage in 
order to establish peaks of the filtered rPPG signal. This 
stage includes the following steps: 

1. Continuous wavelet transform with Morlet’s 
mother basis function. 

2. Creation of CWT matrix from the obtained 
CWT coefficients. 

3. Finding signal ridges. 
4. Filtering the found ridges. 

5. Search and identification of maxima and 
minima. 

6. Preliminary representation of systolic (S) and 
diastolic (O) peaks. 

After detecting peaks, another stage is performed to 
correlate previously found peaks: 

1. Rejection of low-power peaks with low 
wavelet energy based on the CWT matrix and previously 
found ridges. 

2. Ridge filtering to cut off flat or noisy peaks 
(the distance between peaks is less than the average IBI 
value). 

3. Taking into account previously found peaks, a 
new set of peaks is formed, taking into account the pre-
vious filtering. 

4. Representation of systolic (S) and diastolic (O) 
peaks.
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An important element of the developed algorithm is 
the correlation of peaks [18], which includes work with 
the CWT matrix and ridge lines (Ridge on the signal 
scalogram) [19]. 

7. Analysis of the time-frequency 
characteristics of the rPPG signal 

The filtered signal is subjected to a Morlet CWT 
transform (center frequency =1.5 Hz, 64 scales spanning 
0.5–4 Hz) to create a time-frequency scalogram (Fig. 2). 

Pulse peaks are identified using adaptive ridge 
extraction on the scalogram with amplitude rectification, 
which enhances the pulsating components. The algorithm 
smooths the peaks detected in both the DWT and CWT 
domains to eliminate false detections, improving the 
robustness to motion artifacts [15]. The visualization of 
the developed algorithm is presented as a graph (Fig. 3) of 
the rPPG signal with marked S and O peaks, as well as a 
scalogram with highlighted ridges. This allows us to 
visually assess the quality of the algorithm. 

 

 

Fig. 2. Scalogram of the rPPG signal after CWT transformation 

 

Fig. 3. Scalogram plot of the filtered rPPG signal and the result of the developed  
algorithm for finding ridge lines with filtering of the signal wavelet energy. Red dots indicate new calibrated minima  

and maxima. White and black marks on the peaks identify ridge lines 
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The scalograms presented in Fig. 3 and Fig. 4 
demonstrate the results of the time-frequency analysis of 
the filtered rPPG signal obtained by applying the 
continuous wavelet transform (CWT) using the complex 
Morlet wavelet. The wavelet transform coefficients 
W(a,b), where a is the scale parameter and b is the shift 
parameter, were energy normalized and presented as a 
two-dimensional heat map. The scalogram (Fig. 3) 
identifies ridge lines that correspond to local maxima 
|W(a,b)| at fixed values of the parameter b. These 
trajectories form a structure that reflects the oscillatory 
dynamics of the heart rate. The red dots in the center of 
the peak region identify the new calibrated peak that 
corresponds to the maximum (S-peak) and minimum (O-
peak), respectively. Also, depending on the external 
factors that affect the rPPG signal, the scalogram (Fig. 4) 
can show additional information about the N-D peaks that 

characterize the dicrotic component of the rPPG peaks 
(Fig. 5). The amplitude-frequency characteristics [17] of 
these components allow us to assess the degree of vascular 
wall stiffness and detect the presence of pathological 
changes in peripheral hemodynamics. For quantitative 
assessment, the power spectral densities were calculated 
for each type of peak. 

The time-frequency analysis of rPPG signals using 
continuous wavelet transform allowed us to identify the 
key features of the pulse wave and its dynamic charac-
teristics (Table 2). The resulting scalograms (Figs. 2 and 
3) clearly identified the main components of the signal: 

● S-peaks (systolic) corresponding to wavelet 
energy maxima. 

● O-peaks (diastolic) in the form of local 
minima. 

● N-D peaks associated with the dicrotic wave. 
 

 
 а                                                                               b 

Fig. 4. Scalar graph of the filtered rPPG signal and the result of the developed algorithm  
for finding ridge lines with filtering of the wavelet energy of the signal 

 

Fig. 5. The result of identification of N-D peaks associated with the dicrotic wave and S-O peaks  
of the systolic and diastolic components of rPPG, respectively
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Table 2. The result of the dataset analysis and the accuracy of identifying the peaks of the rPPG signal 
 

Accuracy, % 
Dataset 

● S-peaks ● O-peaks ● N-D peaks 

PURE 88.05 82.15 60.06 

MAHNOB HCI  85.33 75.29 51.80 

COHFACE 75.61 73.12 55.33 

MMSE-HR 82.22 80.10 52.03 

Vicar PPG 79.74 70.08 63.33 

SCAMPS 69.48 71.15 62.55 

UBFC-rPPG 92.01 91.82 79.07 

UBFC-Phys 89.47 82.25 74.00 
 

The ridge paths demonstrate a stable periodic 
structure, which confirms the high signal quality and effi-
ciency of the pre-filtering. Phase analysis of the CWT 
complex allowed for precise calibration of peak positions 
with an accuracy of ±5 ms. 

Additional high-frequency components (5–15 Hz) 
correlate with physiological parameters: 

● The amplitude of the N-D peaks is related to 
vascular stiffness. 

● Frequency shifts reflect changes in vascular tone. 
● Energy distribution characterizes peripheral 

hemodynamics. 
Statistical analysis of power spectral densities 

confirmed the significance of the revealed patterns. The 
obtained results indicate the high informativeness of using 
the wavelet analysis method for non-invasive diagnostics 
of the cardiovascular system. 

8. Conclusion 

The study proposes and develops a CWT-based 
spectral peak detection method for rPPG signals, demons-
trating improvements over conventional Fourier methods 
through wavelet coherence analysis using reference data 
from a medical-grade pulse oximeter. The proposed 
method achieved reliable peak identification with an 
accuracy of 80–88 % by taking advantage of the CWT’s 
time-frequency localization. With wavelet coherence 
values exceeding 0.37 under rest and moderate motion 
conditions, confirming high agreement with contact 
measurements. Although the system maintained reliability 
under variable illumination and moderate motion using 
low-quality cameras, limitations emerged in extreme 
motion scenarios, highlighting the need for adaptive 
motion compensation in future implementations. These 
findings demonstrate that the developed wavelet-based 
method is a clinically viable approach for non-contact 
monitoring, which is of particular relevance for teleme-
dicine and home care. Future work should explore 

embedded real-time implementations and multimodal 
sensor fusion to address the remaining challenges in 
uncontrolled environments. 
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