
COMPUTERIZED  
AUTOMATIC SYSTEMS 

IMPLEMENTATION OF AN APACHE SPARK COMPUTING  
CLUSTER BASED ON RASPBERRY  

PI MICROCOMPUTERS 

Halyna Vlakh-Vyhrynovska, PhD, As. Prof., 
Bohdan Boretskyi, BSc Student 

Lviv Polytechnic National University, Ukraine, 
e-mail: bohdan.boretskyi.ir.2021@lpnu.ua 

https://doi.org/10.23939/istcmtm2025.02.092 

Abstract. The paper presents the implementation of an Apache Spark distributed computing cluster based on Raspberry Pi 
microcomputers. The solution consists of three Raspberry Pi 4 devices (one master node and two worker nodes), each equipped with 
8 GB of RAM and a high-speed network connection. The cluster configuration was optimized by adjusting the 
SPARK_WORKER_MEMORY and SPARK_WORKER_CORES parameters to maximize the use of available hardware resources. 
Secure communication between nodes was established through authentication using 4096-bit SSH keys. The functionality of the 
cluster was tested using a test application that demonstrated efficient distribution of computational load across nodes. The developed 
solution costs $400, which is four times less than the cost of using equivalent cloud resources for one year. The results show that the 
Raspberry Pi cluster provides all the necessary capabilities for practical learning of distributed computing technologies, offering 
physical access to all system components at a low cost. 
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1. Introduction 

Distributed computing is a fundamental component 
of modern information technologies, enabling efficient 
processing of big data and execution of complex 
algorithms [1]. Commercial cloud solutions often obscure 
the low-level aspects of cluster operation, making it 
difficult to develop a deep understanding of distributed 
system architecture. 

This paper explores the feasibility of building an 
Apache Spark computing cluster based on Raspberry Pi 
microcomputers. The proposed approach combines low-
cost hardware with flexible configuration options, allo-
wing the cluster to be adapted to various research tasks. 

The relevance of this solution lies in the value of 
direct access to the system’s hardware components, which 
enables the study of all layers of its organization – from 
the physical arrangement of nodes and network infrastruc-
ture to software configuration and parameter optimization. 

A full cluster deployment “from scratch”, including 
operating system installation, network setup, secure access 
provisioning, and Apache Spark stack configuration, cont-
ributes to a deeper understanding of component interac-
tion in a distributed environment and the principles of its 
operation [2]. 

2. Drawbacks 

Modern approaches to learning distributed com-
puting technologies have several limitations: 

1. Hiding low-level infrastructure details and lack 
of physical interaction with hardware components in 
cloud-based solutions [3]. 

2. High cost of using cloud services compared to 
deploying physical computing resources [4], [5]. 

3. Inability to monitor thermal conditions and 
energy consumption during cloud-based computations [6]. 

4. Limited control over network infrastructure 
configurations [7]. 

3. Goal 

The aim of this paper is to develop a cost-effective, 
energy-efficient, and fully functional computing cluster 
for distributed processing using Apache Spark based on 
Raspberry Pi microcomputers. To achieve this goal, the 
following tasks were undertaken: 

– Design and build the architecture of a cluster 
system based on Raspberry Pi microcomputers that imple-
ments the required distributed computing functionality. 

– Set up and configure the network infra-
structure to ensure stable communication between cluster 
components and their access to the Internet. 

– Configure the Apache Spark software compo-
nents with parameters optimized for efficient use of the 
limited hardware resources of Raspberry Pi devices. 

– Set up access to cluster nodes using asym-
metric SSH keys. 

– Perform experimental testing of the cluster 
using a basic data processing task to verify its functio-
nality and efficiency. 
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– Compare the costs of the implemented solution 
with those of equivalent cloud-based services. 

4. Literature Review 

Distributed computing is a data processing model 
in which tasks are executed in parallel across multiple 
interconnected nodes to improve performance and 
scalability when working with large volumes of data [1]. 
In such systems, tasks are distributed among nodes, 
enabling scalable computation, faster data processing, and 
uninterrupted operation even if individual components 
fail. A cluster-based architecture with centralized resource 
and task management is most commonly used [8]. 

One of the leading frameworks for distributed 
computing is Apache Spark – a high-performance open-
source engine that provides high-level APIs for Java, 
Scala, Python, and R [9]. Unlike traditional solutions that 
store intermediate results on disk [10], Spark uses in-
memory processing, significantly increasing data proces-
sing speed. Its architecture includes the Spark Core and a 
number of specialized libraries: Spark SQL for structured 
data processing; MLlib for machine learning; GraphX for 
graph computations; and Structured Streaming for real-
time data processing – making the platform suitable for a 
wide range of tasks. 

The concept of Resilient Distributed Datasets 
(RDD) [11] forms the foundation of Spark’s architecture. 
RDDs provide an abstraction that enables fault tolerance 
without writing intermediate results to disk, considerably 
enhancing system performance compared to earlier imple-
mentations of distributed computing. Spark executes 
iterative data processing tasks up to 26 times faster than 
MapReduce, which makes it a highly effective solution for 
machine learning and interactive analytics. 

The architecture of Apache Spark follows a “mas-
ter-worker” model, where the Cluster Manager plays a 
central role by coordinating communication and distribu-
ting computational tasks among worker nodes running on 
separate machines [11], [12]. This approach ensures the 
system’s scalability and fault tolerance under increasing 
workloads. The platform supports several deployment 
modes, including Standalone, YARN, Mesos, and Kuber-
netes, allowing infrastructure to be adapted to technical 
constraints and user requirements. 

Existing Raspberry Pi-based cluster implementa-
tions confirm the effectiveness of this platform for 
distributed computing. For instance, TopADDPi is an 
energy-efficient cluster for topology optimization tasks, 
built using open-source software that demonstrates high 
performance at minimal cost [13]. The study presented in 
[14] describes a cluster of 25 Raspberry Pi 2B devices, 
designed to explore the relationship between energy 
consumption and computational performance in an 

educational setting. Moreover, [13] discusses an environ-
ment that integrates Raspberry Pi with Google Colab for 
teaching the fundamentals of parallel and heterogeneous 
computing, highlighting the flexibility and accessibility of 
this hardware platform. 

Further evidence of the educational value of such 
solutions is provided in [15], where Raspberry Pi clusters 
are effectively used to teach core concepts of parallel and 
distributed computing. The proposed teaching modules 
include a preconfigured software environment that enables 
quick deployment of fully functional clusters without 
complex infrastructure setup. Practical applications de-
monstrated improved student understanding of funda-
mental cluster system principles and the development of 
hands-on skills in the field. 

5. Methodology 

5.1. Operating system configuration for cluster 
nodes 

The official Raspberry Pi Imager tool was used to 
flash Raspberry Pi OS (64-bit) onto MicroSD cards for all 
cluster nodes. During the installation process, key 
parameters were preconfigured, including user credentials 
and SSH access activation. 

Static IP addressing for the cluster nodes was 
implemented by modifying the cmdline.txt file directly on 
the MicroSD cards. The IP address is defined using the 
following parameter: 
ip=<static-ip>::<gateway-ip>:<netmask>:<hostname>: 
<interface> hostname=<system-hostname> 
where: 
– <static-ip> -the static IP address assigned to the node  
– <gateway-ip> - the IP address of the router/gateway for 
Internet access  
– <netmask> - defines the subnet range 
– <hostname> - network identification name 
– <interface> -specifies the network interface (e.g., eth0 
for Ethernet)  
– hostname=<system-hostname> - sets the OS hostname 
The cmdline.txt file was configured as follows: 
For the master node: 
ip=192.168.137.2::192.168.137.1:255.255.255.0:raspberry
pi-master hostname=raspberrypi-master 
For worker node 1: 
ip =192.168.137.3::192.168.137.1:255.255.255.0: 
raspberrypi-worker1 hostname=raspberrypi-worker1 
For worker node 2: 
ip =192.168.137.4:: 
192.168.137.1:255.255.255.0:raspberrypi-worker2 
hostname=raspberrypi-worker2 

This configuration ensures that each node retains 
its static IP address after reboot and maintains consistent 
network identification within the cluster. 
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5.2. Physical Configuration of the Cluster 

The physical setup of the cluster involved 
mounting three Raspberry Pi 4 devices on a multi-level 
stand to ensure efficient cooling (Fig. 1). Each device was 
powered by a dedicated 5V/3A power supply. The 
network infrastructure was implemented using a 5-port 
Mercury router connected via Cat 6 Ethernet cables, 
providing speeds of up to 1 Gbps.  One  Raspberry  Pi was  

configured as the master node, while the other two served 
as worker nodes. 

A client laptop was also connected to the network for 
managing the cluster and providing Internet access through 
the Internet Connection Sharing (ICS) feature. This configu-
ration allowed all Raspberry Pi nodes to use the laptop’s In-
ternet connection. The correctness of the network connec-
tions was verified by the activity indicators on the router’s 
ports. 

 

 

Fig. 1. Physical and network architecture of the cluster 

5.3. SSH configuration and secure access 

Asymmetric SSH key-based authentication was 
configured to manage the cluster from the client laptop. 
Initially, password-based authentication was used to 
connect the client device to the master node (ssh 
192.168.137.2). RSA keys with a length of 4096 bits were 
then generated on the client device (ssh-keygen -t rsa -b 
4096), after which the public key was transferred to the 
master node and added to the list of authorized keys. The 
same steps were repeated for each of the two worker nodes. 

To ensure seamless interaction among all cluster 
components, passwordless authentication was additionally 
configured. A separate pair of SSH keys was generated on 
the master node, and the public key was distributed to 
both worker nodes using the ssh-copy-id utility. The 
correctness of the configuration was verified through test 
connections to each node. 

5.4. Internet connection sharing  
configuration 

To provide Internet access to the Raspberry Pi 
devices, the Internet Connection Sharing (ICS) feature 
available in the Windows operating system was used. In the 
settings of the network adapter with an active Internet 
connection, the option “Allow other network users to connect 
through this computer’s Internet connection” was enabled. 
This ensured routing and address translation between the 
cluster’s local network (192.168.137.0/24) and the external 

network. On all Raspberry Pi nodes, the default gateway and 
DNS server were set to 192.168.137.1. Internet access was 
then used to update system packages and install the necessary 
software, including Apache Spark. 

5.5. Software installation  

The necessary software was deployed on all cluster 
nodes after updating the system repositories (apt upgrade). 
In addition to OpenJDK 17 and Python 3.12, Apache 
Spark version 3.5.5 was installed as the core framework 
for distributed computing. To ensure proper system opera-
tion, relevant environment variables were configured: 
SPARK_HOME was set to point to the installation 
directory, the system PATH variable was updated to allow 
access to Spark utilities from the command line, and 
JAVA_HOME was defined to ensure correct interaction 
with the Java Virtual Machine [16]. 

5.6. Spark cluster configuration 

To create an efficient computing environment, the 
cluster nodes were configured according to their 
designated roles. On the master node, which functions as 
the Cluster Manager, the following parameters were set: 
SPARK_MASTER_HOST with the node’s IP address, 
SPARK_MASTER_PORT (7077), and SPARK_ 
DRIVER_MEMORY (3 GB) to ensure effective 
management of computational processes. 

On the worker nodes, which have more RAM (8 GB), 
the parameters SPARK_WORKER_MEMORY (6 GB) and 
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SPARK_WORKER_CORES (4) were configured [16]. 
These values are optimal for maximizing the use of 
available hardware resources for parallel computations. 
All configuration parameters were added to the spark-
env.sh file on the respective nodes to retain settings 
between cluster startup sessions and ensure stable 
operation within the cluster environment. 

5.7. Launching and testing of cluster 

The Apache Spark cluster can be launched in two 
different ways. 

The first method involves starting the components 
step by step. First, the Master service is launched on the 
master node: 
start-master.sh 

After the successful launch of the Master node, the 
Worker process is initialized on each worker node with 
the specified address of the Master: 
start-worker.sh spark://192.168.137.2:7077 

This command connects the worker node to the 
driver via the spark:// protocol on port 7077. 

An alternative and faster method is to use a 
command that launches all cluster components 
simultaneously: 
start-all.sh 

This command automatically starts the Master 
process on the local machine and Worker processes on all 
nodes listed in the conf/workers configuration file. This 
significantly simplifies cluster startup, especially during 
regular use. The successful deployment of the cluster can 
be confirmed via the Spark Master web interface available 
at http://192.168.137.2:8080, which provides information 
about the connected worker nodes and their computational 
resources. 

It is worth noting that the start-worker.sh command 
also accepts additional parameters for more flexible 
resource configuration, such as -c to specify the number of 
CPU cores and -m to define the amount of memory. 

6. Conclusions 

6.1 Functional Testing 

The implemented computing cluster was 
successfully tested by running a basic application that 
performs a parallel computation of the sum of numbers 
from 1 to 999.999. The Python code used for the test is 
shown below: 
 
import logging 
import os 
from pyspark.sql import SparkSession 
from pyspark.sql.functions import sum 
 
logging.basicConfig(level=logging.INFO,  

format='%(asctime)s - %(name)s - %(levelname)s - 
%(message)s') 
logger = logging.getLogger("ClusterTest") 
 
def main(): 
    os.environ['SPARK_LOCAL_IP'] = '192.168.137.1' 
     
    spark = SparkSession.builder \ 
        .appName("HelloWorldInSpark") \ 
        .master("spark://192.168.137.2:7077") \ 
        .config("spark.driver.host", "192.168.137.1") \ 
        .getOrCreate() 
     
    nums_df = spark.range(1, 1000000) 
    result_df = nums_df.select(sum("id").alias("sum")) 
     
    logger.info(f"Result:") 
    result_df.show() 
     
    spark.stop() 
 
if __name__ == '__main__': 
    main() 
 

 

Fig. 2. Execution algorithm of the Spark application 

The application was executed from a client device 
(a personal laptop) using the PySpark library, which was 
configured to connect to the master node of the cluster. 
Spark successfully distributed the computational load 
across the worker nodes and completed the data 
processing, returning the result 499 999 500 000 to the 
client device. This confirmed the functionality of the 
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deployed cluster. Task execution monitoring via the Spark 
Master web interface demonstrated efficient utilization of 
both worker nodes’ resources. 

The execution of the Spark application on the deve-
loped cluster follows a well-defined algorithm (Fig. 2), 
illustrating the interaction between system components 
[12]. The process begins on the client device with the 
creation and optimization of a logical execution plan. This 
is followed by the distribution of atomic tasks among the 
worker nodes via the Master node, parallel execution of 
computations on the worker nodes, and aggregation of 
results on the client device. 

6.2. Cost analysis: raspberry pi cluster vs aws 
cloud environment 

One of the key advantages of the assembled cluster 
is its low cost compared to commercial cloud-based 
solutions. Table 1 presents the cost structure for building 
such a system. 
 
Table 1. Cost of implementing the Raspberry Pi Cluster 
 

Component Quantity Unit 
Price, $ 

Total 
Price, $ 

Raspberry Pi 4 (8 GB 
RAM) 

2 95 190 

Raspberry Pi 4 (4 GB 
RAM) 

1 75 75 

MicroSD cards 
(64 GB) 

3 15 45 

Power Supplies 
(5V/3A) 

3 10 30 

Router 1 25 25 
Ethernet Cables  

(Cat 6) 
3 5 15 

Multi-level Cooling 
Stand 

1 20 20 

Total   $400 
 

To evaluate the economic feasibility of the solu-
tion, a cost comparison was conducted with equivalent 
computing resources in the AWS EC2 cloud environment. 
Equivalent virtual machines based on the ARM-based 
Graviton2 architecture were selected: 

– for the master node (4 GB RAM, 4 cores) –
t4g.medium 

– for the worker nodes (8 GB RAM, 4 cores) – 
t4g.large 

The use of ARM processors in the t4g series allows 
a more accurate comparison with Raspberry Pi than tradi-
tional x86-based architectures. Although the Raspberry Pi 
features 4 physical cores while the t4g instances have only 
2 vCPUs [17], the newer Graviton2 cores with higher 
clock speeds deliver comparable performance. 

Based on AWS pricing [17] – $0.0336/hour for 
t4g.medium and $0.0672/hour for t4g.large – the annual 

cost of operating an equivalent cluster configuration is 
summarized in Table 2: 

 
Table 2. Annual Cost of Equivalent AWS EC2 Virtual 
Machines 

 

Component Monthly  
cost, $ 

Annual  
cost, $ 

t4g.medium (master) 24.54 294.53 
t4g.large (worker) × 2 49.09 × 2 1178.10 

Data transfer costs (approx.) 15.00 180.00 
Total  $1652.63 

 
The cost comparison shows that the Raspberry Pi 

cluster, with a total price of $400, is approximately four 
times cheaper than equivalent AWS cloud services over 
the course of one year. 

7. Conclusions 

As a result of this study, a functional Apache Spark 
computing cluster based on Raspberry Pi microcomputers 
was successfully implemented. The deployed cluster 
demonstrated its practical applicability for studying dist-
ributed computing technologies and conducting research 
on a cost-effective platform. 

The developed cluster consists of three Raspberry 
Pi 4 nodes, including one master node and two worker 
nodes. Each device in the cluster configuration is equip-
ped with 64 GB of storage on MicroSD cards. The worker 
nodes are equipped with 8 GB of RAM and quad-core 
Cortex-A72 processors. 

To ensure efficient operation, the Apache Spark 
configuration parameters were optimized. The cluster’s 
network infrastructure was implemented using a 5-port 
Mercury router. For secure access to the nodes, authenti-
cation based on 4096-bit asymmetric SSH keys was 
configured. 

The functionality of the developed cluster was 
validated by successfully running a test Spark application 
that performs parallel computation of the sum of numbers 
from 1 to 999,999. Execution analysis confirmed that the 
computational load was effectively distributed across the 
worker nodes and that the results were correctly 
aggregated on the master node. 

From a financial perspective, the Raspberry Pi 
cluster represents a viable alternative to cloud-based 
solutions, as its total cost of approximately $400 is more 
than four times lower than the annual cost of equivalent 
AWS EC2 virtual machines. 

The key value of the developed cluster lies in its 
accessibility as an educational tool for hands-on learning 
of distributed computing principles. Unlike virtual or 
cloud-based solutions, a physical cluster provides direct 
interaction with all system components. 
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