
COMPUTERIZED
AUTOMATIC SYSTEMS

IMPLEMENTATION OF AN APACHE SPARK COMPUTING
CLUSTER BASED ON RASPBERRY

PI MICROCOMPUTERS

Halyna Vlakh-Vyhrynovska, PhD, As. Prof.,
Bohdan Boretskyi, BSc Student

Lviv Polytechnic National University, Ukraine,
e-mail: bohdan.boretskyi.ir.2021@lpnu.ua

https://doi.org/10.23939/istcmtm2025.02.092

Abstract. The paper presents the implementation of an Apache Spark distributed computing cluster based on Raspberry Pi
microcomputers. The solution consists of three Raspberry Pi 4 devices (one master node and two worker nodes), each equipped with
8 GB of RAM and a high-speed network connection. The cluster configuration was optimized by adjusting the
SPARK_WORKER_MEMORY and SPARK_WORKER_CORES parameters to maximize the use of available hardware resources.
Secure communication between nodes was established through authentication using 4096-bit SSH keys. The functionality of the
cluster was tested using a test application that demonstrated efficient distribution of computational load across nodes. The developed
solution costs $400, which is four times less than the cost of using equivalent cloud resources for one year. The results show that the
Raspberry Pi cluster provides all the necessary capabilities for practical learning of distributed computing technologies, offering
physical access to all system components at a low cost.

Key words: Apache Spark, distributed computing, Raspberry Pi, microcomputers, cluster, big data processing.

1. Introduction

Distributed computing is a fundamental component
of modern information technologies, enabling efficient
processing of big data and execution of complex
algorithms [1]. Commercial cloud solutions often obscure
the low-level aspects of cluster operation, making it
difficult to develop a deep understanding of distributed
system architecture.

This paper explores the feasibility of building an
Apache Spark computing cluster based on Raspberry Pi
microcomputers. The proposed approach combines low-
cost hardware with flexible configuration options, allo-
wing the cluster to be adapted to various research tasks.

The relevance of this solution lies in the value of
direct access to the system’s hardware components, which
enables the study of all layers of its organization – from
the physical arrangement of nodes and network infrastruc-
ture to software configuration and parameter optimization.

A full cluster deployment “from scratch”, including
operating system installation, network setup, secure access
provisioning, and Apache Spark stack configuration, cont-
ributes to a deeper understanding of component interac-
tion in a distributed environment and the principles of its
operation [2].

2. Drawbacks

Modern approaches to learning distributed com-
puting technologies have several limitations:

1. Hiding low-level infrastructure details and lack
of physical interaction with hardware components in
cloud-based solutions [3].

2. High cost of using cloud services compared to
deploying physical computing resources [4], [5].

3. Inability to monitor thermal conditions and
energy consumption during cloud-based computations [6].

4. Limited control over network infrastructure
configurations [7].

3. Goal

The aim of this paper is to develop a cost-effective,
energy-efficient, and fully functional computing cluster
for distributed processing using Apache Spark based on
Raspberry Pi microcomputers. To achieve this goal, the
following tasks were undertaken:

– Design and build the architecture of a cluster
system based on Raspberry Pi microcomputers that imple-
ments the required distributed computing functionality.

– Set up and configure the network infra-
structure to ensure stable communication between cluster
components and their access to the Internet.

– Configure the Apache Spark software compo-
nents with parameters optimized for efficient use of the
limited hardware resources of Raspberry Pi devices.

– Set up access to cluster nodes using asym-
metric SSH keys.

– Perform experimental testing of the cluster
using a basic data processing task to verify its functio-
nality and efficiency.

Measuring equipment and metrology. Vol. 86, No. 2, 2025 93

– Compare the costs of the implemented solution
with those of equivalent cloud-based services.

4. Literature Review

Distributed computing is a data processing model
in which tasks are executed in parallel across multiple
interconnected nodes to improve performance and
scalability when working with large volumes of data [1].
In such systems, tasks are distributed among nodes,
enabling scalable computation, faster data processing, and
uninterrupted operation even if individual components
fail. A cluster-based architecture with centralized resource
and task management is most commonly used [8].

One of the leading frameworks for distributed
computing is Apache Spark – a high-performance open-
source engine that provides high-level APIs for Java,
Scala, Python, and R [9]. Unlike traditional solutions that
store intermediate results on disk [10], Spark uses in-
memory processing, significantly increasing data proces-
sing speed. Its architecture includes the Spark Core and a
number of specialized libraries: Spark SQL for structured
data processing; MLlib for machine learning; GraphX for
graph computations; and Structured Streaming for real-
time data processing – making the platform suitable for a
wide range of tasks.

The concept of Resilient Distributed Datasets
(RDD) [11] forms the foundation of Spark’s architecture.
RDDs provide an abstraction that enables fault tolerance
without writing intermediate results to disk, considerably
enhancing system performance compared to earlier imple-
mentations of distributed computing. Spark executes
iterative data processing tasks up to 26 times faster than
MapReduce, which makes it a highly effective solution for
machine learning and interactive analytics.

The architecture of Apache Spark follows a “mas-
ter-worker” model, where the Cluster Manager plays a
central role by coordinating communication and distribu-
ting computational tasks among worker nodes running on
separate machines [11], [12]. This approach ensures the
system’s scalability and fault tolerance under increasing
workloads. The platform supports several deployment
modes, including Standalone, YARN, Mesos, and Kuber-
netes, allowing infrastructure to be adapted to technical
constraints and user requirements.

Existing Raspberry Pi-based cluster implementa-
tions confirm the effectiveness of this platform for
distributed computing. For instance, TopADDPi is an
energy-efficient cluster for topology optimization tasks,
built using open-source software that demonstrates high
performance at minimal cost [13]. The study presented in
[14] describes a cluster of 25 Raspberry Pi 2B devices,
designed to explore the relationship between energy
consumption and computational performance in an

educational setting. Moreover, [13] discusses an environ-
ment that integrates Raspberry Pi with Google Colab for
teaching the fundamentals of parallel and heterogeneous
computing, highlighting the flexibility and accessibility of
this hardware platform.

Further evidence of the educational value of such
solutions is provided in [15], where Raspberry Pi clusters
are effectively used to teach core concepts of parallel and
distributed computing. The proposed teaching modules
include a preconfigured software environment that enables
quick deployment of fully functional clusters without
complex infrastructure setup. Practical applications de-
monstrated improved student understanding of funda-
mental cluster system principles and the development of
hands-on skills in the field.

5. Methodology

5.1. Operating system configuration for cluster
nodes

The official Raspberry Pi Imager tool was used to
flash Raspberry Pi OS (64-bit) onto MicroSD cards for all
cluster nodes. During the installation process, key
parameters were preconfigured, including user credentials
and SSH access activation.

Static IP addressing for the cluster nodes was
implemented by modifying the cmdline.txt file directly on
the MicroSD cards. The IP address is defined using the
following parameter:
ip=<static-ip>::<gateway-ip>:<netmask>:<hostname>:
<interface> hostname=<system-hostname>
where:
– <static-ip> -the static IP address assigned to the node
– <gateway-ip> - the IP address of the router/gateway for
Internet access
– <netmask> - defines the subnet range
– <hostname> - network identification name
– <interface> -specifies the network interface (e.g., eth0
for Ethernet)
– hostname=<system-hostname> - sets the OS hostname
The cmdline.txt file was configured as follows:
For the master node:
ip=192.168.137.2::192.168.137.1:255.255.255.0:raspberry
pi-master hostname=raspberrypi-master
For worker node 1:
ip =192.168.137.3::192.168.137.1:255.255.255.0:
raspberrypi-worker1 hostname=raspberrypi-worker1
For worker node 2:
ip =192.168.137.4::
192.168.137.1:255.255.255.0:raspberrypi-worker2
hostname=raspberrypi-worker2

This configuration ensures that each node retains
its static IP address after reboot and maintains consistent
network identification within the cluster.

Measuring equipment and metrology. Vol. 86, No. 2, 2025 94

5.2. Physical Configuration of the Cluster

The physical setup of the cluster involved
mounting three Raspberry Pi 4 devices on a multi-level
stand to ensure efficient cooling (Fig. 1). Each device was
powered by a dedicated 5V/3A power supply. The
network infrastructure was implemented using a 5-port
Mercury router connected via Cat 6 Ethernet cables,
providing speeds of up to 1 Gbps. One Raspberry Pi was

configured as the master node, while the other two served
as worker nodes.

A client laptop was also connected to the network for
managing the cluster and providing Internet access through
the Internet Connection Sharing (ICS) feature. This configu-
ration allowed all Raspberry Pi nodes to use the laptop’s In-
ternet connection. The correctness of the network connec-
tions was verified by the activity indicators on the router’s
ports.

Fig. 1. Physical and network architecture of the cluster

5.3. SSH configuration and secure access

Asymmetric SSH key-based authentication was
configured to manage the cluster from the client laptop.
Initially, password-based authentication was used to
connect the client device to the master node (ssh
192.168.137.2). RSA keys with a length of 4096 bits were
then generated on the client device (ssh-keygen -t rsa -b
4096), after which the public key was transferred to the
master node and added to the list of authorized keys. The
same steps were repeated for each of the two worker nodes.

To ensure seamless interaction among all cluster
components, passwordless authentication was additionally
configured. A separate pair of SSH keys was generated on
the master node, and the public key was distributed to
both worker nodes using the ssh-copy-id utility. The
correctness of the configuration was verified through test
connections to each node.

5.4. Internet connection sharing
configuration

To provide Internet access to the Raspberry Pi
devices, the Internet Connection Sharing (ICS) feature
available in the Windows operating system was used. In the
settings of the network adapter with an active Internet
connection, the option “Allow other network users to connect
through this computer’s Internet connection” was enabled.
This ensured routing and address translation between the
cluster’s local network (192.168.137.0/24) and the external

network. On all Raspberry Pi nodes, the default gateway and
DNS server were set to 192.168.137.1. Internet access was
then used to update system packages and install the necessary
software, including Apache Spark.

5.5. Software installation

The necessary software was deployed on all cluster
nodes after updating the system repositories (apt upgrade).
In addition to OpenJDK 17 and Python 3.12, Apache
Spark version 3.5.5 was installed as the core framework
for distributed computing. To ensure proper system opera-
tion, relevant environment variables were configured:
SPARK_HOME was set to point to the installation
directory, the system PATH variable was updated to allow
access to Spark utilities from the command line, and
JAVA_HOME was defined to ensure correct interaction
with the Java Virtual Machine [16].

5.6. Spark cluster configuration

To create an efficient computing environment, the
cluster nodes were configured according to their
designated roles. On the master node, which functions as
the Cluster Manager, the following parameters were set:
SPARK_MASTER_HOST with the node’s IP address,
SPARK_MASTER_PORT (7077), and SPARK_
DRIVER_MEMORY (3 GB) to ensure effective
management of computational processes.

On the worker nodes, which have more RAM (8 GB),
the parameters SPARK_WORKER_MEMORY (6 GB) and

Measuring equipment and metrology. Vol. 86, No. 2, 2025 95

SPARK_WORKER_CORES (4) were configured [16].
These values are optimal for maximizing the use of
available hardware resources for parallel computations.
All configuration parameters were added to the spark-
env.sh file on the respective nodes to retain settings
between cluster startup sessions and ensure stable
operation within the cluster environment.

5.7. Launching and testing of cluster

The Apache Spark cluster can be launched in two
different ways.

The first method involves starting the components
step by step. First, the Master service is launched on the
master node:
start-master.sh

After the successful launch of the Master node, the
Worker process is initialized on each worker node with
the specified address of the Master:
start-worker.sh spark://192.168.137.2:7077

This command connects the worker node to the
driver via the spark:// protocol on port 7077.

An alternative and faster method is to use a
command that launches all cluster components
simultaneously:
start-all.sh

This command automatically starts the Master
process on the local machine and Worker processes on all
nodes listed in the conf/workers configuration file. This
significantly simplifies cluster startup, especially during
regular use. The successful deployment of the cluster can
be confirmed via the Spark Master web interface available
at http://192.168.137.2:8080, which provides information
about the connected worker nodes and their computational
resources.

It is worth noting that the start-worker.sh command
also accepts additional parameters for more flexible
resource configuration, such as -c to specify the number of
CPU cores and -m to define the amount of memory.

6. Conclusions

6.1 Functional Testing

The implemented computing cluster was
successfully tested by running a basic application that
performs a parallel computation of the sum of numbers
from 1 to 999.999. The Python code used for the test is
shown below:

import logging
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import sum

logging.basicConfig(level=logging.INFO,

format='%(asctime)s - %(name)s - %(levelname)s -
%(message)s')
logger = logging.getLogger("ClusterTest")

def main():
 os.environ['SPARK_LOCAL_IP'] = '192.168.137.1'

 spark = SparkSession.builder \
 .appName("HelloWorldInSpark") \
 .master("spark://192.168.137.2:7077") \
 .config("spark.driver.host", "192.168.137.1") \
 .getOrCreate()

 nums_df = spark.range(1, 1000000)
 result_df = nums_df.select(sum("id").alias("sum"))

 logger.info(f"Result:")
 result_df.show()

 spark.stop()

if __name__ == '__main__':
 main()

Fig. 2. Execution algorithm of the Spark application

The application was executed from a client device
(a personal laptop) using the PySpark library, which was
configured to connect to the master node of the cluster.
Spark successfully distributed the computational load
across the worker nodes and completed the data
processing, returning the result 499 999 500 000 to the
client device. This confirmed the functionality of the

Measuring equipment and metrology. Vol. 86, No. 2, 2025 96

deployed cluster. Task execution monitoring via the Spark
Master web interface demonstrated efficient utilization of
both worker nodes’ resources.

The execution of the Spark application on the deve-
loped cluster follows a well-defined algorithm (Fig. 2),
illustrating the interaction between system components
[12]. The process begins on the client device with the
creation and optimization of a logical execution plan. This
is followed by the distribution of atomic tasks among the
worker nodes via the Master node, parallel execution of
computations on the worker nodes, and aggregation of
results on the client device.

6.2. Cost analysis: raspberry pi cluster vs aws
cloud environment

One of the key advantages of the assembled cluster
is its low cost compared to commercial cloud-based
solutions. Table 1 presents the cost structure for building
such a system.

Table 1. Cost of implementing the Raspberry Pi Cluster

Component Quantity Unit
Price, $

Total
Price, $

Raspberry Pi 4 (8 GB
RAM)

2 95 190

Raspberry Pi 4 (4 GB
RAM)

1 75 75

MicroSD cards
(64 GB)

3 15 45

Power Supplies
(5V/3A)

3 10 30

Router 1 25 25
Ethernet Cables

(Cat 6)
3 5 15

Multi-level Cooling
Stand

1 20 20

Total $400

To evaluate the economic feasibility of the solu-
tion, a cost comparison was conducted with equivalent
computing resources in the AWS EC2 cloud environment.
Equivalent virtual machines based on the ARM-based
Graviton2 architecture were selected:

– for the master node (4 GB RAM, 4 cores) –
t4g.medium

– for the worker nodes (8 GB RAM, 4 cores) –
t4g.large

The use of ARM processors in the t4g series allows
a more accurate comparison with Raspberry Pi than tradi-
tional x86-based architectures. Although the Raspberry Pi
features 4 physical cores while the t4g instances have only
2 vCPUs [17], the newer Graviton2 cores with higher
clock speeds deliver comparable performance.

Based on AWS pricing [17] – $0.0336/hour for
t4g.medium and $0.0672/hour for t4g.large – the annual

cost of operating an equivalent cluster configuration is
summarized in Table 2:

Table 2. Annual Cost of Equivalent AWS EC2 Virtual
Machines

Component Monthly
cost, $

Annual
cost, $

t4g.medium (master) 24.54 294.53
t4g.large (worker) × 2 49.09 × 2 1178.10

Data transfer costs (approx.) 15.00 180.00
Total $1652.63

The cost comparison shows that the Raspberry Pi

cluster, with a total price of $400, is approximately four
times cheaper than equivalent AWS cloud services over
the course of one year.

7. Conclusions

As a result of this study, a functional Apache Spark
computing cluster based on Raspberry Pi microcomputers
was successfully implemented. The deployed cluster
demonstrated its practical applicability for studying dist-
ributed computing technologies and conducting research
on a cost-effective platform.

The developed cluster consists of three Raspberry
Pi 4 nodes, including one master node and two worker
nodes. Each device in the cluster configuration is equip-
ped with 64 GB of storage on MicroSD cards. The worker
nodes are equipped with 8 GB of RAM and quad-core
Cortex-A72 processors.

To ensure efficient operation, the Apache Spark
configuration parameters were optimized. The cluster’s
network infrastructure was implemented using a 5-port
Mercury router. For secure access to the nodes, authenti-
cation based on 4096-bit asymmetric SSH keys was
configured.

The functionality of the developed cluster was
validated by successfully running a test Spark application
that performs parallel computation of the sum of numbers
from 1 to 999,999. Execution analysis confirmed that the
computational load was effectively distributed across the
worker nodes and that the results were correctly
aggregated on the master node.

From a financial perspective, the Raspberry Pi
cluster represents a viable alternative to cloud-based
solutions, as its total cost of approximately $400 is more
than four times lower than the annual cost of equivalent
AWS EC2 virtual machines.

The key value of the developed cluster lies in its
accessibility as an educational tool for hands-on learning
of distributed computing principles. Unlike virtual or
cloud-based solutions, a physical cluster provides direct
interaction with all system components.

Measuring equipment and metrology. Vol. 86, No. 2, 2025 97

Conflict of interest
The authors declare that there are no financial or

other potential conflicts of interest regarding this work.

References
[1] F. Dai, M. A. Hossain, and Y. Wang, “State of the Art in

Parallel and Distributed Systems: Emerging Trends and
Challenges”, Electronics, vol. 14, No. 4, p. 677, Feb. 2025.
DOI: 10.3390/electronics14040677.

[2] V. Thesma, G. C. Rains, and J. Mohammadpour Velni,
“Development of a Low-Cost Distributed Computing Pipe-
line for High-Throughput Cotton Phenotyping”, Sensors,
vol. 24, No. 3, p. 970, Feb. 2024. DOI: 10.3390/s24030970.

[3] A. Alakuu and D. K. Dake, “Cloud Computing in
Education: A review of Architecture, Applications, and
Integration Challenges”, IJCA, vol. 186, No. 66, pp. 49–65,
Feb. 2025. DOI: 10.5120/ijca2025924472.

[4] S. Younus, K. Kumar, I. A. Kandhro, A. A. Laghari, and A.
Ali, “Systematic Analysis of On Premise and Cloud
Services”, IJCC, vol. 13, No. 3, p. 10063641, 2024. DOI:
10.1504/IJCC.2024.10063641.

[5] A. A. Abdulle, A. Farah Ali, and R. H. Abdullah, “Cost-
Benefit Analysis of Public Cloud Versus In-House
Computing”, IJETT, vol. 70, No. 6, pp. 300–307, Jun. 2022.
DOI: 10.14445/22315381/IJETT-V70I6P231.

[6] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency
in cloud computing data centers: a survey on software
technologies”, Cluster Comput, vol. 26, No. 3, pp. 1845–
1875, Jun. 2023. DOI: 10.1007/s10586-022-03713-0.

[7] G. Agapito and M. Cannataro, “An Overview on the
Challenges and Limitations Using Cloud Computing in
Healthcare Corporations”, BDCC, vol. 7, No. 2, p. 68, Apr.
2023. DOI: 10.3390/bdcc7020068.

[8] P. K. Donta, I. Murturi, V. Casamayor Pujol, B. Sedlak, and
S. Dustdar, “Exploring the Potential of Distributed Com-

puting Continuum Systems”, Computers, vol. 12, No. 10,
p. 198, Oct. 2023. DOI: 10.3390/computers12100198.

[9] “Spark Overview”. Apache Software Foundation [Online].
Available: https://spark.apache.org/docs/latest/

[10] P. Sewal and Hari Singh, “Performance Comparison of
Apache Spark and Hadoop for Machine Learning based
iterative GBTR on HIGGS and Covid-19 Datasets”, SCPE,
vol. 25, no. 3, pp. 1373–1386, Apr. 2024. DOI:
10.12694/scpe.v25i3.2687.

[11] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica., “Spark: Cluster Computing with Working Sets”,
2010 [Online]. Available: https://www.usenix.org/
legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf

[12] N. Ahmed, A. L. C. Barczak, M. A. Rashid, and T. Susnjak,
“A parallelization model for performance characterization
of Spark Big Data jobs on Hadoop clusters”, J. Big Data,
vol. 8, no. 1, p. 107, Dec. 2021. DOI: 10.1186/s40537-021-
00499-7.

[13] Z.-D. Zhang et al., “TopADDPi: An Affordable and
Sustainable Raspberry Pi Cluster for Parallel-Computing
Topology Optimization”, Processes, vol. 13, No. 3, p. 633,
Feb. 2025. DOI: 10.3390/pr13030633.

[14] M. Cloutier, C. Paradis, and V. Weaver, “A Raspberry Pi
Cluster Instrumented for Fine-Grained Power
Measurement”, Electronics, vol. 5, No. 4, p. 61, Sep. 2016.
DOI: 10.3390/electronics5040061.

[15] E. Shoop, S. J. Matthews, R. Brown, and J. C. Adams,
“Hands-on parallel & distributed computing with Raspberry
Pi devices and clusters”, Journal of Parallel and
Distributed Computing, vol. 196, p. 104996, Feb. 2025.
DOI: 10.1016/j.jpdc.2024.104996.

[16] “Spark Configuration.” Apache Software Foundation
[Online]. Available: https://spark.apache.org/docs/latest/
configuration.html

[17] “Amazon EC2 On-Demand Pricing.” AWS [Online].
Available: https://aws.amazon.com/ec2/pricing/on-demand/

