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Angiogenesis is the ongoing formation of new blood vessels from existing ones, occurring
throughout life in both healthy and diseased states. Furthermore, it plays a crucial role in
the development and progression of breast cancer. Magnetic Resonance Imaging (MRI)
is a sensitive, non-invasive technique for monitoring and identifying lesions, establishing
it as standard clinical practice. However, its effectiveness in visualizing blood vessels in
breast tissue requires further investigation. Blood vessel analysis provides valuable insights
into tumor progression and information that can be correlated with the underlying tumor
biology. This paper presents a comprehensive review of techniques and methodologies. A
key contribution of this work is the proposal of a consolidated workflow that synthesizes the
strengths of the various approaches reviewed, offering a more integrated solution to blood
vessel segmentation in breast MRI. The paper also examines the challenges and limitations
in this field, including image quality, algorithmic constraints, anatomical complexities,
and data scarcity. Our study identifies ongoing issues, particularly the need for robust
evaluation metrics and standardized datasets. Addressing these issues is essential for
driving future advancements in breast MRI vessel segmentation and improving clinical
outcomes.
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1. Introduction

Breast cancer is the leading cause of cancer-related death among women worldwide. In 2022, 2.3 million
women were diagnosed with breast cancer, resulting in 670 000 global deaths [1]. Addressing late-stage
breast cancer diagnosis is critical for improving outcomes [2]. The World Health Organization (WHO)
recommends two strategies: early diagnosis to identify symptomatic cancer sooner and screening to
detect asymptomatic disease in targeted populations, enhancing early cancer detection [3,4].

1.1. Angiogenesis and progression of breast cancer

Angiogenesis, the forma-
tion of new blood vessels
from existing ones, is a con-
tinuous process occurring
throughout life, from fe-
tal development to old age,
in both healthy and dis-
eased states [5]. Nearly all
metabolically active tissues
in the body are within a
few hundred micrometers of a blood capillary, which forms through angiogenesis and is essential for
exchanging nutrients and waste products [6]. Angiogenesis plays a crucial role in the development
and progression of breast cancer. While breast cancer was initially believed to be driven mainly by

Fig. 1. A simplified illustration of angiogenesis in a breast tumor.
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genetic mutations in ductal epithelial cells, it is now understood that tumor growth and metastasis also
rely heavily on microenvironmental factors [7]. As a result, the tumor activates an angiogenic switch,
transitioning irreversibly into an active angiogenic state (see Figure 1). This change allows the tumor
to recruit new blood vessels, restoring oxygen and nutrient supply to both angiogenic and adjacent
non-angiogenic cells, thereby accelerating tumor growth [8§].

1.2. Medical imaging and blood vessel segmentation

Key imaging modalities such as mammography, ultrasound, magnetic resonance imaging (MRI), and
positron emission tomography (PET) play a crucial role in the auxiliary diagnosis of breast cancer [9].
Extracting information from medical images regarding blood vessels’ location, size, and shape can
provide valuable insights for clinicians, particularly before surgery and during neoadjuvant therapy [10].
Beforehand, this requires a segmentation process to be carried out.

Manual segmentation of blood vessels is a time-consuming and costly process with limited con-
sistency and reproducibility between operators. In contrast, semi-automatic and automatic vessel
segmentation methods still rely on expert clinicians to either perform initial segmentation or validate
the results [11]. Moreover, the advancement and assessment of these algorithms are hindered by the
high cost of expert annotations and the scarcity of publicly available image datasets with Gold Stan-
dard segmentations, which are currently restricted to specific anatomical areas like the retina [12].
Nonetheless, automatic or semi-automatic blood vessel segmentation holds the potential to support
clinicians, making it a significant area of interest in medical research [13].

The benefits of MRI as a sensitive and non-invasive technique for monitoring and identifying lesions
and diagnosis have established it as a standard clinical practice [14]. Because of MRI’s crucial role in
medical care, it is unlikely to be rapidly replaced by another imaging technique as the clinical standard.
Therefore, it is important to develop effective methods for assessing blood vessel density and structure
in MRI images [15].

1.3. Research methodology

This study aims to identify existing methods for blood vessel segmentation in breast MRI. Addition-
ally, the study discusses the challenges and limitations in accurately delineating vascular structures.
To achieve our goal, we have formulated the following research questions: “What are the existing
approaches for blood vessel segmentation in breast MRI?”, “What are the limitations of these ap-
proaches?”, and “What are the challenges in this field?”. To address these questions, we conducted a
comprehensive literature review for studies focusing on blood vessel segmentation using breast MRI
imaging in Scopus, Web of Science, Google Scholar, and PubMed (see Figure 2). After search pro-
cessing, 118 studies were identified. After screening and applying inclusion and exclusion criteria (see
Table 1), our search yielded only 7 studies that met our criteria, all published between 2009 and 2024.
In addition to the literature review results, the paper proposes a consolidated workflow for the blood
vessel segmentation process that synthesizes the existing methods included in this review.

Table 1. Inclusion and exclusion criteria applied for the selection of studies.

Inclusion criteria Exclusion criteria
Use of English as a language Focusing on organs other than the breast
Being a conference or journal paper Utilizing imaging modalities other than MRI
Focus on blood vessel segmentation Involving tasks other than segmentation
within breast MRI images
Studies that specifically examine breast Not open access or no full text available
Use Magnetic Resonance Imaging Involving segmentation types other
(MRI) as imaging modality than blood vessel segmentation
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Fig. 2. PRISMA Flowchart: The initial database search (Scopus, Web of Science, Google Scholar, and PubMed)

identified 118 studies. In the end, 7 studies were included in the review.

1.4. Contributions

While significant advancements have been made in medical image analysis, particularly in the seg-
mentation of various anatomical structures such as the brain, liver, kidneys, coronary vessels, and
retina, and across different imaging modalities such as CT, PET, and ultrasound, a dedicated and
in-depth review specifically focused on blood vessel segmentation in breast MRI remains absent from

the literature [16-19].

Through this study, we present several key contributions to the field of blood vessel segmentation

in breast MRI:

— We provide an extensive analysis of existing segmentation techniques, including traditional, machine

learning, and deep learning approaches.

— We highlight the challenges and limitations of current methods, such as image quality issues and

algorithmic constraints.

— We propose a consolidated workflow that combines the strengths of various methods into a com-
prehensive roadmap, offering a clear and structured approach to guide future research and clinical
applications in blood vessel segmentation in breast MRI.
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2. Blood vessel segmentation on breast MRI
2.1. Breast MRI

Magnetic resonance imaging is a complex technique that utilizes magnetic fields and electromagnetic
energy to produce high-resolution images of internal structures, even at the microscopic level. This
advanced technology relies on the interaction between the magnetic fields and the body’s protons,
generating detailed visual information [20]. MRI encompasses a variety of imaging techniques, each
designed to cater to specific diagnostic needs. These include, but are not limited to, standard MRI,
functional MRI, diffusion-weighted MRI, and dynamic contrast-enhanced MRI, among others. Breast
MRI has a wide range of clinical applications, including the screening of individuals at high risk
for breast cancer, the diagnostic evaluation of suspicious breast lesions, the assessment of treatment
response, and the guidance of interventional procedures [21].

The efficiency of Breast MRI in visualizing and detecting blood vessels within breast tissue should
be investigated due to its ability to generate high-contrast images and detect changes in blood flow.
Dynamic contrast-enhanced MRI, which uses a contrast agent, enables the assessment of tumor an-
giogenesis, a hallmark of malignant breast lesions [22]. Tumors often trigger new blood vessel growth,
which can be detected by MRI scans, particularly T1-weighted imaging. Diagnostic assessments can
utilize time-intensity curves are categorized into three types, providing insights into the likelihood
of malignancy based on signal intensity changes over time. Type 1 indicates benign lesions, type 2
indicates indeterminate lesions, and type 3 indicates likely malignant lesions [23].

2.2. Exiting Methods of blood vessel segmentation on breast MRI

The literature reveals limited studies on the topic of blood vessel segmentation, partly due to the
challenges posed by the limitations of MRI in directly visualizing biological structures and the inherent
heterogeneity of the human breast, both within and across individuals. We have identified seven
relevant studies addressing this research area (see Table 2). Gierlinger et al. introduced the multi-seed
region growing algorithm, which builds upon the seed region growing (SRG) algorithm. The MSRG
algorithm aims to enhance breast MRI by extracting vessel-like structures, using multiple seeds to
efficiently grow regions based on pixel connectivity. Despite certain limitations, the MSRG algorithm
provides valuable insights for refining the segmentation process [24]. In related research, Glotsos et
al. proposed a modified Seeded Region Growing algorithm for vessel segmentation in breast MRI. This
method classifies pixels into seed, background, and weak candidate regions, achieving approximately
94.4% accuracy in lesion characterization. However, the approach may be susceptible to noise and
requires precise seed selection for optimal performance [25].

In the context of blood vessel segmentation in 3D breast MRIs, Kahala et al. introduced an algo-
rithm that leverages Hessian-based techniques to generate a 3D model and enhance textural character-
istics. This algorithm accomplishes vessel completion by tracing the centerlines of endpoints identified
through skeletonization. Benchmarking the algorithm against manual segmentation, the researchers
reported a sensitivity of 86% and a specificity of 88.3%, suggesting its efficacy in tumor detection [26].
However, the algorithm’s reliance on tracking methods may not be as effective for curved blood vessels
near suspicious masses, potentially impacting accurate detection. Addressing 3D breast MRI, Vignati
et al. proposed a fully automated 3D Hessian-based algorithm for detecting blood vessels in breast
DCE-MRI. The algorithm identifies linear structures and filters out non-vessel enhancements based on
morphology. It achieves a correct detection rate of 89.1%, a missed detection rate of 10.9%, and an
incorrect detection rate of 27.1%. Compared to the Computer Aided Diagnosis (CAD) system, the
algorithm reduces vessel false positives by 68.4%, enhancing diagnostic accuracy. Yet, the algorithm
has key limitations: it overlooks vessel length, often misses branching points, and relies on an empir-
ically set threshold for the covariance eigenvalue ratio, which can impact segmentation accuracy and
consistency [27].

To improve the accuracy of hot-spot labeling in CAD systems for breast MRI, Lin et al. imple-
mented a vessel exclusion process using a connectivity-based approach. The goal of this approach is
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to identify and eliminate potentially mislabeled blood vessel enhancements in 2D MIP images and ex-
tend this analysis to adjacent 3D slices. When validated against radiologist annotations, this method
significantly reduced false positives. The detection rates showed 85.6% correctness and a 19.2% missed
detection rate [28]. To further improve blood vessel detection, Zaman et al. developed an algorithm
leveraging morphological operators and gradient features. This algorithm incorporates steps such as
gradient magnitude operations for edge detection, histogram equalization, and adaptive thresholding.
These steps serve to enhance the visibility and accuracy of vessel identification, particularly in environ-
ments with high noise levels. Together, these techniques strive to enhance the reliability and precision
of breast MRI analyses by effectively mitigating incorrect vessel labeling and bolstering detection
capabilities [29].

In [30], Lew et al. developed a convolutional neural network algorithm to segment breast tissue,
fibroglandular tissue, and blood vessels in MRI scans, using a dataset of 100 annotated studies. The
algorithm demonstrated high Dice scores, indicating accurate segmentation, with 0.92 for breast tissue,
0.86 for fibroglandular tissue, and 0.65 for blood vessels. Furthermore, the algorithm’s segmentation
outputs highly correlated (0.95) with manually created masks, suggesting its efficacy. However, the
limited size and potential variability in the training dataset may constrain the algorithm’s general
applicability and data quality. Additionally, a lower correlation (0.75) with radiologist evaluations
implies some discrepancies between the model’s predictions and expert assessments.

Table 2. Summary of vessel segmentation techniques in breast MRI.

Pre- /Post-processing
Techniques

[30] | 2024 100 2D /3D U-Net based approach | — Resizing

— Capping Extreme Values
— Normalization

[24] | 2021 36 3D Seeded Region Growing | — Quality enhancement

— Thresholding

[29] | 2021 N/A 2D Thresholding — Contrast Adjustment

— Dilation

— Erosion

— Gradient Magnitude Calculation
[26] | 2017 24 3D Hessian based method | — Texture enhancement

— Centerline tracking

— Skeletonizing

[25] | 2014 20 2D Seeded Region Growing | — Background removal

— Median filtering

[27] | 2012 28 3D Hessian-based algorithm | — Multiscale analysis

— Skeletonizing

[28] | 2009 34 2D Hessian based approach | — Filter bank enhancement
— MIP application

— Centerline tracking

— 3D skeletonizing

Ref. | Year | Dataset Size | Image Dim. Technique

3. Consolidated workflow for blood vessel segmentation in breast MRI

Adopting a standardized workflow that incorporates best practices and methodologies from the lit-
erature is essential to improve process efficiency and outcome reliability. This section introduces a
consolidated workflow for blood vessel segmentation, synthesized from various approaches previously
discussed. The proposed workflow includes the sequential steps involved in the segmentation of blood
vessels process from image data, including preprocessing, feature extraction, morphological operations,
and various post-processing techniques. The decision nodes guide the process based on the evaluation
of results, highlighting when additional enhancements or 3D processing might be necessary to achieve
satisfactory outcomes.
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3.1. Step 1: Image preprocessing

Image preprocessing techniques play a crucial role in enhancing blood vessel segmentation in MRI.
Various methods have been used in the previously cited studies to improve blood vessel segmentation
accuracy by addressing challenges such as low contrast and noise.

Grayscale conversion and contrast enhancement. The first step in the preprocessing pipeline
of Breast MRI is to convert the original breast MRI images to grayscale if necessary. This simplifies
the image representation and reduces the computational complexity of subsequent processing steps.
Then, the contrast of images should be enhanced. Three different techniques were employed in the in-
cluded studies: gamma correction, contrast-limited adaptive histogram equalization, and homomorphic
filtering:

— Gamma correction [31] is a nonlinear transformation that adjusts the image’s brightness and
contrast by raising the pixel values to a power, known as the gamma value.

— Contrast-limited adaptive histogram equalization (CLAHE) [32] is a modification of the
standard histogram equalization algorithm, which adaptively enhances the contrast of local regions
within the image, rather than applying a global transformation (see Figure 3).

— Homomorphic filtering [33] is a technique that separates an image’s illumination and reflectance
components, allowing for the selective enhancement of the reflectance component, which typically
contains the high-frequency details of the image.

Fig. 3. Comparison of Breast MRI Scans Before and After CLAHE Enhancement: The left image presents the
original scan, while the right image illustrates enhanced contrast and improved visibility of internal structures
following the application of CLAHE.

Noise reduction. Several image processing techniques have been employed in the reviewed studies
to reduce noise and preserve important image features:

— Median filtering [34]: Replaces each pixel value with the median of neighboring pixel values,
effectively removing noise while preserving edges.

— Gaussian filtering [35]: Uses a Gaussian kernel to smooth the image and reduce noise but can
lead to blurring of sharp edges.

— Bilateral filtering [36]: Combines spatial and intensity information to preserve edges while re-
ducing noise.

Image enhancement. Medical imaging, such as breast MRI, can often suffer from quality issues
that hinder the visualization and detection of important anatomical structures like blood vessels. In
these cases, a variety of image enhancement techniques can be employed to improve the detection and
analysis of these critical components:
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— Joint Histogram Equalization [37]: This method combines histogram equalization with a joint
optimization approach to enhance both global and local contrast of the image.

— 2D Gabor Filter [38]: A linear filter that enhances specific spatial frequencies and orientations
within the image, potentially highlighting blood vessel structures.

— Unsharp Masking Filter [39]: Enhances high-frequency details by subtracting a blurred version
of the image from the original, improving edge sharpness.

— Adaptive Unsharp Masking Filter [40]: An advanced sharpening technique that dynamically
adjusts the amount of sharpening based on local image characteristics, effectively enhancing the
contrast of fine details.

— PSO-based Unsharp Masking Filter [41]: This method uses a particle swarm optimization
algorithm to fine-tune the parameters of the unsharp masking filter, further improving the en-
hancement of blood vessel structures.

Morphological operations. A set of morphological operations was also applied to the enhanced
breast MRI images further to refine the segmentation of the blood vessel structures:

— Dilation [42]: A morphological operation that enlarges the boundaries of regions, potentially
connecting discontinuous blood vessel segments.

— Erosion [43]: A complementary operation to dilation, which shrinks the boundaries of regions,
potentially removing small noise artifacts.

— Morphological cleaning: This operation combines dilation and erosion to remove small, isolated
regions, effectively cleaning up the segmented blood vessel structures.

3.2. Step 2: Feature extraction
One of the key challenges in vessel segmentation is the extraction of relevant features from the MRI
data. Three main techniques have been explored in the literature for blood vessel segmentation in

Breast MRI.

— Gradient magnitude calculation: Identifies areas with significant intensity changes, often cor-
responding to vessel boundaries.

— Statistical analysis: Includes metrics such as mean, standard deviation, and higher-order mo-
ments, which provide insights into tissue properties and help differentiate vessels from surrounding
tissues.

— Textural feature extraction: Analyzes spatial patterns and relationships within the image,
offering valuable cues for vessel segmentation.

3.3. Step 3: Blood vessel segmentation

Various techniques for blood vessel segmentation have been identified in the literature. The following
schema provides a synthesized overview of these methods, categorizing them into distinct groups based
on their underlying approaches (see Figure 4). The blood vessel segmentation techniques are catego-
rized into 3 main groups: Traditional Methods, Machine Learning Approaches, and Deep Learning
Approaches.

Traditional methods. Traditional blood vessel segmentation methods typically rely on a com-
bination of image processing techniques, such as hysteresis thresholding, thinning, pruning, and seed
region growing.

Hysteresis thresholding [44] is a technique that involves setting two threshold values — a high and
a low — to identify pixels belonging to blood vessels. Additionally, thinning and pruning are applied
to refine the segmented vessels by removing spurious connections and ensuring the continuity of the
vascular structure. Another approach, seed region growing (SRG) [45], starts from user-specified seed
points and iteratively expands the regions by including neighboring pixels that meet specific similarity
criteria. These methods have been widely used in the past and have demonstrated reasonable perfor-
mance. However, they are often sensitive to image noise, contrast variations, and vessel complexity,
which can lead to suboptimal segmentation results.
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Fig. 4. Classification of blood vessel segmentation techniques, categorized into traditional, machine learning,
and deep learning approaches, highlighting techniques commonly used in existing literature.

To address the limitations of previous blood vessel segmentation methods, researchers have turned
to filter-based approaches. One notable example is the Frangi filter [41], which relies on the analysis of
the Hessian matrix to capture the local second-order structure of the image (see Figure 5). This filter
is specifically designed to enhance tubular structures, such as blood vessels, by identifying regions with
high vesselness values. Furthermore, other Hessian-matrix-based filters [42] have also been utilized,
effectively capturing the elongated and tubular nature of blood vessels.

Fig. 5. Visualization of pre-processing techniques applied to breast MRI images. The figure shows the impact
of Frangi and Hessian filters, as well as CLAHE and MIP enhancement techniques.

These filter-based approaches have shown improved performance over earlier methods by reducing
noise and enhancing vessel contrast (see Figure 5). However, they still encounter difficulties when faced
with complex vessel networks, particularly in the presence of pathological changes or imaging artifacts.
This issue is made more challenging by the dense fibroglandular tissue in the breast, which can obscure
the distinction between blood vessels and surrounding structures, ultimately reducing segmentation
accuracy.

Machine learning-based approaches. Machine learning techniques have been explored to over-
come the limitations of traditional and filter-based blood vessel segmentation methods. These ap-
proaches leverage machine learning algorithms to learn discriminative features from data, enabling
more robust and accurate segmentation. Common techniques include random forests, support vector
machines, and Conditional Random Fields, which can capture complex relationships, classify pixels,
and model spatial dependencies for coherent results [46]. While machine learning techniques have
shown promise in overcoming the limitations of traditional and filter-based blood vessel segmentation
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methods, these approaches also face their own set of challenges. The reliance on large, labeled datasets
for training can be a significant barrier, as the acquisition of high-quality, annotated medical images is
often a labor-intensive and time-consuming process [47|. Additionally, the interpretability and explain-
ability of machine learning models can be a concern, as the internal decision-making processes may
not be easily understood by domain experts. Furthermore, the generalization of these models to new
or unseen data, particularly in the presence of diverse imaging conditions and anatomical variations,
remains an area that requires further investigation and improvement.

Deep learning-based approaches. Deep learning models, such as convolutional neural networks,
have demonstrated remarkable success in medical image analysis tasks, including the segmentation of
blood vessels [48]. The U-Net architecture, a prominent deep learning model, has proven to be highly
effective in this domain. U-Net combines low-level and high-level features extracted from the input
images, enabling it to produce detailed and precise segmentation maps of the vascular structures.
However, the application of U-Net and other deep learning models for blood vessel segmentation in
breast MRI has been limited by the scarce availability of large, annotated training datasets in this
specific field. Breast MRI presents unique challenges, such as the complex and heterogeneous nature
of the breast tissue, the presence of various anatomical structures, and the potential impact of imaging
artifacts and variations. The lack of comprehensive training data in this domain has hindered the
development and deployment of deep learning-based vessel segmentation techniques for breast MRI,
constraining their widespread adoption in clinical practice.

3.4. Step 4: Post-processing

Post-processing techniques are commonly employed to refine and enhance the results of blood vessel
segmentation from deep learning models. These post-processing steps often include morphological
cleaning to remove artifacts and smooth the boundaries of the detected vessels. Additionally, skele-
tonization and centerline tracking algorithms are used to extract the medial axes of the vessels, which
can facilitate further analysis. Finally, additional filtering or optimization techniques may be applied
to address any remaining inaccuracies or issues in the segmented vascular structures. These post-
processing methods play a crucial role in improving the overall quality, accuracy, and clinical relevance
of the final blood vessel segmentation maps.

3.5. Step 5: Evaluation

Evaluating the performance of blood vessel segmentation models is essential for ensuring their reliabil-
ity and applicability in real-world scenarios. A comprehensive evaluation includes statistical analysis,
predictive modeling, and performance metrics. Statistical analysis — such as hypothesis testing, confi-
dence intervals, and analysis of variance — helps assess the significance and robustness of the results.
Predictive modeling techniques, including cross-validation and holdout testing, estimate the model’s
performance on new data, thereby ensuring its generalizability. Furthermore, metrics like the Dice
coefficient, Jaccard index, precision, recall, and F1-score offer a thorough assessment of segmentation
accuracy [49].

After the evaluation step, the process enters a decision-making phase where the results are assessed
for their quality and accuracy. If the results are deemed unsatisfactory, the workflow proceeds to de-
termine whether significant modifications are required. If such modifications are needed, the process
moves to an additional enhancement phase, which involves advanced techniques like residual connec-
tions, Kalman filters, convolutional block attention modules, or particle filters to refine the output.
Following these enhancements, the workflow loops back to the pre-processing stage for further adjust-
ments and reevaluation. Once the results meet the desired standards, the workflow concludes, ensuring
a robust and precise segmentation outcome through this iterative and meticulous approach.

3.6. 3D-processing for visualization

Medical imaging techniques for 3D visualization of blood vessels involve a multi-step process [50|. First,
a two-step registration approach is used to align the images properly. Next, 3D interpolation techniques

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1121-1134 (2025)



1130 El Jiani L., Alaoui F.-Z., Banou Z., Moustafi K.

are employed to reconstruct a continuous 3D representation, enabling comprehensive analysis and
visualization of the vascular structure. Additionally, maximum intensity projection (MIP) techniques
can be used to enhance the 3D visualization by selectively highlighting the high-intensity voxels, such
as those corresponding to blood vessels, within the reconstructed 3D volume (see Figure 6).

Fig. 6. Enhancement of breast MRI imaging: Original scan (left), after applying Maximum Intensity Projection
(center), and subsequent enhancement with CLAHE on the MIP image (right).

Finally, advanced 3D volume rendering techniques are utilized. These generate high-quality, inter-
active visualizations to explore complex 3D blood vessel anatomy and surrounding tissues in-depth.

4. Challenges and limitations in breast MRI vessel segmentation

In this section, we will delve into the difficulties and constraints that researchers encounter when
segmenting blood vessels in breast MRI images. These challenges, which have been identified through
a comprehensive literature review, emphasize the complexities and gaps in this field, indicating the
necessity for further progress.

Image quality and resolution. The accurate segmentation of vessels from surrounding tissue
is complex and can be influenced by noise and variations in image quality. Challenges arise due to
noise and low-resolution obscuring vessel-like structures, as well as the low resolution of MRI which
complicates accurate blood vessel detection. Additionally, the low contrast between blood vessels and
surrounding tissues hinders accurate segmentation.

Algorithmic and methodological limitations. The accuracy of blood vessel segmentation in
breast MRI is significantly affected by algorithmic and methodological limitations. Challenges include
under-segmentation, where algorithms may miss important vascular structures, and the need for precise
seed point selection to avoid suboptimal results. Detection issues can occur with very faint or nonlinear
vascular enhancements, especially at junctions or branching points, and methods often struggle with
low-intensity detection and diffused vessel boundaries.

Anatomical and physiological challenges. The process of identifying and isolating blood
vessels in breast MRI is significantly affected by anatomical and physiological obstacles. The discomfort
experienced by patients during imaging can result in lower image quality, which can then impact
the accuracy of diagnoses. Moreover, the presence of noise and fatty tissues can make it difficult
to distinguish blood vessels from other structures. The intricate anatomy of the breast, including
connective and fibroglandular tissues that resemble blood vessels, as well as the natural variation in
blood vessel shapes and sizes, pose further challenges to achieving consistent and precise segmentation.
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Data and evaluation. Data and evaluation challenges significantly hinder progress in blood
vessel segmentation in breast MRI. The lack of large-scale, publicly available annotated datasets delays
model development. Ambiguity in annotations due to limited anatomical landmarks complicates tissue
boundary definitions. The use of private datasets restricts reproducibility and generalizability, while
variability in MRI sequences and parameters affects consistency. Reliance on radiologist annotations
introduces subjectivity and variability, and the absence of standardized evaluation methods limits the
effectiveness of comparative studies and clinical applications.

5. Conclusion

Through this study, we analyzed various techniques, including traditional methods as well as machine
learning and deep learning approaches. Additionally, we identified the challenges and limitations of
existing methods, particularly regarding image quality and algorithmic constraints. We also proposed
a consolidated workflow that integrates the strengths of different techniques, creating a structured
roadmap for future research and clinical applications. From the review, we found that most existing
techniques primarily focus on filter-based methods. Machine learning is less often used to segment
blood vessels and is more focused on learning discriminative features from data, capturing complex
relationships, classifying pixels, and modeling spatial dependencies to achieve coherent results. Deep
learning, particularly the U-Net architecture, was applied in a single study. However, the use of U-Net
and other deep learning models for blood vessel segmentation in breast MRI is limited by the scarcity
of large, annotated training datasets in this specific field. Additionally, these advancements encounter
challenges such as image quality issues and anatomical complexities.

Future research should prioritize overcoming the current limitations in blood vessel segmentation.
Developing algorithms that are more robust to variations in patient motion, image quality, and vessel
morphology is critical. These factors, such as motion artifacts or changes in vessel structure, often
degrade segmentation accuracy. Additionally, creating publicly accessible, standardized datasets with
high-quality annotations will be essential for training and benchmarking new models. Such datasets
would enable more effective cross-comparisons between different approaches. Lastly, the establishment
of standardized evaluation metrics is necessary to ensure consistent performance comparisons across
studies. Addressing these challenges will ultimately lead to improved diagnostic accuracy, better treat-
ment planning, and enhanced patient outcomes in breast MRI blood vessel analysis.
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CermeHTayia kpoBoHocHux cyanH npu MPT monouHoi 3an03u:
KOMMJIEKCHUI Ornsg, MeToauk Ta npobsem

Enp xiani JI., Amayi @.-3., Bany 3., Mycradi K.

Ynisepcumem Xacana II y Kacabaanyi (UH2C),
Kacabaranxa, Mapoxxo

Amnriorenes — 1ie 6e3mepepBHE YTBOPEHHS HOBUX KPOBOHOCHUX CY/MH 3 ICHYIOUHX, SKe Bil-
OyBaE€ThCSI MPOTATOM YKUTTS SIK Y 3J0POBHUX, TaK i B XBopuX cTaHax. KpiMm Toro, BiH Bimi-
rpa€ BUpPIMAIbHY POJIb ¥ PO3BUTKY Ta MIPOrpeCcyBaHHI paKy MOJIOYHOI 3ay03u. MaruiTHo-
pesonancHa Tomorpadist (MPT) — e uyTiuBuii, HelHBA3UBHUI METON MOHITOPHHTY Ta
BUSIBJIEHHS yDPaKeHb, [0 POOUTH MOr0 CTaHAAPTHOIO KJIHIYHOMO mpakTukown. OmHak I1
edeKTUBHICTh y BidyaJsizalil KDOBOHOCHUX Cy/IWH y TKaHHHAX MOJIOYHOI 3aJI03U MOTpe-
Oy€e MOAIBIIOrO JOCIIKEHH. AHAJI3 KPOBOHOCHUX CYMH HAJAE IiHHY iH(OpMAIIio mpo
MIpOrpecyBaHHs MyXJUHU Ta iH(OpMAaIliio, IKy MOXKHA CIIBBIIHECTH 3 OCHOBHOIO 0i0J10-
riefo myxauHU. Y I cTaTTi IpeICTABICHO BCEOITHUIT OTJIS METOOJOTIH Ta METOIUK.
KimrouoBuMm BHECKOM 11i€T pOOOTH € MPOIIO3UIlisi KOHCOJIIIOBAHOTO POOOYIOro MPOIIECY, KU
00’eIHy€ CHJIBHI CTOPOHU PI3HUX PO3TJISHYTHX IIiAXO/IB, MPOIOHYOYH OLIBIT KOMILIEKCHE
pimenns s cerMenTariii kposonocHux cyaus ipu MP'T mostounoi 3a1031. Y cTaTTi TAKOXK
POBIISIAIOTHCS TPOOJIEMU Ta OOMEXKEHHs B IIiil raJiy3i, BKIIOYAIOUN SKiCTh 300parKeHHs],
AJTOPUTMITHI OOMEKEHHsI, aHATOMIYUHI CKJIAIHOCTI Ta JAedirut mannx. Harre mocimken-
He BU3HAYAE IIOTOYHI IPOOJIEME, 30KpeMa HOTpe0y B HAJIffHUX IOKA3HUKAX OIHKH Ta
CTaHJapTU30BaHUX HaOOpax maHuX. BUpimeHHs 1UX MUTAHb € BAXKJIMBUM JJIs CIPUSTHHS
MaiibyTHROMY TPOTPECY B CErMEHTAIlil CYAMH MOJIOYHOI 3ajo03u 3a jgornomoror MPT Ta
MMOKpAITeHHs KJIIHIYHIX Pe3yJIbTATIB.

Kntouosi cnosa: MPT moa0unoi 3a.003U; paK MOAOYWHOL 3AA03U; CE2MEHMAYLA KPOBO-
HOCHUT CcYOuM; arneiozenes.
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