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Traditional biomarker testing for Programmed Death-Ligand 1 (PD-L1) in Non-Small Cell
Lung Cancer (NSCLC) remains invasive and costly. This study proposes a non-invasive
alternative by integrating radiomic features extracted from CT scans with advanced deep
learning architectures. We evaluated Artificial Neural Networks (ANN), Convolutional
Neural Networks (CNN), and Recurrent Neural Networks (RNN), including Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU). Our results demonstrate that
Transformer-based models significantly outperform conventional approaches, achieving a
test Mean Squared Error (MSE) of 18.25 compared to 294.59 for ANN and 127.12 for CNN.
The optimized Complex Transformer architecture reduced MSE to 17.41 after 1000 epochs,
with early stopping at epoch 261. These findings highlight the potential of radiomics
combined with Transformer models to enable accurate, cost-effective PD-L1 prediction,
advancing personalized oncology while reducing reliance on invasive procedures.

Keywords: radiomics; deep learning; PD-L1 biomarker; non-invasive diagnostics; non-
small cell lung cancer; transformer models.

2010 MSC: 68T07, 92C55, 68U10, 62P10, 94A08  DOI: 10.23939/mmc2025.04.1145

1. Introduction

Non-Small Cell Lung Cancer (NSCLC), a predominant contributor to global cancer mortality, under-
scores the urgent need for innovations in precision oncology. Central to this pursuit are biomarkers like
Programmed Death-Ligand 1 (PDL1), which guide immunotherapy selection and optimize therapeutic
outcomes [1|. Traditional approaches for biomarker assessment — invasive tissue biopsies and molecu-
lar analyses — impose significant burdens on patients, both financially (costing hundreds to thousands
of dollars per test) and physically [1]. Concurrently, routine imaging modalities such as Computed
Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI),
while indispensable for diagnosis, amplify healthcare expenses, with individual scans ranging from 1 000
to 5000 [2]. These challenges highlight a critical demand for cost-effective, patient-centric alternatives.

Radiomics, a transformative field that converts medical imaging data into quantitative biomarkers,
offers a paradigm shift. Emerging evidence demonstrates its capacity to predict PDL1 expression non-
invasively by integrating radiomic features with deep learning algorithms, thereby circumventing the
limitations of tissue-based methods [1,3]. Such advancements hold promise for reducing diagnostic
costs, minimizing patient discomfort, and accelerating treatment planning [4]. For instance, recent
studies leveraging CT and PET/CT scans have achieved notable accuracy in PDL1 prediction (AUC:
0.85-0.93), validating radiomics as a viable adjunct to conventional testing [1,3].

Despite these strides, the clinical integration of radiomics and artificial intelligence (AI) faces hur-
dles. Robust implementation demands access to large, annotated datasets, sophisticated computational
infrastructure, and advanced machine learning frameworks to ensure reliable feature extraction and
model generalizability [5]. Nevertheless, the potential rewards are profound: Al-driven radiomics could
redefine NSCLC management by enabling real-time, non-invasive biomarker profiling, thereby enhanc-
ing therapeutic precision while alleviating healthcare costs [2].
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This study investigates the predictive efficacy of radiomic features for PDL1 expression in NSCLC
through a systematic comparison of machine learning and deep learning models. By evaluating their
performance across diverse datasets, we aim to establish a foundation for integrating Al-powered
radiomics into clinical workflows, ultimately bridging the gap between imaging data and molecular
diagnostics.

2. Related work

The convergence of radiomics and deep learning has emerged as a transformative force in non-small
cell lung cancer (NSCLC) research, offering unprecedented opportunities for non-invasive biomarker
prediction and treatment personalization. By extracting high-dimensional data from medical imaging,
radiomics enables the identification of latent patterns correlated with molecular features, clinical out-
comes, and therapeutic responses [4]. This section synthesizes recent advancements, challenges, and
future directions in this rapidly evolving field.

Programmed Death-Ligand 1 (PDL1), a critical biomarker for immune checkpoint inhibitor eligi-
bility, has been a focal point of radiomics research. Traditional tissue-based PDL1 assessment faces
limitations due to tumor heterogeneity and invasiveness. Recent studies demonstrate that radiomic
features derived from CT and PET/CT scans, when integrated with deep learning models, achieve high
predictive accuracy (AUC: 0.85-0.93) for PDL1 expression [1,3]. For instance, Zhang et al. developed
a hybrid framework combining radiomics and convolutional neural networks (CNNs), achieving robust
performance across multicenter cohorts [2]. These approaches not only circumvent biopsy-related risks
but also reduce diagnostic costs by leveraging routinely acquired imaging data.

Epidermal Growth Factor Receptor (EGFR) mutations, pivotal for tyrosine kinase inhibitor (TKI)
therapy, have similarly benefited from radiomic innovations. Wang et al. pioneered a multitask Al
system using CT-based radiomics to concurrently predict EGFR and PDLI1 status, achieving AUCs
of 0.928 and 0.905, respectively [6]. Building on this, Wu et al. introduced a habitat radiomics nomo-
gram incorporating peritumoral features, which demonstrated strong generalizability across external
validation cohorts (AUC: 0.809-0.917) [7]. Such models exemplify the potential of radiomics to guide
targeted therapy decisions non-invasively.

Recent efforts have expanded radiomics to encompass immune-related biomarkers like tumor mu-
tation burden (TMB) and composite prognostic models. Shi et al. developed a radiomic signature
integrating PDL1 and TMB data, achieving 83% accuracy in predicting short-term immunotherapy re-
sponse [8]. Similarly, Sui et al. established a radiogenomic framework linking CT-derived features with
gene expression profiles, enabling bidirectional mapping between imaging phenotypes and molecular
alterations [9]. These multimodal approaches provide holistic insights into tumor biology, enhancing
precision in treatment stratification.

The shift from handcrafted radiomic features to deep learning-driven feature extraction has
markedly improved predictive performance. Whereas traditional radiomics relied on manual feature
engineering, CNNs and generative adversarial networks (GANs) now autonomously capture discrimina-
tive imaging patterns [5]. For example, Sui et al. employed autoencoders to decode tumor heterogeneity
from CT scans, significantly outperforming conventional radiomic models in mutation prediction [9].
These advances underscore deep learning’s capacity to uncover complex tumor characteristics invisible
to human observers.

Despite its promise, clinical translation of radiomics faces critical hurdles:

— Technical Variability: Inconsistent imaging protocols (e.g., slice thickness, scanner vendors)
impair feature reproducibility [2].

— Data Scarcity: Limited access to large, annotated datasets — particularly for rare subtypes —
constrains model generalizability [10].

— Interpretability Gap: The “black-box” nature of deep learning models hinders clinical trust.
Frameworks linking radiomic features to genomic alterations, as proposed by Sui et al., aim to
bridge this gap [9].
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The integration of radiomics with multi-omics data (genomics, proteomics) represents the next
frontier. Mlynar et al. highlighted the synergistic potential of combining imaging biomarkers with
molecular profiles to build robust predictive models [11|. Furthermore, federated learning approaches
could address data scarcity by enabling collaborative model training across institutions while preserving
patient privacy [12].

Radiomics and deep learning are redefining NSCLC management by enabling non-invasive
biomarker prediction and personalized treatment planning. While challenges in standardization and
interpretability persist, ongoing methodological innovations — coupled with multimodal data integra-
tion — position radiomics as a cornerstone of future oncology practice. As evidenced by recent stud-
ies, these technologies not only enhance diagnostic accuracy but also pave the way for cost-effective,
patient-centric care paradigms.
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Fig. 1. Overview of the methodology and workflow for radiomic feature extraction and PD-L1 prediction.

3. Proposed methodology

In this study, we aim to predict PD-L1 expression levels in NSCLC patients using a deep learning
model trained on radiomic features extracted from CT scans. By combining radiomic data and ge-
nomic information, we create a comprehensive framework that allows for the non-invasive prediction of
biomarkers critical to patient treatment strategies. The radiomic features, derived from tumor-specific
regions in the CT images, capture the tumor’s intensity, shape, and texture characteristics, which are
key to identifying tumor heterogeneity. These features, alongside corresponding biomarker data, serve
as inputs to our deep learning model, which is designed to predict PD-L1 expression levels, aiding in
decision-making for immunotherapy treatments.
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3.1. Dataset

This study used the NSCLC Radiogenomics Dataset [10] from The Cancer Imaging Archive (TCIA),
which includes over 300 patient cases and approximately 30.7 GB of data across 39 626 files and 442 fold-
ers. The dataset provides CT images, tumor-specific segmentation masks, and biomarker information
like PD-L1 expression levels, crucial for precise radiomic feature extraction. Despite its strengths,
variability in imaging protocols and patient demographics presents challenges, highlighting the need
for rigorous standardization during preprocessing. This dataset serves as a robust foundation for
integrating imaging and genomic data to advance non-invasive cancer diagnostics.

3.2. Data preprocessing

For this study, we selected CT scans and their corresponding segmentation masks for each patient from
the NSCLC Radiogenomics dataset. The images underwent preprocessing to standardize resolution
and format across the dataset. Scans that lacked corresponding segmentation masks, or images that
did not align with their masks in terms of shape, were excluded. This step was essential for ensuring
that only valid image-mask pairs were used for further analysis.

The segmentation masks provided in this dataset were manually
annotated, allowing precise delineation of tumor regions in the CT
scans (Figure 2). This enabled the isolation of tumor-specific fea-
tures in the volumetric images (Figure 3). Additionally, only CT
images (identified by the modality field in the metadata) were in-
cluded, while scans from other modalities, such as PET or MRI, were
excluded. To further examine the data, each CT scan was viewed
with its overlaid mask across the axial, sagittal, and coronal planes
(Figures 4 and 5). These steps ensured consistency in the dataset
Fig. 2. Image and mask overlap.  used for radiomic feature extraction and subsequent model training.
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Fig. 3. Grid view of slices, overlying mask with image.
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For the biomarker data, missing PD-L1 values were imputed using the median PD-L1 value across
all patients, ensuring no patient data was excluded due to incomplete biomarker information.

Axial Slice 241

Coronal Slice 241

Sagittal Slice 241

Fig. 4. Views of the overlying mask with image in slice 241 in a patient. Fig. 5. Image and
mask contour.

3.3. Feature extraction

Radiomic feature extraction was performed using PyRadiomics [12], a widely-used open-source library.
This library automates the extraction of various quantitative features from the segmented regions of
interest (ROIs) within the CT scans. The extracted features include:

— First-order statistics: Metrics like mean, median, skewness, and kurtosis, which provide basic
intensity information.

— Shape-based features: Characteristics of the tumor’s 2D /3D structure, such as volume, surface
area, and compactness.

— Texture-based features: Metrics like the Gray Level Co-occurrence Matrix (GLCM), Gray Level
Run Length Matrix (GLRLM), and Gray Level Size Zone Matrix (GLSZM), which provide infor-

mation on the heterogeneity of the tumor’s texture.

After extraction, the features were standardized using z-score normalization to ensure they all con-
tributed equally during model training. Only patients with matching imaging and genomic data were
included, ensuring a robust and consistent dataset.

3.4. Deep learning models

In this study, several deep learning architectures were evaluated for predicting PD-L1 expression, each
offering unique strengths in processing the complex radiomic features of tumor images:

— Artificial Neural Networks (ANN): Basic models with layers of neurons that transform input
data to make predictions, useful for identifying general patterns.

— Convolutional Neural Networks (CNIN): Effective for spatial data, capturing complex patterns
in radiomic features by processing data in 2D arrays.

— Recurrent Neural Networks (RININ): Capture sequential dependencies, here applied to analyze
relationships across tumor layers.

— Long Short-Term Memory (LSTM): An RNN variant that better retains long-term informa-
tion, helping capture changes across multiple tumor layers.

— Gated Recurrent Units (GRU): A simpler, faster RNN that handles sequential data efficiently.

— Transformer Model: Uses self-attention to weigh feature importance, excelling at identifying
complex dependencies in high-dimensional radiomic data.

Each model adds unique strengths, enhancing predictive accuracy for PD-L1 expression.

Hyperparameter tuning. To optimize the performance of the models, hyperparameter tuning
was performed using a grid search method.

The following hyperparameters were tuned:

— Learning Rate: Adjusting the step size at each iteration while moving toward the minimum of
the loss function.
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— Number of Layers: Exploring the depth of the network by adjusting the number of hidden layers
in the models.

— Number of Neurons per layer: Modifying the number of neurons within each hidden layer.

— Batch Size: Determining the number of samples processed before updating the model’s weights.

— Dropout Rates: Introducing dropout to prevent overfitting by randomly dropping units from the
neural network during training.

The best combination of hyperparameters was selected based on minimizing the Mean Squared
Error (MSE) and Mean Absolute Error (MAE) on the validation set.

4. Experiments and results

In this section, we detail the results obtained in terms of Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and Mean Absolute Error (MAE). These metrics were used to evaluate the
performance of several deep learning models employed for predicting PD-L1 biomarker expression from
radiomic features. Our analysis indicates promising results; however, achieving these results was not
without challenges. In the next section, we will address several key challenges encountered during this
study, including data variability, model training complexities, and the impact of imaging inconsistencies
on predictive accuracy. We will discuss the strategies implemented to manage these challenges and
their implications for model generalizability and clinical applicability.

4.1. Challenges in data variability and model training

The NSCLC Radiogenomics Dataset posed challenges due to variability in imaging protocols, patient
demographics, and scanner characteristics, which impacted model generalization. Data preprocess-
ing techniques like normalization and segmentation standardization were applied, but some variability
persisted, affecting model stability and accuracy. Training deep learning models, particularly Trans-
formers, required significant computational resources and careful hyperparameter tuning. Techniques
like early stopping and gradient clipping were used to stabilize training, but balancing complex rela-
tionships and generalization re-mained challenging.

4.2. Model selection and performance comparison for PD-L1 expression prediction

In the model selection phase, various machine learning and deep learning models were tested to identify
the optimal architecture for predicting PD-L1 expression. The models evaluated included ANN, CNN,
RNN, LSTM, GRU, and Transformer-based architectures. These models were chosen for their capacity
to capture the complexity of radiomic features extracted from the NSCLC Radiogenomics Dataset. Due
to the nature of the data and complex relationships between features, attention-based architectures
like Transformers were emphasized for their ability to capture intricate dependencies. The dataset was
split into training and test sets for a robust evaluation, with early stopping criteria implemented to
prevent over-fitting by monitoring validation set performance. MSE, RMSE, and MAE were calculated
as performance metrics for each model, aiming to minimize these er-rors for more accurate PD-L1
predictions. As shown in Figure 6, the performance of each model was compared across multiple metrics
during both training and testing phases. The Transformer-based model consistently outperformed the
others, achieving lower test MSE, RMSE, and MAE values, indicating superior generalization to unseen
data. Traditional models like ANN and CNN showed some promise but struggled to maintain accuracy
as the feature set complexity increased. The final performance results on the test data are depicted
in Figure 7, where error metrics (MSE, RMSE, MAE) are visualized for clearer comparison. The
Transformer model demonstrated the lowest errors across all metrics, highlighting its suitability for
PD-L1 biomarker prediction, while models like ANN and RNN exhibited significantly higher error
rates, particularly in MSE.

4.3. Proposed model: complex transformer model and hyperparameter tuning

We designed a custom Complex Transformer model to capture the complexities of radiomic feature
data (Figure 8). The architecture includes multiple transformer encoder layers with attention heads,
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followed by fully connected layers for refining feature representations. To prevent overfitting, ReLLU
activations and dropout layers were added. A comprehensive hyperparameter search was conducted,
adjusting parameters like learning rate, attention heads, encoder layers, feedforward dimensions, and
dropout rate. The optimal configuration included a learning rate of 0.001, 4 attention heads, 6 encoder
layers, a feedforward dimension of 1024, and a dropout rate of 0.4. Farly stopping at epoch 261 ensured

the model’s optimal performance for predicting PD-L1 values.
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Figure 9 illustrates the training dynamics of the complex Transformer model, showing the training
loss, test MSE, and test metrics (RMSE and MAE) over 1000 epochs. The training process highlights
stable convergence with early stopping at epoch 261.

Table 1. Complex transformer model performance results.

Final Train Loss | Final Test MSE | Final Test RMSE
44.4359 17.4116 4.1729

Final Test MAE
3.8041

Model
Complex Transformer

Epoch Stopped
261

4.4. Model performance comparison

The comparison illustrated in Figure 10 demonstrates the superior perfor-mance of the Complex Trans-
former model and its fine-tuned version in comparison to other models such as ANN, CNN, RNN,
LSTM, GRU, and the standard Transformer. The Transformer model, along with hyperparameter
tuning and early stopping, demonstrated lower MSE, RMSE, and MAE values, as well as a faster
convergence rate.

— Train Loss Comparison: The Complex Transformer models, especially the Best Complex Trans-
former with optimized hyperparameters, achieved the lowest training loss across 1000 epochs,
demonstrating effective learning without overfitting.

Test MSE Comparison: The Complex Transformer models, particularly the Best Complex
Transformer, maintain a consistently low Test MSE throughout training, outperforming models
like ANN and RNN and demonstrating superior generalization.

Test RMSE and MAE Comparison: The bottom plots show that the Best Complex Trans-
former has significantly lower Test RMSE and MAE, maintaining a stable, minimized trajectory,
unlike the ANN and CNN models, which show increased error due to poor generalization.

In conclusion, the Complex Transformer and its fine-tuned version demonstrate a substantial im-
provement in predictive performance, achieving minimal training loss and significantly lower test MSE,
RMSE, and MAE compared to all other models. This superior performance emphasizes the effective-
ness of attention mechanisms and hyperparameter optimization in handling complex radiomic data for
PD-L1 prediction.
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4.5. Clinical relevance and comparative performance of PD-L1 prediction models
For predicting PD-L1 expression, a clinically relevant MSE is typically around or below 20, reflect-

ing accuracy comparable to biopsy results. The Complex Transformer model in this study achieved
an MSE of 17.41, showing strong clinical promise and non-invasiveness. It also demonstrated high
time efficiency, converging quickly with early stopping at epoch 261. Compared to ANNs and CNNs,
which required more epochs and had higher errors, the Transformer’s attention mechanisms and in-
terpretability make it especially suited for handling complex radiomic data and supporting clinical
decision-making.

4.6. Proposed model performance evaluation

In this section, we provide a detailed technical analysis of our model’s performance, focusing on resid-
uals, feature importance, attention mechanisms, and dimensionality reduction, which are critical for
evaluating model efficacy.
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To enhance model interpretability, we analyzed feature importance using Integrated Gradients (Fig-
ure 12). This technique measures the contribution of each radiomic feature to predicting PD-L1 values,
highlighting features with the most significant positive or negative impact on the model’s decisions.
Understanding these key features provides insights into the biological and clinical relevance of spe-
cific radiomic characteristics, such as tumor texture or shape. Additionally, we explored the attention
mechanisms in the Transformer model, which offer transparency by showing how the model allocates
focus across input features. The heatmap of Attention Weights in Layer 1 (Figure 11) illustrates the
attention distribution across input tokens, helping us identify which aspects of the radiomic data the
model considered most important for prediction. This is particularly useful in complex datasets like
radiomics, where certain regions of the images may carry more predictive power for PD-L1 expression
than others.
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We performed a residual analysis to evaluate prediction errors. The Residuals Distribution plot
(Figure 13) shows that while the residuals are mostly centered around zero, there is a slight skew,
indicating the model has some difficulty predicting PD-L1 values accurately for certain cases. This
skew is more pronounced in the Q-Q Plot of Residuals (Figure 14), where deviations from the red line
suggest the residuals do not follow a perfect normal distribution. These deviations indicate the model
may have struggled with complex relationships in the data, highlighting areas for potential model
refinement. Applying Principal Component Analysis (PCA) reduced the radiomic feature space, with
the first 10 principal components capturing over 90% of the variance (Figure 15). This dimensionality
reduction enhances computational efficiency and accelerates model training while preserving essential
predictive information. Additionally, the Mean Absolute Error (MAE) per Data Point plot (Figure 16)
reveals high-MAE instances, suggesting outliers or complex cases, aiding in identifying misclassified
instances and guiding further model improvement.

4.7. Advantages of the complex transformer architecture

The Complex Transformer architecture with its multi-head self-attention en-hances interpretability
and accuracy by focusing on key features, the parallel processing accelerates training and effectively
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handles the non-sequential nature of radiomic data. With fine-tuning, the Complex Transformer also
showed strong generalization to new data, making it highly suitable for clinical applications that need
consistent performance.

4.8. Limitations of the study

Despite its advantages, the study faces several limitations. Variability in radiomic data from different
institutions can hinder the model’s generalization and accuracy. The sparsity of the matrix, the
need for more data, and the high computational requirements of Transformers may also restrict their
use in resource-limited settings. The dataset may lack sufficient diversity to fully generalize across
broader populations, highlighting the need for larger, more varied samples in future research to enhance
robustness and applicability in clinical settings.

5. Conclusion

This study demonstrates that deep learning models, particularly Transformer-based architectures, can
effectively predict PD-L1 biomarker expression in NSCLC patients using radiomic data from CT scans.
Among tested models (ANN, CNN, RNN, LSTM, GRU, and Transformer), the Complex Transformer
with optimized hyperparameters achieved the lowest MSE, RMSE, and MAE, excelling in capturing
complex data relationships. Attention mechanisms also identified key features for PD-L1 prediction,
highlighting the model’s potential to support per-sonalized, non-invasive immunotherapy. Future work
may enhance model generalization and address specific data outliers.
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Pagiomika Ta rnnboke HaBYaHHA Ha OCHOBI TpaHcdopmepis
ANA HeiHBa3uBHOro nporHo3yBaHHs ekcnpecii PD-L1
NPy HeAPIOHOKNITUHHOMY paKy JlereHb:
3MiHa NapagurMmmn B nNpeunsiiiHii oHKoNoril

Kapim A1, Bepkemiu A2, Enp Xa6i6 B.', Semmoy A.2

L Ta6opamopia tH@opmauitinus mexHoao2it ma mo0eat08arHA,
Daxyarvmem npupodnuvuxr wayk Bew Mcix,
Vnisepcumem Xacana II, Kacabaranra, Mapoxko
2Komanda SPM, ENSIAS, Ywisepcumem Myzammeda V, Pabam, Mapoxko

Tpaauniiine TecryBanus Glomapkepa Jirapga nporpamosanoi cmepri 1 (PD-L1) npu
HenpibnokaiTuHHOMY paky Jerenb (HIPJI) zamumaerbea inBasuBaum i moporum. e mo-
CJIIIPKeHHSI TPOIIOHYE HEIHBA3WBHY AJbTEPHATHUBY IUJISXOM IHTErparlil paJioMHUX O3HAaK,
putarnytux 3 KT-ckaniB, i3 mepeqoBuMu apxiTeKTypaMu TJiMOOKOro HaBdaHHs. Mu orri-
HuH Ty gHi HeliporHi Mepexi (ANN), sroprkosi Hefiporni mepexi (CNN) Ta pekypeHTHI
Heitponni mMepexki (RNN), Britouatoun gosrorpusaity KoporkodacHy nam’ars (LSTM) Ta
BenTwibHI pekypentHi 6ioku (GRU). Hami pesysnbraru JeMOHCTPYIOTH, IO MOJEJ HA
OCHOBI TpaHC(OpPMEPIB 3HAYHO MEPEBEPINYIOTH 3BUYANHI ITiAXOMH, HOCITAI0UN CEPEIHbO-
kBagparnasol nommwiaku (MSE) tecty B 18.25 nopisasino 3 294.59 mus ANN Ta 127.12
gt CNN. OnrumizoBaHa apXiTeKTypa KOMILIEKCHOIO TpaHcdopmepa 3Hu3uiaa MSE 1o
17.41 micsr 1000 enox, i3 70CTPOKOBOIO 3ymUHKOIO Ha, eroci 261. 11i BucHOBKY mmiIKpecio-
FOTH TIOTEHIAJ PATIOMIKY B MOEIHAHHI 3 MOIEIAMU-TPAaHCHOPMEPAME JIJist 3a0e3eYeHHsT
TOYHOTO Ta €KOHOMIUHO edekTuBHOro mporuosysanis PD-L1, copusiodn po3BuTky mep-
COHAJII30BAHOI OHKOJIOTII Ta 3MEHNIYIOUN 3aJIE2KHICTh BiJT IHBA3WBHUX TPOIIEIYD.

Kntouosi cnoBa: padiomixa; 2auboke nasuanms; oiomapkep PD-L1; neinsasusna diazmo-
CMUKa; HEOPIOHOKATMURKUT Pax Aezeni; Modesi-mparchopmepu.
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