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Explosive phenomena pose significant threats to structural integrity, necessitating accu-
rate prediction models for designing resilient infrastructure. Traditional computational ap-
proaches like CFD and FEM, while detailed, require substantial computational resources
and specialized expertise. This study presents an alternative approach using the Dis-
crete Element Method (DEM) implemented through the Pymunk physics engine for 2D
explosion modeling. The developed method models explosions as radially distributed par-
ticles with initial impulses, simulating shock wave propagation through particle collisions.
Structures are represented using a modular approach, enabling detailed analysis of impulse
distribution across different building elements. The simulation tracks collision events and
calculates impulse transfer using momentum conservation principles. Model validation
was performed against UFC 3-340-02 standards by investigating three scaling methods:
proportional coefficient, linear regression, and a non-linear power—law model. The power—
law model demonstrated the best agreement with reference data, confirming the model’s
accuracy with a total integral error of only 1.5%. This computationally efficient approach
provides a practical tool for structural engineers and urban planners to incorporate blast
resistance considerations without requiring high—performance computing resources. The
method successfully balances computational efficiency with physical fidelity, making ex-
plosion modeling more accessible for rapid assessment scenarios and preliminary design
stages.
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1. Introduction

Explosive phenomena pose significant threats to structural integrity and public safety. The ability
to accurately predict and model the consequences of explosions for structures is critically important
for designing resilient buildings, planning urban infrastructure, and implementing effective protective
measures. Despite a significant amount of research, explosion dynamics remains challenging to model
due to its nonlinear nature and the multitude of factors influencing shock wave propagation and
structural response.

The complexity of modeling explosions has led to the development of various computational ap-
proaches, each with its own advantages and limitations. Computational Fluid Dynamics (CFD) pro-
vides a detailed description of shock wave behavior but requires significant computational resources
and careful mesh configuration. Recent comparative studies [1] have revealed substantial discrepancies
in predicted peak pressure values and impulse among different CFD implementations, attributed to
discretization levels, post-detonation process calculation methods, and boundary condition settings.
Software implementations such as ANSYS Autodyn, blastFoam, ProSAir, and Viper::Blast demon-
strate these variations, especially in far-field explosion scenarios.

The Finite Element Method (FEM), while effective for evaluating structural deformations and fail-
ures, often requires integration with gas dynamics calculations for comprehensive modeling of explosion
effects. Such interaction adds complexity to the simulation process and increases computational re-
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quirements. The Smoothed Particle Hydrodynamics (SPH) method offers an alternative approach
based on particle interactions without using a mesh, which proves useful for scenarios with extreme
deformations and complex explosive charge geometries, as demonstrated in reference [2|. SPH can func-
tion independently or in combination with Eulerian/Lagrangian schemes, although it has drawbacks
in the form of increased resource consumption with an increasing number of particles and requires a
more complex procedure for calibrating equations of state.

Empirical and semi-empirical methods, represented by tools such as CONWEP and EMBIlast, pro-
vide rapid initial estimates of peak pressure and impulse based on established experimental databases.
Although these approaches do not account for complex reflections, diffraction, and interaction effects
with realistic geometries, they remain valuable for initial design stages and operational assessments [1].
In recent years, active comparisons of specialized explosion research software have been conducted, with
detailed analysis of Autodyn, blastFoam, ProSAir, and Viper::Blast, revealing significant differences
in calculation speed and impulse reproduction accuracy.

In this study, we utilized simulation modeling, specifically the Discrete Element Method (DEM), as
an alternative to the aforementioned methods. The DEM approach models explosion wave dynamics
through particle collisions, providing a physically intuitive representation of explosion propagation. In
this research, a simplified but physically correct 2D simulation system was developed for modeling the
impact of explosions on structures. Using the Pymunk physics engine, a mechanism was implemented
where explosions are presented as radially distributed particles with initial impulses, enabling quick
and sufficiently accurate reproduction of shock wave propagation.

This approach, based on the discrete element method and verified using data from the Unified Facil-
ities Criteria document [3|, maintains a balance between high computational efficiency and achievable
level of physical fidelity, making explosion modeling more accessible for applied engineering tasks. By
reducing computational complexity while preserving explosion physics principles, our method fills a
gap in accessible explosion modeling, especially for scenarios requiring rapid assessment. The resulting
framework provides a practical tool for structural engineers and urban planners to incorporate blast
resistance considerations into their designs without requiring access to specialized high-performance
computing resources or extensive training in complex modeling software.

2. Materials and methods

2.1. Main characteristics of explosive waves

An explosion is characterized by the rapid release of energy in the form of heat, light, sound, and shock
wave. By definition, an explosion is a sudden conversion of potential energy into kinetic energy with
the formation and release of gas under pressure [4]. This sudden release of energy creates a volume
of highly compressed gas that rapidly expands, displacing the surrounding environment and forming
a shock wave. During an explosion, a shock wave is formed, characterized by a sharp pressure jump
followed by exponential decay, with the wave propagating at a speed exceeding the speed of sound in
air [5].

The main parameters that determine the impact of an explosion on structures are the peak over-
pressure value, its duration, and impulse.

The dynamics of pressure change over time are described by various equations, which are essentially
mathematical models of the physical process. The most well-known among them is the Friedlander
equation [4], which is widely used for modeling the explosive wave profile [6], as presented in equation 1,

p(t) = po + pa <1 - ti> e, (1)

2
where p(t) is pressure as a function of time, py is atmospheric pressure, ps is peak overpressure, t
is time from the explosion onset, ts is the duration of the positive phase, b is the wave parameter.
A detailed mathematical description of these dependencies and the interaction of the explosive wave
with structures is presented in the work of Lomazzi, Giglio, & Manes (2021) [6], where the authors
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investigate the phenomenon of interaction between the explosive wave and structure during explosive
reactions and analyze energy transfer mechanisms that are critical for the development of protective
measures. In the study by Ullah A., Ahmad F., Jang H. W., Kim S. W., & Hong J. W. [7], the authors
conduct a comprehensive review of analytical and empirical methods for estimating explosion pressure.
The authors analyze and compare various equations for calculating explosive wave profiles, focusing
on unconfined spherical and hemispherical explosions from solid chemical explosives.

Relationship between impulse and pressure in explosions. For studying the complex phe-
nomenon of explosions, it is important to understand the relationship between pressure and impulse, as
impulse is an integral component of pressure. According to the “pressure-impulse” theory [8], impulse
is defined as the integral of pressure over time:

[ /t o) dt, @)

0
where p(t) is pressure as a function of time, and I is the pressure impulse.

The impulse represents the amount of momentum transferred by the explosive wave to an object
in its path over a given time interval. For structural response assessment, both positive and negative
phase impulses of the shock wave are analyzed. In this work, we currently consider only the impulse
of the positive phase of the shock wave.

In our 2D simulation approach, the main focus is on the direct transfer of impulse between explosive
particles and structural elements. By modeling an explosion as a set of particles with radial initial
velocities, we can effectively reproduce the propagation of the shock wave and its interaction with
buildings. This approach allows us to consider the main physical mechanisms of impulse transfer with
minimal computational costs. Additionally, this information will serve as a foundation for further
model expansion, such as calculating peak overpressure.

2.2. Discrete Element Method (DEM)

In our study, we used the Discrete Element Method (DEM), implemented through the Pymunk physics
engine, which is based on the Chipmunk library [9]. The main reasons for choosing this approach
include:

— Computational efficiency: The DEM method provides a balance between accuracy and compu-
tational speed, allowing for the simulation of various scenarios even with limited resources.

— Simplicity and clarity: Using particles for modeling explosions allows for visualizing physical
processes, making the model accessible to researchers without specialized training.

— Modularity: The method allows for easily the modeling of structures from individual elements,
allowing for consideration of local impulsive loads.

— Direct modeling of impulse transfer: The approach directly considers the transfer of impulse
through particle collisions, which is crucial for evaluating explosive effects.

Despite the fact that this approach is inferior to the above-mentioned methods in terms of physical
process detail, it is well-suited for analyzing impulsive loads on structures. The simplicity of implemen-
tation and the ability to conduct numerous experiments make it suitable for preliminary assessments
and scientific goals.

Traditional empirical and analytical methods for blast pressure estimation, while computationally
efficient, suffer from significant limitations in their applicability to complex scenarios and geometric
configurations [7]. These approaches typically rely on simplified assumptions about charge geometry,
free-field conditions, and uniform material properties that may not adequately represent real-world
blast scenarios. The DEM approach addresses these limitations by providing a physics-based framework
that can accommodate irregular geometries, complex boundary conditions without requiring extensive
empirical correlation databases. Furthermore, the particle-based nature of DEM allows for direct
visualization and analysis of blast wave propagation mechanisms, offering insights into local loading
patterns that are difficult to obtain through traditional empirical formulations.
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2.3. Simulation design
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Fig.1. Simulation model scheme: 1 — air particles sys-

tem, 2 — explosive particles system, 3 — obstacles.
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Fig. 2. Initial velocity vectors of 12 particles
(as an example).

2.4. Collision modeling

Particle model of explosion. In our simula-
tion, explosions are modeled as a set of discrete
particles (Figure 1) (presented in 2D space as
circles) that fly radially from the center of the
explosion. This approach simplifies the com-
plex particle motion in explosions, preserving
the main physics of impulse transfer.

The main idea of our simulation is to repre-
sent the explosive energy release as an instanta-
neous radial distribution of impulse. When an
explosion occurs, a certain number of explosive
particles are created at the detonation center,
which receive initial velocities directed outward.
The radial scattering of these particles mimics
the pressure propagation in a real explosion pro-
cess.

The algorithm for generating particles in an
explosion for each of the n particles:

— Calculate the distribution angle:
0; = X i =T,n;

— QCalculate the direction vector:

v; = (cos(6;), sin(6;)), i = 1,n;

— Place the particle in the center of the explo-
sion with a small offset in the direction of
the vector.

— Give the particle an initial velocity (deter-
mined as a simulation parameter)

v; = (Ui, vyi), 1= 1,n
along the vector direction (see Figure 2).

This approach ensures uniform distribution
of explosive energy in all directions, correspond-
ing to spherical (and in our 2D case — circu-
lar) propagation of the shock wave from a point
source.

In our model, the basic mechanism for energy transfer is col-

v lisions between particles. When one particle (with mass m;

@l, and initial velocity vq) approaches another particle (with
@ v, mass mg), which may be stationary or already have its own

v2=0 velocity vo, a contact occurs, determined by the conserva-

Before collision After collision

Fig. 3. Particle interaction.

tion of momentum and kinetic energy. On the illustration 3,
one can see the scheme of “before” and “after” collision: be-

fore collision, particle m; moves with velocity vy, and particle ms may have vo = 0 (or a small velocity);
after collision, both particles acquire new velocities vz and v4, determined by the conservation of mo-

mentum.

Such a model collision is usually considered as a conservative momentum transfer (within the
chosen elasticity) with possible energy dispersion. In particular, in the case of a perfectly elastic
collision, masses my with velocity vy and mgy with velocity vy satisfy the equality (3)
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mi1vy + mgvy = mM1V3 + Mavy (3)

and kinetic energy is also conserved. If the collision is inelastic, some energy is lost in the form of heat
or deformation. In both cases, the velocities after the collision directly affect the further distribution
of impulses in the system and the dynamics of particle motion, simulating the transfer of explosive
load in the environment.

Types of objects and collision processing
mechanism. In our simulation, four main types of
objects are used (see Figure 4), each with its own col-
lision type identifier (collision type):

ExplosionBall — explosive particles created at the
epicenter and flying out with high initial velocity;
AirBall — air particles evenly distributed throughout
the simulation space;

ModularPart — elements of the modular structure
that receive a blow from the explosive wave;

Border — simulation space boundaries.

The Pymunk physics engine used in our simula-
tion is based on the Chipmunk2D library [9] and uses
the GJK/EPA (Gilbert—Johnson-Keerthi / Expand-
ing Polytope Algorithm) [10] algorithm for determining Fig. 4. Simulation interface screenshot: propa-
collisions between complex shapes. The collision pro-  gation of the explosive wave and interaction with
cessing process consists of several stages: first, a fast  the modular structure. Red points — explosive
initial check for possible collisions is performed using  particles, dark blue — air, square — modular
bounding rectangles (AABB) — so-called Broad Phase; structure, red lines — simulation boundaries.
then a detailed check for collisions is performed using the GJK/EPA algorithm (Narrow Phase); then
forces and impulses are calculated that are transferred during the collision; finally, the velocities and
positions of objects are corrected according to the calculated impulses.

For processing different types of collisions in the simulation, specialized handlers are implemented:

— Collision of particles with the structure — when an explosive particle or air particle collides
with a structure element, the time of the first contact is determined, the collision angle is calculated,
an event is registered in the corresponding module of the structure, and the size and mass of the
explosive particle are scaled by 30%. In addition, a rebound impulse with the elasticity coefficient
C. is applied. If the particle becomes too small (radius 7 < ry,ip ), it is removed from the simulation.

— Collision between explosive particles and air particles — in such contacts, the explosive
particles are reduced in size and mass by 10%. This simulates the energy dispersion of the explosion
through the environment.

— General collision handler between particles — applies a base impulse of magnitude Ij.

— Exit beyond the simulation boundary — particles that reach the boundaries of the simulation
space are automatically removed from the model.

The system also implements collection and storage of data about each collision for further analysis.
The information includes particle mass, velocity at the moment of collision, event time, collision angle
(in radians and degrees), normal vector, structure module identifier, and the number of previous
collisions with other objects. This data is exported in Excel table format, which allows for further
analysis of impulse distribution along the structure, identification of maximum impact zones, and
evaluation of the effectiveness of different protection configurations.

For correct interpretation of results in physical quantities, the following scaling ratio is applied:

1 meter = 4 dimensionless units in simulation. (4)
This allows for relating simulation results to real physical parameters and comparing them with ex-
perimental data.
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2.5. Particle parameters in the physical engine

In the Pymunk physics engine, particle parameters are characterized by a set of physical properties
that form their behavior when interacting with the environment and other objects. Let us consider the
theoretical aspects of the main parameters that determine the dynamics of particles in the simulation
of an explosion.

Elasticity (Elasticity) determines the energy conservation characteristic during collisions. Theo-
retically, the elasticity value ranges from 0.0 to 1.0, where a zero elasticity corresponds to an absolutely
inelastic collision, in which objects lose all kinetic energy, and maximum elasticity characterizes an ab-
solutely elastic collision with full energy conservation. At intermediate values, some energy is preserved,
and some is dispersed, imitating losses through deformation, heating, and sound effects. In the con-
text of explosion modeling, elasticity reflects the ability of shock waves to preserve energy, gradually
dispersing it through multiple interactions with obstacles and the environment.

Friction (Friction) is a parameter that characterizes the tangential resistance at the contact of
objects. At the collision of two bodies, the friction force affects their ability to slide relative to each
other at the contact point. Zero friction coefficient corresponds to ideal smooth surfaces, maximum
creates significant sliding resistance. Friction significantly affects the energy distribution at oblique
collisions, changing the shock wave propagation characteristics in the simulation space.

Mass (Mass) is a fundamental parameter that determines the object’s inertia and its ability to
transfer impulse during collisions. Particles with greater mass transfer a greater impulse at the same
velocity, allowing for the simulation of different components of the explosion process. The ratio of mass
between explosion particles and air is critical for the accurate reproduction of shock wave propagation.

Radius (Radius) determines the spatial characteristics of the particle and directly affects the
collision mechanics. From the radius, the contact area at collisions, moment of inertia, and visual
representation of the particle in the simulation depend. Reducing the radius at collisions allows for
the simulation of energy dispersion with distance.

Moment of inertia is calculated based on mass and radius and determines the object’s stability
to rotation. For disk particles used in the simulation, the moment of inertia is calculated using the
moment formula for a solid circle, ensuring physically correct behavior during rotational movements.

These parameters form a complex system of physical characteristics that allows for the simulation
of a wide range of explosion scenarios. Their values can be adapted depending on specific research
tasks or for calibrating the model to empirical data. The theoretical flexibility of these parameters
makes the model a powerful tool for studying the physics of explosions in various conditions.

In the modeling process, it is important to consider the interdependence of these parameters. For
example, changing elasticity affects the scattering of energy, which in turn may require other parameters
to be adjusted to maintain physical consistency. Thus, theoretically justified parameter tuning allows
for reproducing complex explosion physics with sufficient accuracy at relatively low computational
costs.

2.6. Modeling structures

One of the main innovations of our approach is the modular representation of structures, allowing for
detailed analysis of how the explosion impulse is distributed between different parts of the building.
Such a granular structure gives the opportunity to obtain analytical data that is difficult to obtain in
the case of monolithic models.

2.7. Modular approach

In our simulation, structures are not modeled as single rigid bodies, but as a collection of smaller
modules. This is implemented through an hierarchical structure of classes. Each ModularPart is a
basic building element that represents a separate discrete part of the structure. The module has a
static body type (i.e., it is stationary but registers collisions), a square shape of 2 dimensionless units,
a unique identifier that depends on its position, and a counter of collisions with color change upon
damage (for visualizing load). The ModularObstacle class is responsible for creating and managing a

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1157-1168 (2025)



Two-Dimensional Modeling of Explosion Impulses on a Structure Using the Discrete Element . .. 1163

collection of ModularPart, organizing them in a grid structure. ConcreteSquare is a high-level class
that forms concrete structures, abstracting low—level details of the model. Such an approach allows for
detailed analysis of impulsive load, studying the difference in loads on different parts of the structure,
as well as modeling gradual destruction by tracking damage accumulation. In addition, the modular
nature provides flexibility in creating complex shapes and gives visual feedback due to color change of
modules upon load increase.

2.8. Collection of data about impulse for each module

One of the key features of our model is the collection and analysis of data about impulse for each
structural element separately, allowing for a deeper understanding of how the explosion wave affects
different parts of the structure. Each ModularPart has its own impulse recording system; when a
particle of the explosion collides with the structure, the system registers the fact of collision, identifies

the corresponding structural element, registers the number of collisions, and calculates the impulse

2
Yo

vy are the components of the particle velocity. Using the Euclidean norm allows for considering the
real particle velocity regardless of the angle of attack. Collected data are recorded in the Excel table
for further analysis and contain the module identifier, collision time, particle type, mass, and collision
angle. Such an approach allows for obtaining graphs of impulse-distance dependencies and evaluating
structural vulnerability of structures.

The verification analysis and all subsequent calculations were performed using a custom Python
script developed with the NumPy and SciPy libraries, ensuring reproducibility and accuracy.

transferred to the object. This value is determined by the formula I = m x ,/v2 + v2, where v, and

3. Results

The final step of this study is model validation by verifying its results using comparison with data
from the UFC 3-340-02 standard [3]. The purpose of verification is a quantitative assessment of
the model’s ability to reproduce the physical characteristics of the explosion impulse distribution at
different distances from the source. Direct comparison of raw simulation data (ig;), obtained as the
sum of discrete elements’ pulses, with the values of shock wave impulse from UFC (i,y.) is not correct
due to potential discrepancies in physical nature and measurement units of these quantities. Therefore,
two alternative approaches for scaling simulation data were applied to enable comparison.

3.1. Linear scaling through proportional coefficient
The first approach involves using a simple linear coefficient k for scaling simulation data:

Z‘scaled =k- Z‘sim- (5)
The optimal value of this coefficient (k,p¢), which ensures the best agreement between two data sets
in the sense of minimizing the mean squared error (RMSE), was determined using the least squares
method. This standard statistical method allows for finding the proportionality coefficient that mini-
mizes the sum of squared differences between the dependent (UFC) and independent (scaled simulation)
variables. The formula for calculating the optimal coefficient has the form:

Z(isim : Z.u c)
kopt = T'f7 (6)

where summation is performed over all distance points R, for which both values of the impulse are
available. The calculated value was k,; /= 0.00004343. This coefficient was used as a tool for scaling
simulation data to a common scale with UFC data for further analysis of verification error. On Figure 5
is presented a graphical comparison of the values of scaled impulses obtained using the described scaling
method with data from the UFC document [3].

The results of comparison of the original data UFC with scaled simulation data using this method,
as well as calculated absolute and relative errors that characterize the model’s consistency with the
standard, are given in Table 1.
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. Comparison of UFC Document and Simulation Impulses
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Fig. 5. Comparison graph of scaled impulse values from simulation and UFC data.

Table 1. Verification results using the proportional coefficient method:
Comparison of UFC 3-340-02 data and scaled simulation data for different distances.

R (m) iyfe (psiB-s)  igim iscaled (PSIB'S)  Egs (psiBs) E%
15 1.10080 22267.44 0.95097 0.14983 13.61
30 0.59472 17258.76  0.73706 0.14234 23.93
45 0.43224 11353.49 0.48487 0.05263 12.18
60 0.33436 8602.54  0.36739 0.03303 9.88
75 0.24246 6616.28  0.28256 0.04010 16.54
90 0.21114 4390.75 0.18751 0.02363 11.19
105 0.17982 3873.75 0.16544 0.01438 8.00
120 0.15931 2842.02 0.12137 0.03794 23.81

3.2. Linear regression model with constant offset
An additional scaling method was considered, based on the full linear regression model. Unlike simple
multiplication by a coefficient, this method involves using linear transformation of the form:

Z‘scaled =a-+b- iS’i?ﬂn (7)
where a and b are regression coefficients. Such an approach allows for not only proportionality between

data but also possible systematic deviations. For determining optimal values of coefficients, the method
of minimizing the sum of squared deviations between i cqieq and i, . was applied using formulas:
b— nZ(Zszm : iufc) - Zisim Ziufc
nzlim — (X dsim)? ’ (8)
a — Ziufc - bzzszm
n
where n is the number of measurement points.

The parameters were optimized using the least squares method, which minimized the sum of squared
deviations between predicted and actual values. Application of this classical statistical method allowed
for finding optimal values of coefficients a ~ —0.01696 and b =~ 0.00004392.

The results of comparison of the original data UFC with scaled simulation data using this method,
as well as calculated absolute and relative errors, are given in Table 2.
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Table 2. Verification results using the linear regression method:
Comparison of UFC 3-340-02 data and scaled simulation data for different distances.

R (m) iyfe (psiB-s)  igim iscaled (PSIB's)  Egps (psiB-s)  E%

15 1.1008 22267.44 0.96094 0.13986 12.71
30 0.59472 17258.76  0.74098 0.14626 24.59
45 0.43224 11353.49 0.48164 0.04940 11.43
60 0.33436 8602.54 0.36083 0.02647 7.92

75 0.24246 6616.28 0.27360 0.03114 12.84
90 0.21114 4390.75 0.17586 0.03528 16.71
105 0.17982 3873.75 0.15316 0.02666 14.83
120 0.15931 2842.02 0.10785 0.05146 32.30

3.3. Power-law scaling model

Recognizing the inherently non-linear nature of blast wave energy dissipation with distance, a more
physically sound power-law scaling model was investigated. This approach assumes a relationship of
the form:

Z‘scaled =A- (isim)B7

where A is a scaling coefficient and B is the power-law exponent. To determine the optimal parameters
A and B, the equation is linearized by taking the natural logarithm of both sides:

In(iscated) = In(A) + B - In(igim)-
This transformed equation represents a linear relationship between In(igy,) and In(iscaleq), where B is
the slope and In(A) is the y-intercept. A linear regression was performed on the log-transformed data
to find these parameters.

The analysis yielded optimal parameters of A = 0.000124 and B ~ 0.881. Thus, the final conversion
formula is:

Iscaled = 0.000124 - (isim)0'881,
The results of applying this model are presented in Table 3.

Table 3. Verification results using the power—law scaling method.

R (m) iyfe (psiB-s)  igim iscaled (PSiB's)  Egps (psiBs) E%
15 1.1008 22267.44 0.8426 0.2582 23.5
30 0.5947 17258.76  0.6731 0.0784 13.2
45 0.4322 11353.49 0.4654 0.0332 7.7
60 0.3344 8602.54  0.3644 0.0300 9.0
75 0.2425 6616.28  0.2891 0.0466 19.3
90 0.2111 4390.75  0.2014 0.0097 4.6
105 0.1798 3873.75  0.1804 0.0006 0.3
120 0.1593 2842.02 0.1373 0.0220 13.8

3.4. Comparative analysis of scaling methods

To objectively determine the most effective scaling method, a comparative analysis was conducted
using three key performance metrics: Mean Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE), and the Integral Area Error. MAPE provides a measure of the average error percentage,
RMSE penalizes larger errors more heavily, and the Integral Area Error assesses the overall fit of the
impulse—distance curve by comparing the area under the scaled simulation curve to the reference UFC
curve, approximated using the trapezoidal rule.

The results for all three methods are summarized in Table 4.
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Table 4. Comparative analysis of scaling methods.

Scaling Method MAPE (%) RMSE Integral Error (%)
Proportional Coefficient 14.9 0.0794 5.2
Linear Regression 16.7 0.0788 3.6
Power—Law Model 114 0.0985 1.5

The analysis presented in Table 4 clearly demonstrates the superiority of the Power—-Law Model.
It is the most effective for three primary reasons. First, it yields the lowest Integral Area Error of
only 1.5%, indicating the best overall agreement across the entire distance range. Second, it achieves
the lowest Mean Absolute Percentage Error (MAPE) of 11.4%, signifying the highest average point—
wise accuracy. Finally, from a theoretical standpoint, the power—law approach is the most physically
justified, as it correctly models the inherent non-linearity of blast wave energy dissipation, unlike the
linear assumptions of the other two methods. This combination of empirical accuracy and theoretical
soundness confirms the power-law model as the optimal method for scaling the simulation results.

4. Discussion

4.1. Model limitations and simplifications

Although the results meet the established standards within the permissible errors, the model uses a
number of simplifications. Two-dimensional nature of the simulation is one of the main limitations.
Real explosions have a three-dimensional nature, and this model operates with circular explosion waves
in two-dimensional space. This means that such effects as vertical pressure distribution, reflection of
shock waves from complex three-dimensional geometries, shock wave diffraction around obstacles,
formation of vortex structures in gases after explosion are not taken into account. Simplified represen-
tation of the explosion assumes instantaneous creation of particles with initial velocities, which does
not reflect the complex chemical kinetics of detonation. Real explosions include the initial detonation
phase, where a gas layer with high pressure is formed. In this model, this is omitted, as the main focus
is on the impulse transfer, not on the internal explosion processes. Although the model takes into
account the basic laws of impulse conservation, it does not reflect the nonlinear mechanical properties
of materials under the action of explosion, structural deformation, and destruction, detailed explosion
product distribution. Despite these simplifications, the results confirm the feasibility of the applied
approach. The main goal of the model is to assess the impulse transfer from explosion to structures
with adequate accuracy.

4.2. Future developments and enhanced physical realism

To address the inherent limitations of the 2D DEM approach and enhance model fidelity for complex
blast scenarios, several critical developments are planned. While the current model demonstrates good
agreement with UFC standards for impulse prediction, future enhancements will target specific physical
phenomena essential for comprehensive blast analysis.

The extension to three-dimensional DEM formulations will capture spherical wave front geometry
and out-of-plane pressure distributions currently absent in the 2D approach. This development will
incorporate proper spherical wave propagation algorithms and enable modeling of complex 3D struc-
tural geometries, addressing the geometric limitations that restrict current applications to simplified
planar configurations.

Implementation of wave reflection and diffraction algorithms represents a critical advancement for
urban blast scenarios. The incorporation of Mach reflection processes, where incident and reflected
shock waves interact to form triple points, will enable accurate prediction of enhanced pressure loading
regions. These triple point configurations are particularly significant for structures with irregular ge-
ometries or in confined spaces where multiple reflections create complex pressure fields. The model will
integrate algorithms for regular and irregular reflection patterns, including transition criteria between
reflection modes based on incident angle and surface impedance properties.
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Integration of explicit pressure—time history calculations will complement the current impulse-based
approach. Future developments will incorporate pressure calculations based on accumulated particle
interactions, enabling generation of Friedlander-type pressure profiles with both positive and negative
phases. This enhancement will support direct comparison with experimental pressure measurements
and provide peak overpressure values required for design calculations, addressing current limitations
in pressure prediction capabilities.

Validation protocols will be expanded to include experimental blast data encompassing both pres-
sure and impulse measurements at multiple scales, ensuring model reliability across the full range of
engineering applications.

5. Conclusions

The study showed that the particle-based explosion wave simulation in Pymunk is an effective method
for predicting blast loading on structures in a given distance range, however, it requires further de-
velopment to improve the accuracy of the model. The obtained results confirm that the partially
discrete approach correctly approximates the impulse transfer processes. The modular representation
of structures allows for analyzing load distribution with high detail. The simulation is consistent with
the UFC [3] standards, confirming its reliability. Future studies will focus on extending the model
to calculations of positive phase explosion pressure and further model verification, including the im-
plementation of three-dimensional DEM formulations, wave reflection and diffraction algorithms, and
explicit pressure—time history calculations.
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[BoBnmipHe MmoaentoBaHHS iMNynbCiB BUDYXy Ha cnopyawm
3 BUKOPUCTAHHAM MeToAy AUCKPETHUX e/IeMeHTIB

Maptuniok II. M., Koukapos B. .

Kagedpa xwomn omepHur Hayx ma npuriacoHoi Mamemamuku,
Hauionanrorutd ynisepcumem 600no020 20¢n00apcmea ma npupodokopucmysatia,
syn. Cobopra, 11, 79000, Piene, Ykpaina

BubyxoBi sBuIa cTaHOBIISITH 3HAYUHY 3arpo3y JJjis CTPYKTYPHOI IJIICHOCTI, IO BAMAarae
TOYHUX MOJIEJIEl TPOTHO3YBAHHS JIJTsl IPOEKTYBaHHS CTifiKOl indpacTpykTypu. Tpaguriiii-
Hi obumcoBasbHI miaxoau, Taki sk CFD ta FEM, xoua # merasbHi, BUMAraroTh 3HAYHUX
OOYHCTIOBAJILHAX PECYPCiB Ta creriasizoBanol ekcreptusu. lle mocrizkenns mpemacTas-
JISIE€ AJBTEPHATUBHUH MiAXIN 3 BUKOPUCTAHHSIM MeTOmy auckperHux esementis (MJE),
peasizoBanoro uepe3 dizuunnit pyiriit Pymunk ams 2D monpemoBanns BuOyxiB. Po3pob-
JIEHUIT METOJI, MOJIEJTIOE BUOYXU K CUCTEMY PAiaJIbHO PO3IMOMUIEHNX YaCTUHKOK 3 IMOYAT-
KOBUMU IMITYJIbCAMH, CUMYJIIOIOUN MONIMPEHHS YIAPHOI XBUJI Yepe3 31TKHEHHS YaCTUHOK.
CTpyKTypHu MpeICTaB/IeH] 3 BUKOPUCTAHHSAM MOJYJIBHOIO IMiIXO/Y, IO JO03BOJISE IeTaIb-
HUI aHAJII3 PO3IOALLY IMILYJIbCY MiXK pisHUMU ejieMeHTaMu Oy i, CuMyJIsiIist BiicTexKy€e
ol 3iITKHEHDb 1 00YHUCTIOE TIePeIady IMIIY/IbCY, BUKOPUCTOBYIOUN TIPUHITUIN 30€PEeKEHHS
MoMmeHTy. BaJtimartist mozesti 6y/a BukoHaHa Bignosiamno 1o craggapris UFC 3-340-02 -
XOM JIOCJII2KEHHSI TPhOX METOIB MAaCIITa0yBaHHS: MPOMOPIIHHOTO KoedirieHTa, JTiHitHOT
perpecii Ta HesiHiitHOT cTenereBol Mozei. CTeneHeBa MOIEb IPOIEMOHCTPYBAJIA HAWKpa-
Iy y3TO/PKEHICTh 3 €TAJJOHHUMU JIAHUMU, IiATBEPUBIIN TOYHICTh MOJEJI i3 3arajbHOIO
inTerpasbHoI0 OXUOKOI0 Beboro 1.5%. Ileit o6uncmoBaibao edpeKTUBHAN 11111 3a6e31e-
9y€ MPAKTUYHUNI IHCTPYMEHT JJIsl iH2KeHEPIB—KOHCTPYKTOPIB Ta MiChbKHUX IJIAHYBAJILHUKIB
JUIs BKJIFOYEHHST PO3TJIsiy CTIfiKOCTi 70 BUOyXy 0e3 HeoOXiTHOCTI BHCOKOIIPOIYKTHUBHUX
00YNCITIOBAJIBHIX PECYPCIB.

Knto4voBi cnosa: subyx; yoaphna reuas; imnysoc; Giduune MoO0eaA08aHHA; Memod Juc-
KPEMHUT EAEMEHMIE.
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