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Abstract. Based on the Schwarz method, a parallel algorithm has been developed for partitioning 

a two-dimensional discretization domain into overlapping subdomains to solve a system of partial 

differential equations of fractional order that describes heat and mass transfer processes in anisotropic 

media with a fractal structure. Using the finite difference method, explicit difference schemes for 

temperature and moisture equations in subdomains are derived. Fractional derivatives in time and spatial 

coordinates are approximated using the Riemann – Liouville and Grunwald – Letnikov formulas, 

respectively. For parallel processing of subdomains, the formulation of local problems is organized, the 

formulation of local boundary and initial conditions within each subdomain is streamlined to ensure 

proper synchronization of the parallel algorithm, solution is updated in each subdomain, and information 

is transferred between subdomains to check the convergence of the method. Experimental results show 

that the proposed parallel algorithm has good scalability. 

Keywords: parallel algorithm, domain decomposition, Schwarz method, media with fractal 

structure, heat and moisture transfer processes. 

Introduction 

This paper aims to develop a parallel algorithm based on the Schwarz method for the decomposition 

of the space-time domain of the heat and mass transfer problem described by time-dependent partial 

differential equations. To find a solution, high-resolution grids are often required, which implies a significant 

number of terms in the resulting system of equations, as well as the need to implement a parallel algorithm. 

Therefore, the development of an algorithm based on the Schwarz method for the decomposition of the 

space-time domain aims to reduce computational costs and accelerate the solution process by using modern 

multi-core and distributed computing systems. 

Review of Modern Information Sources on the Subject of the Paper 

High-performance computing architectures are becoming increasingly parallel, and the development 

of efficient and reliable algorithms that can fully exploit high degrees of parallelism remains a pressing issue 

in many scientific fields. In solving partial differential equations, significant progress has led to highly 

scalable domain decomposition methods [1], [2], [3] that exhibit high speedup and efficiency [4]. Domain 

decomposition methods are among the best approaches that provide the highest level of parallelism. Two 

grid levels of temporal discretization are mainly considered. The approximate solution of the PDE on a 

coarse grid provides initial values at each time subinterval, while more precise solutions are thus computed 

independently on a sufficiently fine time grid. In this sense, the parallel computational model can also be 

considered as an iterative predictor-corrector scheme [5]. 
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Let us briefly recall some recent attempts to solve related spatiotemporal problems of fractal 

dimension. Fractal dimension indicates that the processes or objects under study have a complex, self-similar 

structure. In [2] a class of fully optimal methods based on spatiotemporal domain decomposition techniques 

was developed for certain boundary and distributed control problems in fluid flow and heat exchange. 

Existing research has demonstrated the reliability, parallel scalability, and efficiency of the proposed 

algorithms. Numerous results have been presented, obtained on multicore computers [5], [6], systems with 

several thousand processors [2], [3], and GPU parallelization using CUDA technologies [7]. In [8], [9] a 

class of corrected explicit-implicit GPU-based domain schemes is proposed to accelerate the solution of 

convection-dominated diffusion problems on GPUs. In [10], Schwarz algorithms with overlapping domains 

are considered for solving linear and nonlinear systems of equations arising from finite element discretization 

of elasticity problems on unstructured 3D meshes. It has been numerically demonstrated that Schwarz 

method-based algorithms with new coarse spaces exhibit high scalability on supercomputers, in terms of 

total computation time, for solving diffusion equations [11], [16] and elasticity problems discretized on large-

scale meshes. These works explore many interesting aspects of space-time algorithms, but parallel computing 

is not their main concern. 

The Schwarz method forms the foundation for many numerical algorithms and is widely used in 

modern mathematical computations [5], [7], [16]. It is an important tool for solving boundary value problems 

with fractal differential equations [10]. The fractal dimension indicates that the processes or objects under 

study have a complex, self-similar structure. In [17], a highly scalable domain decomposition solver is 

presented and studied for fully implicit solutions of internal flows in porous media with a fractional 

derivative. Additionally, a fast step-by-step approach is used for the time discretization of fractional 

derivatives, followed by the application of the parallel Newton-Krylov-Schwarz algorithm to solve the 

resulting discrete nonlinear system [18]. In [19] propose a parallel algorithm in three-dimensional space to 

speed up the computational speed. The developed algorithm achieves results 3.8 times faster while 

maintaining a localization error of only 3 %, proving its suitability for real-time decision-making. In [20] 

presents Schwarz methods as they were developed historically,  illustrate how they can greatly enhance the 

performance of the solver, and show why  one has to be cautious when testing them numerically. The paper 

[21] deals with the optimization of algorithms for solving complex fractional equations, with an emphasis 

on memory and parallel computing. 

Objectives and Problems of Research 

Parallelization of heat and mass transfer problems in fractal media allows to significantly reduce the 

computation time and increase the efficiency of these methods. Using the Schwarz method to divide the 

domain into overlapping subdomains ensures stability and accuracy of the solution. This allows to 

simultaneously process large computational grids on modern multi-core or cluster systems. This approach 

opens up opportunities for large-scale modeling of complex physical processes in practical engineering and 

scientific problems. 

The object of this study is the heat and mass transfer processes in anisotropic media with a fractal 

structure, which are described by systems of fractional order differential equations. 

The subject of the study is a parallel algorithm based on the Schwarz method, which implements the 

partition of a two-dimensional discretization domain into overlapping subdomains. 

The main objective of the study is the development and analysis of a parallel algorithm based on the 

Schwarz method for heat and mass transfer problems in anisotropic fractal media. To achieve this objective, 

the following tasks are formulated: 

– to develop a parallel computational algorithm based on the Schwarz domain decomposition method 

for solving fractional-order partial differential equations modeling heat and mass transfer in anisotropic 

media with fractal structure; 

– to implement the partitioning of the two-dimensional discretization domain into overlapping 

subdomains to ensure efficient parallel processing; 
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– to apply finite difference methods to obtain explicit difference schemes for temperature and moisture 

transport equations using fractional derivatives based on the Riemann-Liouville and Grunwald-Letnikov 

approaches within subdomains; 

– to streamline the formulation of local boundary and initial conditions within each subdomain to 

ensure correct synchronization of the parallel algorithm; 

– to evaluate the efficiency and scalability of the proposed algorithm on parallel architectures. 

The practical significance of this research is to create an algorithmic basis for effective modeling of 

heat and mass transfer processes and to ensure faster computational solution of heat and moisture transfer 

problems in complex fractal environments on multi-core systems. In addition, the application of the obtained 

parallel algorithm for accelerated analysis of physical processes in fractal structures will reduce 

computational costs compared to traditional methods and increase the performance of numerical modeling. 

The results of this research can be implemented in engineering, environmental and materials science 

simulation platforms, optimize the use of computational resources with the possibility of scaling. 

Problem Statement 

We consider a mathematical model of the heat and moisture transfer process in media with a fractal 

structure, which is described by a system of partial differential equations with fractional orders in time t and 

spatial coordinates x1 and x2: 
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The initial conditions are as follows:  
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where T and V –    1 2 1 2,  ,  ,  ,  ,  ,T t x x U t x x  – the temperature and moisture content at the point (x1, x2) at 

the time t. 

The boundary conditions on the boundaries xi = 0 and xi = li (i = 1, 2) for determining temperature and 

moisture are as follows:  
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where
       1 2 1 1 2, , , 0, 0, 0,t x x t l l   

; 0  – base density; 


 – density;  – phase transition 

coefficient; 1 2,a a
 – coefficients of moisture conductivity; r  – specific heat of vaporization; 1 2, 

 – thermal 

conductivity coefficients; B – thermogradient coefficient; 1 2,c ct t
– ambient temperature; c – specific heat 

capacity; 1 2,p pU U
 – relative humidity of the external environment; 1 2, 

 – heat exchange coefficient;

1 2, 
 – moisture exchange rate;  – fractional order of the time derivative  10  ; ,   – fractional 

exponents of the derivative in spatial coordinates 
 0 1 

,  21   .  

Main Material Presentation 

a. Numerical solution. 

To construct a numerical model for the problem of heat and moisture transfer in a medium with a 

fractal structure, we will use the Grunwald – Letnikov formulas [12] to determine the fractional derivative 

of the order and the Riemann – Liouville formulas for the fractional derivative  [6]. Specifically, the 

approximation of the Riemann – Liouville derivative: 
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where   
 – gamma function. 

To construct an explicit finite difference scheme, we introduce discrete time and spatial grids. The 
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The explicit finite difference scheme for determining moisture 
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b. Application of the Schwarz method 

The Schwarz method (or Schwarz method for partitioning a domain) is an iterative method used to 

solve boundary value problems for partial differential equations, elliptic equations in partial domains of 

complex domains [10]. Its basic idea is to partition the initial domain into subdomains on which the equations 

can be solved by simpler methods. The results from the subdomains are then used to construct a solution for 

the entire domain. 

The main steps of the Schwarz method are: 

• Partitioning the domain into several subdomains, which may overlap. 

• On each subdomain, a partial problem is solved using boundary conditions obtained from the 

solutions of neighboring subdomains. 

• The solution process is repeated iteratively until the solution on each subdomain stabilizes and 

reaches the required accuracy. 

The Schwarz method is widely used in numerical methods, particularly in computational mechanics, 

in modeling physical phenomena [19] in engineering [14], mathematics [8], natural sciences [16], and other 

sciences [10], [11]. Due to its ability to efficiently handle complex domains and distribute computations 

between different processors, it is a key tool for solving large and complex mathematical problems. Due to 

the subdivision into subdomains, the Schwarz method is easily parallelized, allowing it to be utilized on 

multicore computers [5], [6], computers with GPU processors [7], [8], as well as in distributed cluster 

systems [10]. The method is adapted for various types of differential equations and boundary conditions 

[12]. The subdivision into subdomains enables working with regions of complex geometry, where traditional 

methods may be inefficient or difficult to apply [14]. 

The scheme for subdividing the domain  into three overlapping subdomains is shown in Fig. 1. The 

overlapping ensures the correct transmission of boundary conditions between adjacent subdomains.  
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Fig. 1. Diagram of the overlapping subdomain partitioning 

Modern versions of the Schwartz method use complex iterative and optimization schemes to improve 

the speed and accuracy of solutions. In particular, variants of the method [17] have been developed that 

include adaptive partitioning of domains, the use of different basis functions for each subdomain, and various 

techniques to accelerate the convergence of iterations [16]. 

We will subdivide the computational domain into S subdomains of equal size, as we will be using a 

multicore computer with s processors of equal power. To solve the system of differential equations, we use 

the explicit scheme Eqs. (6) and (7). The parallel algorithm based on the Schwarz method for subdividing 

the two-dimensional discretization domain into overlapping subdomains consists of the following steps: 

1. Divide the domain  into S subdomains ,...,,, 21 s that may overlap. 

2. Formulate local problems for each subdomain Sii ...,,2,1,   to determine the temperature iT  and 

moisture iU . For subdomain i  the equations for temperature and moisture are similar to Eqs. (1) and (2), 

replacing T  with iT and U  with iU . 

3. For convenience, the initial and boundary conditions for each subdomain i  are kept the same as 

in Eq. (3), Eq. (4), and Eq. (5), respectively. 

4. Initiate a parallel iterative process to solve local problems in each subdomain.  

5. Based on the known initial conditions, all processors simultaneously compute the values of 0tiT

and 0tiU
 at the initial time step. The subsequent steps of the algorithm are performed similarly for each 

time step 
mt ...,,2,1

. Taking into account the boundary conditions obtained from the previous time step 

from neighboring subdomains, at each time step in each subdomain, the equations for temperature Eq. (7) 

and moisture Eq. (8) will be solved. For the current time layer t, all processors calculate tiT
 and tiU

 in 

parallel. A similar calculation is organized for subdomains si   ...,,1 . 

6. Update boundary conditions on the subdomain boundaries i and 1i transferring information 

between neighboring subdomains. This involves exchanging boundary values between neighboring 

processors. The processor responsible for subdomain )1...,,2,1(,1   Sii passes the increment in the time 

step of the desired function to its left neighbor. 

7. Transition to the calculation of the next time layer.  

8. Repeat the iterative process from step 5, where all processors simultaneously calculate the values 

of functions tiT
and tiU

in all subdomains i at the next time layer t. Iterations continue until the solution 

in each subdomain i stabilizes. After completing the parallel iterations, the results from all subdomains are 

merged into the arrays iT  and iU . 

c. Parallel discretization algorithm 

The proposed algorithm can be represented by pseudo-code Fig. 2. We create one thread for each 

subdomain, where each thread computes the solution for its subdomain and synchronizes its results through 

a shared list results using a lock.  
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Fig. 2. Pseudo-code of the parallel algorithm 

Let’s take a closer look at how each thread works. The thread initializes its subdomain by calling the 

initialize_subdomain() function, which returns the parts of the T and U arrays corresponding to that 

subdomain. Starting at time t = 0, the thread executes an iterative process until T_max is reached. At each 

iteration, the update_subdomain() function is called, which calculates new values of T and U for the 

subdomain using fractional derivatives in time and space. After updating the values, the thread sets boundary 

conditions by calling the boundary_conditions() function. The thread uses lock to write the results of its 

subdomain to a shared results array. The main program waits for all threads to finish using the join() method. 

After all threads are complete, the results of all subdomains are merged into the final arrays T_final and 

U_final.  

After the calculations are complete, you can visualize the results as temperature and humidity 

distribution graphs. 

Once the computations are done, the results can be visualized as graphs showing the distribution of 

temperature and moisture. 

Results and Discussion 

The temperature distribution graphs Fig. 3 and moisture distribution graphs Fig. 4 for a 2D domain 

divided into 4 parts demonstrate the state of moisture in a fractal-structured medium at the specified time 

T/2. The graphs illustrate how temperature and moisture are redistributed among the subdomains depending 

on the initial and boundary conditions as well as the anisotropic properties of the fractal-structured medium. 

The process of heat and moisture transfer from one part of the domain to another is evident, creating 

gradients. Dividing the domain into 4 parts allows for an accelerated investigation process and enables 

optimization of conditions to achieve the desired levels of temperature and moisture in the fractal-structured 

medium. 
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Fig. 3. Temperature distribution  

for a domain discretized into 4 parts 
Fig. 4. Moisture distribution  

for a domain discretized into 4 parts 

The following input parameters are defined: “Initial   size” – 50×50 nodes, “Grid step change” – 10, 

and “Number of experiments” – 100. Graphs showing the dynamics of parallel algorithm speedup will be 

constructed Fig. 5. The graph Fig. 5 shows how the speedup of the parallel algorithm increases rapidly with 

the number of nodes. The upward trend continues up to the 30th experiment. Starting from the 20th 

experiment, the algorithm becomes effective when using a computational grid size of 240×240 nodes. At 

this point, the speedup of the algorithm reaches approximately 4,4. 

The graph Fig. 6 shows the performance graphs of the algorithm without partitioning the region and 

with partitioning the region into 4 subregions. It can be seen that the computation time of the parallel 

algorithm using the Schwartz method is significantly shorter than the execution time of the algorithm without 

partitioning the region. 

 

Fig. 5. Dynamics of Acceleration and Efficiency (CPU Core i3-8100) 

 

Fig. 6. Algorithm performance without partitioning  

the region and with partitioning the region into 4 parts 
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Table 1 presents the experimental results of the parallel algorithm. Given that the algorithm becomes 

effective starting from the 20th experiment Fig. 6, we analyze the obtained results for the domain discretized 

into 240×240 nodes. Here, T is the execution time (с), S is the speedup, and E is the efficiency. 

Table 1 

Experimental data for 240 nodes 

240×240 
Number of Threads 

1 2 4 8 16 

T 384.0 182.7 86.9 41.3 19.7 

S  2.1 4.4 9.3 19.5 

E  1.05 1.10 1.16 1.22 

Execution time significantly decreases with the increase in the number of threads. With 16 threads, 

the execution time drops to 19.7 seconds, and the maximum speedup reaches 19.5. The efficiency is quite 

high, varying from 1.05 with 2 threads to 1.22 with 16 threads. This indicates that the algorithm utilizes 

resources even better than expected, with efficiency values exceeding 1. As the number of threads increases, 

the algorithm significantly reduces execution time, demonstrating very good scalability. 

Table 2 presents the experimental results of the parallel algorithm for discretizing a 2D domain using 

the Schwarz method. The domain size   is 1050 nodes. 

Table 2 

Experimental data for 1050 nodes  

1050×1050 
Number of Threads 

1 2 4 8 16 

T 7562.3 3992.7 1736.0 935.6 437.3 

S  1.9 4.4 8.1 17.3 

E  0.95 1.09 1.01 1.08 

Sequential execution of the algorithm took 7562.3 seconds. With 16 threads, the execution time 

decreases to 437.3 seconds. The maximum speedup of 17.3 is achieved with 16 threads. The efficiency is 

quite high, ranging from 0.95 with 2 threads to 1.09 with 4 threads. Speedup increases with the use of a 

larger number of subdomains, indicating effective parallelization of the heat and mass transfer problem in 

fractal-structured media described by differential equations of fractional order. 

Conclusions 

A parallel algorithm has been developed to solve a system of fractional-order partial differential 

equations describing heat and mass transfer processes in fractal-structured media. The parallel algorithm, 

based on the Schwarz method, utilizes a decomposition principle to distribute the overall computation across 

multiple subdomains. For parallel processing of subdomains, local problems are formulated, initial and 

boundary conditions are set for the subdomains, solution updates are managed within each subdomain, and 

information exchange between subdomains is implemented to check for method convergence. According to 

the conducted experiments, the algorithm's efficiency is close to one, indicating good scalability. As the 

number of threads increases, resource usage is optimal. Based on the Schwartz method, a parallel algorithm 

was developed to divide a two-dimensional discretization domain into overlapping subdomains for solving 

a system of fractional-order partial differential equations describing heat and mass transfer processes in 

anisotropic media with a fractal structure. It turns out to be effective. Of course, there is an upper limit to the 

number of experiments. One can perform hundreds of experiments and obtain good speedup and efficiency 

figures, even on very large grid sizes. The efficiency of the algorithm, when divided into 4 parts, reaches 1.2 

on computers with 4 core processors with increasing number of experiments. 
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Анотація. На основі методу Шварца розроблено паралельний алгоритм для розділення двовимір-

ної області дискретизації на піддомени, які перекриваються, для розв’язання системи диференціальних 

рівнянь з частинними похідними дробового порядку, що описує процеси тепло- та масоперенесення в 

анізотропних середовищах з фрактальною структурою. За допомогою методу скінченних різниць 

отримано явні різницеві схеми для рівнянь температури та вологи в піддоменах. Дробові похідні за часом 

та просторовими координатами апроксимуються за допомогою формул Рімана – Ліувілля та Грюнвальда 

– Летнікова відповідно. Для паралельної обробки піддоменів організовано формулювання локальних 

задач, оптимізовано формулювання локальних граничних та початкових умов у межах кожної 

піддоменної області для забезпечення належної синхронізації паралельного алгоритму, оновлено 

рішення в кожній піддоменній області та передано інформацію між піддоменними областями для 

перевірки збіжності методу. Експериментальні результати підтверджують хорошу масштабованість 

запропонованого паралельного алгоритму. 

Ключові слова: паралельний алгоритм, декомпозиція домену, метод Шварца, середовища з 

фрактальною структурою, процеси тепло- та вологопереносу. 
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