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Abstract. Based on the Schwarz method, a parallel algorithm has been developed for partitioning
a two-dimensional discretization domain into overlapping subdomains to solve a system of partial
differential equations of fractional order that describes heat and mass transfer processes in anisotropic
media with a fractal structure. Using the finite difference method, explicit difference schemes for
temperature and moisture equations in subdomains are derived. Fractional derivatives in time and spatial
coordinates are approximated using the Riemann — Liouville and Grunwald — Letnikov formulas,
respectively. For parallel processing of subdomains, the formulation of local problems is organized, the
formulation of local boundary and initial conditions within each subdomain is streamlined to ensure
proper synchronization of the parallel algorithm, solution is updated in each subdomain, and information
is transferred between subdomains to check the convergence of the method. Experimental results show
that the proposed parallel algorithm has good scalability.

Keywords: parallel algorithm, domain decomposition, Schwarz method, media with fractal
structure, heat and moisture transfer processes.

Introduction

This paper aims to develop a parallel algorithm based on the Schwarz method for the decomposition
of the space-time domain of the heat and mass transfer problem described by time-dependent partial
differential equations. To find a solution, high-resolution grids are often required, which implies a significant
number of terms in the resulting system of equations, as well as the need to implement a parallel algorithm.
Therefore, the development of an algorithm based on the Schwarz method for the decomposition of the
space-time domain aims to reduce computational costs and accelerate the solution process by using modern
multi-core and distributed computing systems.

Review of Modern Information Sources on the Subject of the Paper

High-performance computing architectures are becoming increasingly parallel, and the development
of efficient and reliable algorithms that can fully exploit high degrees of parallelism remains a pressing issue
in many scientific fields. In solving partial differential equations, significant progress has led to highly
scalable domain decomposition methods [1], [2], [3] that exhibit high speedup and efficiency [4]. Domain
decomposition methods are among the best approaches that provide the highest level of parallelism. Two
grid levels of temporal discretization are mainly considered. The approximate solution of the PDE on a
coarse grid provides initial values at each time subinterval, while more precise solutions are thus computed
independently on a sufficiently fine time grid. In this sense, the parallel computational model can also be
considered as an iterative predictor-corrector scheme [5].
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Let us briefly recall some recent attempts to solve related spatiotemporal problems of fractal
dimension. Fractal dimension indicates that the processes or objects under study have a complex, self-similar
structure. In [2] a class of fully optimal methods based on spatiotemporal domain decomposition techniques
was developed for certain boundary and distributed control problems in fluid flow and heat exchange.
Existing research has demonstrated the reliability, parallel scalability, and efficiency of the proposed
algorithms. Numerous results have been presented, obtained on multicore computers [5], [6], systems with
several thousand processors [2], [3], and GPU parallelization using CUDA technologies [7]. In [8], [9] a
class of corrected explicit-implicit GPU-based domain schemes is proposed to accelerate the solution of
convection-dominated diffusion problems on GPUs. In [10], Schwarz algorithms with overlapping domains
are considered for solving linear and nonlinear systems of equations arising from finite element discretization
of elasticity problems on unstructured 3D meshes. It has been numerically demonstrated that Schwarz
method-based algorithms with new coarse spaces exhibit high scalability on supercomputers, in terms of
total computation time, for solving diffusion equations [11], [16] and elasticity problems discretized on large-
scale meshes. These works explore many interesting aspects of space-time algorithms, but parallel computing
is not their main concern.

The Schwarz method forms the foundation for many numerical algorithms and is widely used in
modern mathematical computations [5], [7], [16]. It is an important tool for solving boundary value problems
with fractal differential equations [10]. The fractal dimension indicates that the processes or objects under
study have a complex, self-similar structure. In [17], a highly scalable domain decomposition solver is
presented and studied for fully implicit solutions of internal flows in porous media with a fractional
derivative. Additionally, a fast step-by-step approach is used for the time discretization of fractional
derivatives, followed by the application of the parallel Newton-Krylov-Schwarz algorithm to solve the
resulting discrete nonlinear system [18]. In [19] propose a parallel algorithm in three-dimensional space to
speed up the computational speed. The developed algorithm achieves results 3.8 times faster while
maintaining a localization error of only 3 %, proving its suitability for real-time decision-making. In [20]
presents Schwarz methods as they were developed historically, illustrate how they can greatly enhance the
performance of the solver, and show why one has to be cautious when testing them numerically. The paper
[21] deals with the optimization of algorithms for solving complex fractional equations, with an emphasis
on memory and parallel computing.

Objectives and Problems of Research

Parallelization of heat and mass transfer problems in fractal media allows to significantly reduce the
computation time and increase the efficiency of these methods. Using the Schwarz method to divide the
domain into overlapping subdomains ensures stability and accuracy of the solution. This allows to
simultaneously process large computational grids on modern multi-core or cluster systems. This approach
opens up opportunities for large-scale modeling of complex physical processes in practical engineering and
scientific problems.

The object of this study is the heat and mass transfer processes in anisotropic media with a fractal
structure, which are described by systems of fractional order differential equations.

The subject of the study is a parallel algorithm based on the Schwarz method, which implements the
partition of a two-dimensional discretization domain into overlapping subdomains.

The main objective of the study is the development and analysis of a parallel algorithm based on the
Schwarz method for heat and mass transfer problems in anisotropic fractal media. To achieve this objective,
the following tasks are formulated:

—to develop a parallel computational algorithm based on the Schwarz domain decomposition method
for solving fractional-order partial differential equations modeling heat and mass transfer in anisotropic
media with fractal structure;

— to implement the partitioning of the two-dimensional discretization domain into overlapping
subdomains to ensure efficient parallel processing;
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—to apply finite difference methods to obtain explicit difference schemes for temperature and moisture
transport equations using fractional derivatives based on the Riemann-Liouville and Grunwald-Letnikov
approaches within subdomains;

— to streamline the formulation of local boundary and initial conditions within each subdomain to
ensure correct synchronization of the parallel algorithm;

— to evaluate the efficiency and scalability of the proposed algorithm on parallel architectures.

The practical significance of this research is to create an algorithmic basis for effective modeling of
heat and mass transfer processes and to ensure faster computational solution of heat and moisture transfer
problems in complex fractal environments on multi-core systems. In addition, the application of the obtained
parallel algorithm for accelerated analysis of physical processes in fractal structures will reduce
computational costs compared to traditional methods and increase the performance of numerical modeling.
The results of this research can be implemented in engineering, environmental and materials science
simulation platforms, optimize the use of computational resources with the possibility of scaling.

Problem Statement

We consider a mathematical model of the heat and moisture transfer process in media with a fractal
structure, which is described by a system of partial differential equations with fractional orders in time t and
spatial coordinates x; and x;:

o°T U &, T
Cp 5 ~ =T oz a+zﬂ’16ﬂ’ (1)
a“u 2 o’u a/’T
a +B N
a JZ]; l( ax,l/f J (2)
The initial conditions are as follows.
T‘(:Q :TO(Xl’XZ)’U‘[:Q :UU(Xl’XZ)‘ (3)

where Tand V- T(t, X, Xp), U(t, %, Xz), — the temperature and moisture content at the point (x1, X2) at

the time t.
The boundary conditions on the boundaries xi= 0 and x;= Ii (i = 1, 2) for determining temperature and
moisture are as follows:

i.g% +p(1-#)b, (U|X o )=ai (T|Xi:mi —tci), %
i Ix=0;
a8 avit o aaxu o b (Vs -Yl, ) (5)

where(t’xl’XZ)EQ’Q:[O’tl]x[o’ll]x[o’IZ]; Po _ base density; © — density;¢ — phase transition
coefficient; %% — coefficients of moisture conductivity; I — specific heat of vaporization; Aty _ thermal

conductivity coefficients; B — thermogradient coefficient;tcl’t°2— ambient temperature; € - specific heat

U,U,, a,a,

capacity; PV — relative humidity of the external environment; — heat exchange coefficient;

Biba moisture exchange rate; ¢ — fractional order of the time derivative (O<a Sl); vi.p _ fractional

exponents of the derivative in spatial coordinates (0<v=1) : @<ps< 2).

Main Material Presentation

a. Numerical solution.

To construct a numerical model for the problem of heat and moisture transfer in a medium with a
fractal structure, we will use the Grunwald — Letnikov formulas [12] to determine the fractional derivative
of the order and the Riemann — Liouville formulas for the fractional derivative o [6]. Specifically, the
approximation of the Riemann — Liouville derivative:
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where () — gamma function.
To construct an explicit finite difference scheme, we introduce discrete time and spatial grids. The

t,=nAt n=01... X =iA X =M% i=01..M;; j=0L..M, | g

time grid N The spatial grid ™ , 2 :

n n
Tii and Vi denote the values of temperature and moisture at a given time ' at the point (45%2,5) Then
n+1

the explicit finite difference scheme for determining the temperature with respect to ! will take the
following form:
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The explicit finite difference scheme for determining moisture Uil is given by:
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b. Application of the Schwarz method

9)

The Schwarz method (or Schwarz method for partitioning a domain) is an iterative method used to
solve boundary value problems for partial differential equations, elliptic equations in partial domains of
complex domains [10]. Its basic idea is to partition the initial domain into subdomains on which the equations
can be solved by simpler methods. The results from the subdomains are then used to construct a solution for
the entire domain.

The main steps of the Schwarz method are:

+ Partitioning the domain into several subdomains, which may overlap.

» On each subdomain, a partial problem is solved using boundary conditions obtained from the

solutions of neighboring subdomains.

» The solution process is repeated iteratively until the solution on each subdomain stabilizes and

reaches the required accuracy.

The Schwarz method is widely used in numerical methods, particularly in computational mechanics,
in modeling physical phenomena [19] in engineering [14], mathematics [8], natural sciences [16], and other
sciences [10], [11]. Due to its ability to efficiently handle complex domains and distribute computations
between different processors, it is a key tool for solving large and complex mathematical problems. Due to
the subdivision into subdomains, the Schwarz method is easily parallelized, allowing it to be utilized on
multicore computers [5], [6], computers with GPU processors [7], [8], as well as in distributed cluster
systems [10]. The method is adapted for various types of differential equations and boundary conditions
[12]. The subdivision into subdomains enables working with regions of complex geometry, where traditional
methods may be inefficient or difficult to apply [14].

The scheme for subdividing the domain into three overlapping subdomains is shown in Fig. 1. The
overlapping ensures the correct transmission of boundary conditions between adjacent subdomains.
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Q
Fig. 1. Diagram of the overlapping subdomain partitioning

Modern versions of the Schwartz method use complex iterative and optimization schemes to improve
the speed and accuracy of solutions. In particular, variants of the method [17] have been developed that
include adaptive partitioning of domains, the use of different basis functions for each subdomain, and various
techniques to accelerate the convergence of iterations [16].

We will subdivide the computational domain into S subdomains of equal size, as we will be using a
multicore computer with s processors of equal power. To solve the system of differential equations, we use
the explicit scheme Egs. (6) and (7). The parallel algorithm based on the Schwarz method for subdividing
the two-dimensional discretization domain into overlapping subdomains consists of the following steps:

1,822,825, that may overlap.
Q,i=12,..

1. Divide the domain €2 into S subdomains

T

2. Formulate local problems for each subdomain -5 to determine the temperature 'i and

moisture Vi . For subdomain % the equations for temperature and moisture are similar to Egs. (1) and (2),

replacing T with Tiand YU with Yi .
3. For convenience, the initial and boundary conditions for each subdomain Q
in Eq. (3), Eq. (4), and Eq. (5), respectively.

4. Initiate a parallel iterative process to solve local problems in each subdomain.

i are kept the same as

5. Based on the known initial conditions, all processors simultaneously compute the values of '|t:0

and '|t:0 at the initial time step. The subsequent steps of the algorithm are performed similarly for each

time step t=12...m Taking into account the boundary conditions obtained from the previous time step

from neighboring subdomains, at each time step in each subdomain, the equations for temperature Eq. (7)

. . . T, U;| .
and moisture Eq. (8) will be solved. For the current time layer t, all processors calculate '|t and '|t in
parallel. A similar calculation is organized for subdomains Qisgrn L

6. Update boundary conditions on the subdomain boundaries Qiand Qi+1transferringj information
between neighboring subdomains. This involves exchanging boundary values between neighboring

processors. The processor responsible for subdomain Qiyg,(1=2.2,...5-1) passes the increment in the time
step of the desired function to its left neighbor.

7. Transition to the calculation of the next time layer.

8. Repeat the iterative process from step 5, where all processors simultaneously calculate the values

. T Uil . . _ . ) . . .

of functions '|t and '|t in all subdomains <% at the next time layer t. Iterations continue until the solution
in each subdomain i stabilizes. After completing the parallel iterations, the results from all subdomains are
merged into the arrays T and Y,

c. Parallel discretization algorithm

The proposed algorithm can be represented by pseudo-code Fig. 2. We create one thread for each
subdomain, where each thread computes the solution for its subdomain and synchronizes its results through
a shared list results using a lock.
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Algorithm 1 Parallel Iterative Process

1: Using parallel libraries and environment

2: Init variables and arrays, parameters and constants
3: Initialization functions:

4: fractional_derivative_time(T', e, d#){...}

5: fractional_derivative_space(U, 8, dz){...}

6: boundary_conditions(7", U, T.;, U,:){...}
7: initialize_subdomain(rank, T, U/, S){...}

& update_subdomain(7suh, Usub){..- }

9: function PARALLEL_PROCESS(rank, T, U, results, lock)

10: (Tyins Usyp ) < initialize_subdomain(rank, 7', U/, S)
11: t+ 10

12: while t < 1}, do

13: (Thews Unew ) < update_subdomain (1, Usun)
14: boundary_conditions(Thew, Uncw, feiy Upi)

15: lock.acquire()

16: results[rank] <+ (Lo, Unew)

17: lock.release()

18: Tty Usub — Lhews Unew

19: t4+=dt

20): end while

21: end function
22: function MAIN_PROCESS

23 threads + [new)

24: results < [i] * §

25: lock + threading. Lock()

26: for rank + 0 to S — 1 do

27: thread < parallel_process, args=(rank, T, U, results, lock)
28: threads.append(thread)

29 thread.start()

30: end for

31: Tfinal + np.vstack([results[rank|[0] for rank in range(S5)])
32: Ufinar ¢ np.vstack([resultsrank|[1] for rank in range(S)])

33: end function

Fig. 2. Pseudo-code of the parallel algorithm

Let’s take a closer look at how each thread works. The thread initializes its subdomain by calling the
initialize_subdomain() function, which returns the parts of the T and U arrays corresponding to that
subdomain. Starting at time t = 0, the thread executes an iterative process until T_max is reached. At each
iteration, the update_subdomain() function is called, which calculates new values of T and U for the
subdomain using fractional derivatives in time and space. After updating the values, the thread sets boundary
conditions by calling the boundary_conditions() function. The thread uses lock to write the results of its
subdomain to a shared results array. The main program waits for all threads to finish using the join() method.
After all threads are complete, the results of all subdomains are merged into the final arrays T_final and
U_final.

After the calculations are complete, you can visualize the results as temperature and humidity
distribution graphs.

Once the computations are done, the results can be visualized as graphs showing the distribution of
temperature and moisture.

Results and Discussion

The temperature distribution graphs Fig. 3 and moisture distribution graphs Fig. 4 for a 2D domain
divided into 4 parts demonstrate the state of moisture in a fractal-structured medium at the specified time
T/2. The graphs illustrate how temperature and moisture are redistributed among the subdomains depending
on the initial and boundary conditions as well as the anisotropic properties of the fractal-structured medium.
The process of heat and moisture transfer from one part of the domain to another is evident, creating
gradients. Dividing the domain into 4 parts allows for an accelerated investigation process and enables
optimization of conditions to achieve the desired levels of temperature and moisture in the fractal-structured
medium.
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Moisture Distribution
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for a domain discretized into 4 parts

The following input parameters are defined: “Initial € size” —50x50 nodes, “Grid step change” — 10,
and “Number of experiments” — 100. Graphs showing the dynamics of parallel algorithm speedup will be

for a domain discretized into 4 parts

Moisture %

constructed Fig. 5. The graph Fig. 5 shows how the speedup of the parallel algorithm increases rapidly with
the number of nodes. The upward trend continues up to the 30th experiment. Starting from the 20th

experiment, the algorithm becomes effective when using a computational grid size of 240x240 nodes. At

this point, the speedup of the algorithm reaches approximately 4,4.

The graph Fig. 6 shows the performance graphs of the algorithm without partitioning the region and
with partitioning the region into 4 subregions. It can be seen that the computation time of the parallel
algorithm using the Schwartz method is significantly shorter than the execution time of the algorithm without
partitioning the region.

Acceleration
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Fig. 5. Dynamics of Acceleration and Efficiency (CPU Core i3-8100)
I —— Sequential algorithm —— Parallel algorithm ‘

9000 +
8000
7000 A
6000 //\/l
5000 I /'V/‘v
4000
3000 s
2000 //
1000 e

0 eIl |

0 20 40 60 80 100 120
Experiment number

Fig. 6. Algorithm performance without partitioning
the region and with partitioning the region into 4 parts

120



Parallel Algorithm for Solving Heat and Mass Transfer in Fractal Media Based...

Table 1 presents the experimental results of the parallel algorithm. Given that the algorithm becomes
effective starting from the 20th experiment Fig. 6, we analyze the obtained results for the domain discretized
into 240x240 nodes. Here, T is the execution time (c), S is the speedup, and E is the efficiency.

Table 1
Experimental data for 240 nodes
Number of Threads
240x240 1 > ) 3 16
T 384.0 182.7 86.9 41.3 19.7
S 2.1 4.4 9.3 19.5
E 1.05 1.10 1.16 1.22

Execution time significantly decreases with the increase in the number of threads. With 16 threads,

the execution time drops to 19.7 seconds, and the maximum speedup reaches 19.5. The efficiency is quite
high, varying from 1.05 with 2 threads to 1.22 with 16 threads. This indicates that the algorithm utilizes
resources even better than expected, with efficiency values exceeding 1. As the number of threads increases,
the algorithm significantly reduces execution time, demonstrating very good scalability.

Table 2 presents the experimental results of the parallel algorithm for discretizing a 2D domain using
the Schwarz method. The domain size € is 1050 nodes.

Table 2
Experimental data for 1050 nodes
10501050 Number of Threads
1 2 4 8 16
T 7562.3 3992.7 1736.0 935.6 437.3
S 1.9 4.4 8.1 17.3
E 0.95 1.09 1.01 1.08

Sequential execution of the algorithm took 7562.3 seconds. With 16 threads, the execution time
decreases to 437.3 seconds. The maximum speedup of 17.3 is achieved with 16 threads. The efficiency is
quite high, ranging from 0.95 with 2 threads to 1.09 with 4 threads. Speedup increases with the use of a
larger number of subdomains, indicating effective parallelization of the heat and mass transfer problem in
fractal-structured media described by differential equations of fractional order.

Conclusions

A parallel algorithm has been developed to solve a system of fractional-order partial differential
equations describing heat and mass transfer processes in fractal-structured media. The parallel algorithm,
based on the Schwarz method, utilizes a decomposition principle to distribute the overall computation across
multiple subdomains. For parallel processing of subdomains, local problems are formulated, initial and
boundary conditions are set for the subdomains, solution updates are managed within each subdomain, and
information exchange between subdomains is implemented to check for method convergence. According to
the conducted experiments, the algorithm's efficiency is close to one, indicating good scalability. As the
number of threads increases, resource usage is optimal. Based on the Schwartz method, a parallel algorithm
was developed to divide a two-dimensional discretization domain into overlapping subdomains for solving
a system of fractional-order partial differential equations describing heat and mass transfer processes in
anisotropic media with a fractal structure. It turns out to be effective. Of course, there is an upper limit to the
number of experiments. One can perform hundreds of experiments and obtain good speedup and efficiency
figures, even on very large grid sizes. The efficiency of the algorithm, when divided into 4 parts, reaches 1.2
on computers with 4 core processors with increasing number of experiments.
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MAPAJEJBHUA AJITOPUTM JIJIS1 BUPIIIEHHS 3AJIATKIB TEIINIOMACONEPEHOCY
Y ®PAKTAJIBHUX CEPEJIOBHUIIIAX HA OCHOBI METOY IIIBAPLIA

Otpumano: Cepriensb 22, 2025 / Tlepernsuyto: Bepecens 12, 2025 / Tlpuiinsrto: Bepecens 15, 2025
© Coxonoecoxuti A.", Apxyn B., Jlesxoeuu M., 2025

Anotanis. Ha ocaoBi MeToay I1IBapiia po3po0iieHO mapanelbHU#i alrOPUTM YIS PO3IIICHHS JBOBUMIP-
HOI 0o0J1acTi AMCKpeTH3alii Ha MiAJOMEHH, SIKi IEPEKPUBAIOTHCS, AJIsl PO3B’SI3aHHS CUCTEMU AU(epeHIiaIbHIX
PIBHSIHB 3 YaCTHHHHMH IOXiTHAMH JPOOOBOTO MOPSIKY, IO OIMUCYE MPOLECH TEIUIO- Ta MACONCPEHECEHHS B
AHI30TPOITHUX CEPEAOBHIIAX 3 (PAKTAJIBHOIO CTPYKTYpOIO. 3a JOMOMOTOI METONY CKIHYCHHHX PpI3HUIb
OTPHMAHO SIBHI PI3HUIIEBI CXEMHU JUIS PIBHSHb TEMIIEPATYPH Ta BOJIOTH B IijiomMeHax. J[poOoBi moxinHi 3a yacom
Ta MPOCTOPOBUMHU KOOPANHATAMH allpOKCHUMYIOTBECS 3a tonomororo ¢popmyn Pimana — Jliyeisuist Ta 'proHBanbaa
— JlernikoBa BiamoBigHO. [y mapanensHOi 0OpOOKH MiAIOMEHIB OpTaHi30BaHO (POPMYIIOBAHHS JIOKATHHHUX
3aJa4, ONTHUMIi30BaHO (OPMYJIOBAHHS JIOKAJbHUX T'PAaHUYHUX Ta IOYATKOBHX YMOB Y MeXax KOMXHOI
MiATOMEHHOI 00JIacTi Ui 3a0e3ledYeHHs HaJe:KHOI CHHXPOHI3alii MapaielhbHOrO alTrOpUTMY, OHOBIICHO
pilleHHs B KOXHIA TiIJOMEHHiH OO0IacTi Ta mepeAaHo iHPOPMAII0 MK IMiJIOMCHHAMH OONACTIMH IS
nepeBipku 30DKHOCTI MeToay. EkcriepuMeHTanbHI pe3yiabTaTH MiITBEPIUKYIOTh XOPOIIY MacIITa0OBaHICTh
3aIPOIIOHOBAHOTO I1apajieJIbHOTO AITOPUTMY.

Kuaro4doBi ciioBa: mapaneipHHN anropuT™M, JEKOMITO3MIis JoMeHy, meron lllBaprma, cepemoBmia 3
(hpakTaIbHOIO CTPYKTYPOIO, IPOIIECH TEIUIO- Ta BOJIOTOIEPEHOCY.
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