COMPUTER DESIGN SYSTEMS. THEORY AND PRACTICE
Vol. 7, No. 2, 2025

Oleh Kernytskyy?, Andriy Kernytskyy?

! Department of Automated Control Systems, Lviv Polytechnic National University, 12, S. Bandery str., Lviv,
Ukraine, E-mail: oleh.b.kernytskyy@Ipnu.ua, ORCID 0009-0007-5318-6506

2 Computer Aided Design Department, Lviv Polytechnic National University, 12, S. Bandery str., Lviv,
Ukraine,E- mail: andriy.b.kernytskyy@Ipnu.ua, ORCID 0000-0001-8188-559X

APETRINET-BASED APPROACH TO EXTRACTING AND
VALIDATING REQUIREMENTS FOR MODELLING AND
MODERNIZING ARCHAIC IT SYSTEMS

Received: August 12, 2025 / Revised: August 25, 2025 / Accepted: September 15, 2025
© Kernytskyy O., Kernytskyy A., 2025
https://doi.org/10.23939/cds2025.02.132

Abstract. Archaic IT systems are critical to the functioning of many organizations but present
significant challenges for modernization due to their inherent complexity, outdated technologies, and
lack of adequate documentation. Extracting and understanding the workflows and embedded
requirements within such systems is essential for adapting them to contemporary infrastructure while
maintaining regulatory compliance and operational integrity. This article explores the use of Petri Nets
as a formal and graphical modelling tool to address these challenges. Petri Nets offer a powerful
framework for representing system workflows, capturing concurrency, synchronization, and decision-
making processes. The methodology begins with a structured approach to requirements retrieval from
legacy systems through reverse engineering, stakeholder engagement, and data analysis. Using the
credit report creation process as a case study, we illustrate how Petri Nets can effectively model
intricate workflows, including data preprocessing, authorization checks, backend service integration,
and fallback mechanisms.

The results demonstrate their potential for formal analysis, communication between technical
and non-technical stakeholders, and incremental modernization of legacy systems. This article
highlights how Petri Nets empower organizations to reconstruct undocumented workflows with
precision, enabling sustainable modernization while preserving essential functionalities. By providing
a detailed methodology and analysis of Petri Nets, this study offers a structured framework for tackling
legacy system challenges and advancing innovative modernization strategies.

Keywords: Petri Nets, legacy IT systems, workflow modelling, requirements extraction, formal
validation, system modernization, fallback mechanisms, concurrency analysis, dynamic simulation.

Introduction

Legacy IT systems remain critical for many organizations, supporting essential business processes,
governmental workflows, and regulatory compliance. Despite their importance, these systems are often
outdated, undocumented, and rigid, making them difficult to adapt to modern demands for scalability,
interoperability, and regulatory compliance [1, 2]. Modernization of these systems requires transitioning
them to contemporary platforms while preserving critical functionalities but extracting and validating
requirements from undocumented workflows poses significant challenges. These requirements often include
workflows, compliance mechanisms, and fallback processes that are deeply embedded within outdated
software and must adhere to complex regulations, such as OFAC and MLA compliance [3, 4].

To address these challenges, this study explores a Petri Net-based approach for systematically
reconstructing, validating, and formalizing workflows in legacy IT systems. Petri Nets, particularly Coloured
Petri Nets (CPNs), provide a structured and scalable framework to model distributed, concurrent, and

132



A Petri Net-Based Approach to Extracting and Validating Requirements for Modelling...

asynchronous processes. They have been employed in academic research to abstract execution traces, convert
informal descriptions into formal models, and detect missing or inconsistent behaviours. By bridging gaps
caused by incomplete documentation, Petri Nets offer a reliable foundation for understanding and validating
system requirements.

This research contributes by presenting a methodology that leverages Petri Nets to accurately represent
workflows and dependencies, enabling organizations to formalize requirements and ensure correctness. A
case study on credit report creation workflows demonstrates how the approach captures and models complex
processes essential to modernizing legacy systems. Unlike existing methods like process mining or manual
analysis, the proposed approach reconstructs workflows comprehensively, mitigates risks, and prepares
systems for future scalability and adaptability.

Objectives and Problems of Research

The primary objective of this research is to propose and validate a Petri Net-based approach for extracting
and validating requirements from legacy IT systems. This methodology aims to address challenges such as
undocumented workflows, tightly coupled dependencies, and outdated structures in legacy systems. Specifically,
the study seeks to develop a systematic framework for identifying and capturing workflows and operational rules
from undocumented systems, represent these workflows using Petri Nets for formal clarity, and demonstrate the
methodology’s practical application through a case study on credit report generation workflows. Furthermore, the
study highlights the benefits of Petri Nets over other techniques, emphasizing their strengths in formal analysis,
concurrency handling, and iterative flexibility.

Legacy IT systems face numerous challenges during modernization [5-11]. Many lack documentation,
making it difficult to understand workflows and dependencies, while tightly coupled structures and outdated
programming languages complicate updates and replication. Workflows are often deeply embedded in
multiple code layers, requiring significant reverse engineering efforts to extract and validate them.
Additionally, legacy systems frequently encode critical compliance mechanisms that must be preserved
during modernization to avoid regulatory risks. Existing methods like manual analysis or process mining
struggle to handle undocumented processes, concurrency, fallback paths, and alternate workflows. The
absence of formal frameworks for validation further increases the risk of incomplete or inefficient models.

This research addresses these issues by leveraging Petri Nets’ formalism and rigor to represent,
analyze, and validate requirements. Petri Nets provide clear workflow representation, analytical tools to
ensure accuracy and reliability, and visual clarity that fosters collaboration between stakeholders. By
addressing key challenges, the proposed methodology aims to offer organizations a robust framework to
modernize legacy systems while minimizing risks and preserving essential functionalities.

Review of Modern Information Sources on the Subject of the Paper

The modernization of legacy IT systems has been a significant area of research and development in both
academic and industrial domains due to the critical reliance on such systems for business operations, government
services, and regulatory compliance. Legacy systems, commonly characterized by their outdated architectures
and lack of sufficient documentation, often serve as bottlenecks in organizations' efforts to adapt to evolving
technological and business needs. The field has explored a variety of approaches for requirements extraction,
workflow modelling, and system validation to address these challenges. This review highlights the key
contributions from modern information sources relevant to the themes of this article: legacy system
modernization, requirements extraction, and the use of Petri Nets as a modelling and validation framework.

a. Requirements Extraction

Requirements extraction from undocumented legacy systems is a core challenge. Modern research
discusses techniques like stakeholder interviews, log analysis, and manual audits to extract workflows and
business rules [12]. However, these methods are limited in handling complex interactions, hidden logic, and
dependencies within legacy systems. To address validation challenges:

o Mathematical frameworks have been applied to validate extracted workflows, particularly for
ensuring correctness and consistency [13]. Despite their effectiveness, their adoption remains limited due to

133



Oleh Kernytskyy, Andriy Kernytskyy

a lack of integration with practical modelling tools.

o lIterative prototyping has been used to validate workflows extracted from legacy systems by
refining processes based on early user feedback [14]. This method struggles to handle concurrency and
synchronization issues in workflows.

The inability of current techniques to comprehensively address validation, particularly in multi-
threaded, resource-constrained, or fallback-driven workflows, highlights the need for a formalized, analytical
approach like Petri Nets.

b. Petri Nets for Workflow Modelling and Validation

Petri Nets have been extensively studied and applied in domains requiring formal representation,
simulation, and validation of workflows, particularly in complex systems. Introduced by Carl Adam Petri in
the 1960s, Petri Nets combine graphical representation with mathematical rigor, providing a dual role in
modelling and ensuring correctness. They have been widely utilized in various fields:

o Petri Nets are used in software engineering to model and analyse concurrent and distributed
systems, ensuring properties like liveness, safety, and reachability [15].

o Petri Nets are used in Business Process Management to analyse workflows for bottlenecks and
evaluate process conformance [16].

o Petri Nets facilitate interaction modelling between software and physical systems, particularly in
control systems and loT [17-19].

o Petri Nets are used in Healthcare Systems to optimize patient workflows and healthcare resource
allocation [20, 21].

Central to Petri Nets’ success is their ability to represent complex dependencies, concurrent
operations, and fallback mechanisms that are crucial in legacy system workflows. Properties like reachability
ensure that all necessary states and actions are possible, liveness guarantees no parts of the system stagnate,
and boundedness prevents unexpected overflows or resource contention [22]. These properties are essential
to ensure the correctness and scalability of workflows during modernization.

Several tools, such as CPN Tools, WoPeD, and PIPE2, have been developed to support Petri Net
modelling and validation. These tools not only allow the graphical design of workflows but also enable
formal analysis of their properties, making them particularly valuable for legacy system modernization.
Despite their strengths, the use of Petri Nets is underexplored in the context of extracting and validating
workflows specific to legacy IT systems, making this article a meaningful contribution to the field.

c. Comparison with Other Methods

Petri nets differ from other modelling and extraction methods primarily in their formal semantics and
support for concurrency. Unlike UML or BPMN diagrams (which are informal and often require translation
for analysis), Petri nets have precise mathematical definitions: places, transitions, and tokens all have
unambiguous behaviour. This formality allows automated model checking and performance analysis that
UML / BPMN lack by default. Similarly, traditional finite-state machines or state charts typically model only
sequential flows, whereas Petri nets natively express parallel execution and synchronization. In fact, many
process mining approaches explicitly use Petri nets as the discovery language: algorithms map event logs to
Petri nets (e. g. the a-algorithm, ILP, Heuristic miner) and evaluate the resulting net against quality metrics. In
comparison, purely data-driven or NLP-based extraction tools may surface requirement candidates, but they
do not inherently capture control flow or support the same level of formal verification as Petri nets. Thus, while
UML/BPMN or other semi-formal methods are widely used for modelling, Petri nets stand out for their
analysability and ability to explicitly represent concurrency and resource constraints —a crucial advantage when
transforming and modernizing complex legacy behaviours.

d. Gap in Current Research

While researchers have proposed various methods for extracting and validating workflows in modern
systems, their application to legacy IT systems remains limited due to:

o The lack of formal validation techniques that ensure workflows are reconstructed accurately.

o The difficulty of handling concurrent operations and fallback mechanisms, common in legacy
systems.

134



A Petri Net-Based Approach to Extracting and Validating Requirements for Modelling...

e The absence of simulation and optimization tools to validate workflows dynamically before
modernizing the system.

Petri Nets provide a promising solution to address these gaps by offering a mathematical framework
for rigorous modelling and validation. This study builds on the established foundations of Petri Nets and
integrates them into the context of requirement extraction and validation for legacy IT systems, providing a
holistic and robust methodology for solving longstanding challenges in system modernization.

Problem Statement

Legacy IT systems are foundational to the operations of many organizations, providing critical
business functionalities and maintaining compliance with regulatory frameworks. However, these systems
are often inherently complex, outdated, and poorly documented, making modernization both necessary and
challenging. The modernization process requires careful extraction and validation of the workflows and
requirements embedded within these systems, but several issues consistently hinder progress.

One of the most significant problems in modernizing legacy systems is the lack of comprehensive
documentation. Many of these systems were developed decades ago, and essential business logic, workflows,
and dependencies are often buried within obsolete codebases, inaccessible data structures, or are only known
anecdotally by long-serving employees. This absence of clear documentation leads to inefficiencies in the
requirements extraction process and creates a significant risk of omitting critical functionalities during
modernization.

Additionally, legacy systems frequently exhibit tightly coupled dependencies that are not easily visible
at first glance. The workflows within such systems are complex, involving hidden interdependencies,
fallback mechanisms, and concurrent operations that vary widely across implementations. ldentifying and
properly modelling these workflows is vital to ensure that the modernized system replicates or improves
upon existing functionality without introducing errors or inconsistencies.

Furthermore, validation of extracted requirements poses a unique challenge. While reverse
engineering and process mining techniques can recover workflows or partially reconstruct undocumented
processes, there is often no formal mechanism to validate the correctness, completeness, and scalability of
these reconstructed workflows. Without such validation, organizations face the risk of implementing
incomplete or incorrect workflows during modernization, potentially leading to operational disruptions,
regulatory non-compliance, or data integrity issues.

Modern techniques like process mining and prototyping offer partial solutions but do not adequately
address these challenges. For instance, process mining relies on complete and reliable log data, which may
not always exist in legacy systems. Prototyping, while useful for iterative development, lacks the ability to
formally model system behaviours like concurrency, synchronization, and fallback mechanisms. These gaps
necessitate a structured and analytical approach to extracting and validating requirements from legacy IT
systems.

The problem is further complicated by the dynamic nature of workflows in legacy systems, where
activities such as data preprocessing, authorization checks, and fallback processing are critical to the overall
functionality. However, the logic for these processes often spans multiple system modules with little
transparency, adding to the difficulty of correctly capturing and modelling them.

To address these challenges, there is a need for a formal framework that enables the structured
extraction, modelling, and validation of workflows and requirements in legacy systems. Such a framework
should:

1. Provide a clear representation of workflows, capturing conditions, transitions, dependencies, and
concurrency.

2. Enable formal validation techniques to ensure that reconstructed workflows are complete, correct,
and optimized.

3. Offer the ability to analyse fallback mechanisms and failure scenarios, ensuring that system integrity
is maintained, even under exceptional conditions.

135



Oleh Kernytskyy, Andriy Kernytskyy

This research identifies Petri Nets as a powerful tool for tackling these issues. Petri Nets provide a
mathematical yet visually intuitive framework for modelling workflows, capturing complex dependencies,
and validating workflows through properties such as reachability, liveness, and boundedness. By leveraging
Petri Nets, it becomes possible to formally extract requirements, verify their accuracy, and identify potential
inefficiencies or areas for optimization. These capabilities make Petri Nets an ideal solution for navigating
the complexities of legacy system modernization while minimizing risk and ensuring business continuity.

Main Material Presentation

The modernization of legacy IT systems requires a structured methodology to extract, model, and
validate workflows often buried in undocumented systems. This section outlines the proposed Petri Net-
based approach, addressing challenges such as hidden interdependencies, lack of documentation, and
complex dependencies. Using the credit report creation workflow as an example, Petri Nets are shown to be
highly suitable for reconstructing and analysing system operations, leveraging their ability to handle
concurrency, synchronization, and distributed processes effectively.

a. Methodology for Extracting, Modelling, and Validating Requirements

The first step involves extracting requirements from legacy systems that often lack documentation by
retrieving, categorizing, and structuring workflows hidden in operational processes, code, logs, and
stakeholder knowledge. Techniques include reverse engineering, which analyses system logs, audit trails,
source code, and interfaces to trace workflows and dependencies, particularly for tightly coupled components
like data validation and authorization in credit report workflows. Stakeholder engagement gathers insights
from users and domain experts on undocumented rules, compliance needs (e. g., OFAC and MLA), and
fallback mechanisms for missing data. Process mining uses logs and audit trails to reconstruct data flows,
revealing transitions and dependencies critical for modernization efforts.

This step provides the raw requirements that will be formally represented using the Petri Net
framework.

Step 1: Requirements
Extraction

= Data Collection

= Reverse Engineering

= Stakeholder Engagement

= Process Mining

Step 3: Formal Validation
= Reachability
= Liveness

Step 2: Workflow Modelling
with Petri Nets

Step 4: Handling Fallback

Mechanisms

* Boundedness

Step 6: Example Simulation
= Normal Workflow Simulation

= Fallback Simulation

= Stress Testing

Step 5: Parallel Process
Model

=l Step 7: lterative Refinement

Fig. 1. Integrated Steps for Extracting and Validating Workflows

Once requirements are extracted, workflows are modelled as a Place / Transition (P/T) Petri Net to
represent states, transitions, and dependencies mathematically and visually. In the credit report creation
workflow, places represent conditions like “Request Received”, transitions capture actions such as “Validate
Request”, tokens simulate system states moving through workflows, and arcs define dependencies. The
resulting Petri Net provides a foundation for validating workflows through reachability, ensuring critical
states like “Final Report Generated” are accessible; liveness, confirming no part of the workflow stalls; and
boundedness, preventing token overflow in places like preprocessing or authorization. Tools such as CPN
Tools or PIPE2 evaluate these properties to ensure workflow correctness and reliability.

Fallback mechanisms, essential for workflow continuity, are modelled to handle incomplete data by
triggering alternate workflows, such as external utility data retrieval or generating a “No-Hit Report” when
no data is available. Concurrent processes, like authorization checks for product types, OFAC data, and MLA
data, are run in parallel, ensuring flexible and efficient resource use without delays or conflicts. Simulations

136



A Petri Net-Based Approach to Extracting and Validating Requirements for Modelling...

validate the system’s functionality under various scenarios: normal workflow simulation validates token
progression and state transitions, fallback simulation ensures alternate paths produce correct results, and
stress testing evaluates scalability under high workloads. Metrics such as throughput, bottlenecks, and
resource usage guide the iterative refinement of the model to address inefficiencies and optimize
performance.

Petri Nets not only provide a structured framework for reconstructing undocumented workflows but
also serve as a qualitative communication tool for stakeholders, abstracting technical complexities into
accessible models. By leveraging Petri Nets’ ability to handle concurrency, modularity, and formal analysis,
organizations can reconstruct workflows, validate requirements pre-implementation, minimize
modernization risks, and optimize legacy system functionality while ensuring compliance with evolving
business needs.

b. Use case: The Process of Credit Report Creation for American Citizens Requested by
Governmental or Commercial Entities

The implementation of credit report creation in legacy systems is shaped by governmental
requirements, which vary due to regional regulations, data privacy laws, and system-specific features.
Legacy systems often lack documentation, making retrieval, mapping, and analysis of workflows essential.
The workflow in this study was created using the “Methodology for Extracting, Modelling, and Validating
Requirements”, which combines reverse engineering, stakeholder engagement, process mining, formal
workflow modelling, and mathematical validation. This approach ensures accurate representation,
validation, and handling of concurrency, fallback mechanisms, and compliance requirements. Credit report
creation involves stages such as data collection, validation, authorization, processing, and report generation,
demonstrating the methodology’s ability to reconstruct workflows effectively.

Stage 1: Stage 2: Data Stage 3: X Stage 5:
. .o Stage 4:
Request emd Preprocessing g Validation of g Authorization Backend
Processing and Cleaning Request Service Search

Stage 6: Stage 7: Stage 8: Stage 9: Final
Scoring Model = Report 4 Requesting =4 Report
Execution Creation Add-On Data Generation

Fig. 2. Workflow Stages in Credit Report Creation

Stage 1 Request Processing: the process begins with the receipt of a request, specifying the type,
format, product, PII (e.g., name, addresses, SSNs), and add-ons such as OFAC and MLA compliance or
scoring models (e.g., FICO). These parameters define the scope, depth, and content of the report while
ensuring the appropriate compliance and scoring frameworks are applied.

Stage 2 Data Preprocessing and Cleaning: data preprocessing ensures accuracy by cleaning user data,
addressing inconsistencies or missing fields, and normalizing formats. Address standardization aligns user
address information with postal or geographic standards for consistency.

Stage 3 Validation of Request: the system validates the request by checking the completeness of
required fields, including product type, PII, and report parameters, to ensure that the system can fulfil the
request properly.

Stage 4 Authorization: this stage includes multiple layers of authorization checks for compliance with
product type access, OFAC regulations, MLA lending protections, and permissions for scoring models. Each
layer ensures the requester has the necessary permissions to access specific components of the system.

Stage 5 Backend Service Search: after validation and authorization, the system queries backend
services to locate user files. Possible outcomes include files being retrieved, unavailable, or blocked due to
legal restrictions, triggering fallback measures if needed.

137



Oleh Kernytskyy, Andriy Kernytskyy

Stage 6 Scoring Model Execution: when user files are successfully retrieved, the credit data is
processed through a scoring model, calculating creditworthiness based on the specified scoring parameters.

Stage 7 Report Creation: in this stage, the system generates the credit report, containing personal
details, credit history, compliance verification (e. g., OFAC and MLA), and credit scores. This report is
formatted according to the initial request.

Fallback mechanisms handle missing or incomplete data by sending requests to external sources (e. g.,
utility bills) to fill data gaps. If no data is retrieved, the system generates a "No Hit Report" to provide a
response indicating insufficient information.

Stage 8 Requesting Add-On Data: the system may initiate additional workflows to retrieve flagged
compliance-related data such as OFAC and MLA information, ensuring the completeness and accuracy of
the report under regulatory requirements.

Stage 9 Final Report Generation: regardless of the fallback outcomes or data availability, the system
completes the process by generating the final report, ensuring that every request receives a formal response.

Despite the outlined steps, legacy systems often exhibit inconsistencies due to historical design
decisions and outdated practices. For instance, some systems use variable-length SSNs instead of fixed
formats, hard-code authorization rules, lack fallback mechanisms, or rely on proprietary scoring models
instead of standardized ones like FICO. These discrepancies emphasize the need for careful retrieval,
standardization, and modernization of legacy workflows to ensure compliance and operational reliability.

c. Petri Net model for credit report request processing example

The Petri Net model presented in this section is the final result of applying the “Methodology for
Extracting, Modelling, and Validating Requirements” to the process of credit report creation for American
citizens, as discussed in the previous subsection. This model was constructed by systematically analysing
the legacy system, combining reverse engineering, stakeholder input, and process mining techniques to
extract workflows and requirements. Based on the extracted requirements, the workflows were first
organized into structured stages, such as data preprocessing, authorization checks, backend service
interactions, and fallback mechanisms. Each identified step was then formalized into the Petri Net
framework, capturing the system’s states, transitions, and dependencies.

This Petri Net model serves as a faithful representation of the reconstructed credit report processing
workflow, demonstrating how tokens (representing requests) flow through various states and transitions. It
visually and mathematically captures the system’s behaviour, allowing it to be analysed for critical properties
such as reachability, liveness, and boundedness. Below, the places and transitions in the Petri Net are described
in detail, followed by an explanation of how the model operates to fulfil the credit report request.

Fig. 3 shows the Petri Net model of the workflow. The legends of places and transitions in this model
are as follows:

PO: Request Received — represents the initial point when the system receives the request to create a
credit report, holds personal data required to process the request (e. g., name, SSN, address).

P1: Data Pre-processed — represents the state where data cleaning and normalization are complete.

P2: Address Standardized — indicates that user addresses have been standardized within the system.

P3: Request Validated — represents the validation step where the system checks for adequate data
completeness.

P4: Request Contains Type of Product — Represents the type of product specified in the request.

P5: Service Returns User File — Denotes successful retrieval of a user file from the backend service.

P6: File Blocked — Handles the case where the user file is found but blocked by external agencies.

P7: No User File Found — Represents failure of the backend service to locate a user file.

P8: Credit File Scored — Represents the point where the credit file is processed in the scoring model
pipeline.

P9: Utility Bills has not been Found — Represents failure of the retrieval of utility bill data from
external systems

P10: Utility Bills Found — Represents the retrieval of utility bill data from external systems.

P11: Utility Bills Scored — Indicates the utility bill data sent to the scoring process pipeline.

138



A Petri Net-Based Approach to Extracting and Validating Requirements for Modelling...

P12: No Hit Report Created — Represents the creation of a report when no user file or utility bill data
is retrieved from any source.

P13: Addon — OFAC Data — Indicates whether OFAC data is required (depends on the product type).

P14: Authorized for OFAC Data — Represents authorization to handle OFAC addon data.

P15: Additional OFAC Data Requested — Denotes that OFAC data is explicitly requested when other
attempts fail.

P16: Addon — MLA Data — Indicates whether MLA data is required (depends on the product type).

P17: Authorized for MLA Data — Indicates authorization to process MLA addon data.

P18: Additional MLA Data Requested — Denotes that MLA data is explicitly requested when other
attempts fail.

P19: Additional Data Received — Denotes that additional data is received.

P20: Request Contains Type of Report — Holds the request’s specified type.

P21: Request Contains Report Format — Ensures the report format is defined.

P22: Authorized for Scoring Model — Represents scoring model authorization for the system.

P23: Authorized for Product Type — Indicates that the requester is authorized for the specified product type.

P24: Final Report Generated — Indicates the generation of the report regardless of data availability.

TO: Start Data Preprocessing — Cleans and normalizes P1l and other input data.

T1: Standardize Address — Implements address formatting and cleaning.

T2: Validate Required Data — Checks if all necessary fields for creating the report are populated.

T3: Send Data to Service — Represents sending the request to the backend service for user data.

T4: Send Credit File to Scoring Model — Sends retrieved credit file data to the scoring model pipeline.

T5: No Hit Report Creation — Represents creating a “no hit” report when no valid data is found.

T6: Send Request to External System — Sends a request to external services like utility bill databases.

T7: Process Utility Bills —-Handles external data processing and scoring based on utility bill data.

T8: Check OFAC Authorization — Verifies authorization for handling OFAC addon data.

T9: Check MLA Authorization — Verifies authorization for processing MLA addon data.

T10: Request Additional OFAC and MLA Data — Makes explicit requests for these addons when
primary sources fail.

T11: Generate Final Report — Represents the final step where the system generates the report,
regardless of data availability.

The workflow begins in PO (Request Received) when the system receives a new credit report request.
The request is first pre-processed via TO (Start Data Preprocessing), moving tokens to P1 (Data Pre-
processed). The address standardization process is triggered via T1 (Standardize Address), progressing the
workflow to P2 (Address Standardized). Subsequently, T2 (Validate Required Data) checks whether the
request contains adequate and valid data to proceed, transitioning tokens to P3 (Request Validated).

If the request specifies the type of product, T3 (Send Data to Service) advances tokens to P4 (Request
Contains Type of Product), ensuring the workflow proceeds to the backend service operation. Authorization
checks for specific addons (e. g., OFAC, MLA) or product types are validated through transitions T8 (Check
OFAC Authorization) and T9 (Check MLA Authorization), advancing tokens through places P13 (Addon —
OFAC Data), P14 (Authorized for OFAC Data), P16 (Addon — MLA Data), and P17 (Authorized for MLA
Data) accordingly.

The backend service operation begins with T3 (Send Data to Service), sending the user’s request to
the backend service. Based on the service results:

o If the user file is successfully retrieved, tokens move to P5 (Service Returns User File).

o If the file is blocked, tokens progress to P6 (File Blocked) via T9.

e If nofile is found, T10 (No User File Found) transitions tokens to P7 (No User File Found).

Once a valid user file is retrieved, T4 (Send Credit File to Scoring Model) triggers the credit scoring pro-
cess, transitioning tokens to P8 (Credit File Scored). The scoring model ultimately results in the generation of the
final report through T11 (Generate Final Report), moving tokens to P24 (Final Report Generated).

139



Oleh Kernytskyy, Andriy Kernytskyy

If missing data (user file or utility bills) is identified, further actions are taken:

e T6 (Send Request to External System) transitions tokens to P10 (Utility Bills Found), retrieving
utility bills.

o If utility bill retrieval fails, T7 (Process Utility Bills) transitions tokens to P9 (Utility Bills has not
been Found).

o Additional attempts to acquire required data (e. g., OFAC or MLA data) begin with T10 (Request
Additional OFAC and MLA Data), transitioning tokens to P18 (Additional MLA Data Requested) and P15
(Additional OFAC Data Requested).

Scoring for utility bills proceeds with T7 (Process Utility Bills), ultimately placing tokens in P11
(Utility Bills Scored). Combined with other incoming data (e. g., retrieved user files, utility bill scores),
tokens are sent to P19 (Additional Data Received) via T12.

When no valid data is retrieved from any source, the system generates a “No Hit Report” through T5
(No Hit Report Creation), advancing tokens to P12 (No Hit Report Created). Regardless of the data
availability, T11 (Generate Final Report) ensures that a final report is produced, finalizing the workflow at
P24 (Final Report Generated).

This workflow model ensures the generation of a report for all valid requests, with detailed data
processing, validation, scoring pipelines, and conditional handling of missing or blocked data.

P10 o P

Fig. 3. Petri net model of the credit report creation in Fig. 2

Results and Discussion

The Petri Net-based approach effectively demonstrated its ability to model, validate, and simulate
workflows extracted from legacy IT systems, addressing challenges such as incomplete documentation,
concurrency, fallback mechanisms, and scalability constraints. It provided a structured representation of
critical states and transitions, capturing milestones like “Request Received” and “Final Report Generated”,
alongside processes such as validation and authorization. Formal validation ensured correctness and
reliability, with reachability confirming all required states were accessible, liveness preventing deadlocks,
and boundedness controlling token flow to avoid bottlenecks. Dynamic simulations validated the workflow
under normal operations, fallback scenarios, and high-volume stress tests, highlighting scalability and
smooth resource utilization without performance degradation.

The approach proved adaptable to evolving requirements, enabling extensions for credit risk analysis
or new compliance mechanisms while preserving its formal structure and validation properties. It was
particularly effective at reconstructing undocumented workflows using techniques like reverse engineering,
process mining, and stakeholder insights, ensuring robustness during modernization. Unlike manual
reconstruction or incomplete process mining, Petri Nets provided precision by handling all potential states
and transitions with rigor.

140



A Petri Net-Based Approach to Extracting and Validating Requirements for Modelling...

Despite its strengths, the methodology’s success relied on the completeness of requirements
extraction, and constructing comprehensive Petri Nets required substantial expertise and time. Compu-
tational limits were also noted in real-time simulations of highly concurrent workflows. However, its ability
to optimize performance, validate failure scenarios, and ensure compliance makes the approach invaluable
for organizations modernizing legacy systems. This structured method minimizes risks, ensures operational
continuity, and prepares systems for scalability and adaptability. Future research could explore advanced
variants like Timed or Stochastic Petri Nets for enhanced applicability in performance-constrained scenarios.

Conclusions

Legacy IT systems pose significant challenges during modernization due to their complexity, outdated
technologies, and lack of documentation. These systems often encode essential workflows and compliance
mechanisms critical for meeting regulatory and business requirements. Extracting, understanding, and
modelling these embedded requirements is crucial for ensuring consistency, operational continuity, and
progress toward modern infrastructure.

This article presented a detailed approach to these challenges, focusing on Petri Nets as a robust tool
for modelling and analysing workflows extracted from legacy systems. The methodology addressed issues
such as incomplete data, hidden dependencies, and unclear processes, combining techniques like reverse
engineering, stakeholder engagement, and validation to reconstruct workflows systematically. Petri Nets
provide a structured framework that represents concurrency, synchronization, and dependencies, enabling
precise modelling of conditions (places), transitions, and arcs in legacy processes. Their versatility was
demonstrated through applications to real-world scenarios, specifically the credit report creation workflow
for American citizens.

The credit report case study illustrated how Petri Nets capture complex processes, including user data
preprocessing, authorization checks, backend service integration, and fallback mechanisms. By defining
states like “Request Received” and transitions like “Validate Required Data”, Petri Nets effectively modeled
workflows while accounting for concurrency and dependencies. Detailed analysis of properties such as
reachability, liveness, and boundedness confirmed the reliability and robustness of the constructed model.

This article also emphasized discrepancies in legacy system implementations due to design choices,
system-specific constraints, or custom-built solutions, which pose barriers to standardization. Petri Nets
address these irregularities by reconstructing and optimizing workflows without compromising process
integrity. Beyond modelling, Petri Nets enable formal validation to ensure the accuracy and completeness of
workflows, simulation to test and refine processes, and incremental modernization to update subsystems
methodically while preserving overall functionality. Furthermore, their graphical representation facilitates
alignment between technical and non-technical stakeholders.

In conclusion, Petri Nets not only streamline the reconstruction of undocumented workflows but also
empower organizations to modernize legacy systems with precision and scalability. The case study validated
their utility in addressing challenges related to undocumented processes, regulatory compliance, and
operational constraints. By providing a structured methodology and rigorous analysis, this approach equips
organizations to modernize legacy systems confidently while ensuring adaptability for future needs.

References

[1] Hogan, G., Shalkauskaite, P., Zhu, M., Derwin, M., Yilmaz, M., McCarren, A., & Clarke, P. (2024).
Investigating Systems Modernisation: Approaches, Challenges and Risks. Systems, Software and Services Process
Improvement, 147-162. https://doi.org/10.1007/978-3-031-71139-8 10

[2] Strobl, S., Bernhart, M., & Grechenig, T. (2020). Towards a Topology for Legacy System
Migration. ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 586-594. https://doi.org/10.1145/3387940.3391476

141



Oleh Kernytskyy, Andriy Kernytskyy

[3] Akhtyamov, R., Vingerhoeds, R., & Golkar, A. (2018). Measures and Approach for Modernisation of
Existing  Systems. 2018 IEEE International ~ Systems  Engineering  Symposium (ISSE), 1-
8. https://doi.org/10.1109/SysEng.2018.8544427

[4] Leemans, M., van der Aalst, W. M. P., van den Brand, M. G. J., Schiffelers, R. R. H., & Lensink, L. (2018).
Software Process Analysis Methodology: A Methodology Based on Lessons Learned in Embracing Legacy
Software. 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), 665-
674. https://doi.org/10.1109/ICSME.2018.00076

[5] Strobl, S., Zoffi, C., Haselmann, C., Bernhart, M., & Grechenig, T. (2020). Automated Code
Transformations: Dealing with the Aftermath. 2020 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), London, ON, Canada.

[6] Sahlabadi, M., Muniyandi, R. C., Shukur, Z., Qamar, F., & Kazmi, S. H. A. (2022). Process Mining
Discovery Techniques for Software Architecture Lightweight Evaluation Framework. Computers, Materials and
Continua, 74(3), 5777-5797. https://doi.org/10.32604/cmc.2023.032504

[7] Pika, A., Ouyang, C., & Hofstede, A. H. M. (2022). Configurable Batch-Processing Discovery from Event
Logs. ACM Transactions on Management Information Systems (TMIS), 13(3), 1-25. https://doi.org/10.1145/3490394

[8] Castillo, R. P., Weber, B., & Piattini, M. (2011). Process Mining Through Dynamic Analysis for Modernising
Legacy Systems. IET Software, 5(3), 304-319.

[9] Kernytskyy, O., Kernytskyy, A., Melnyk, M., Lukaszewicz, A., Pytel, K., & Banas, M. (2024). Applying
Software Development Black-Box, Grey-Box and White-Box Reverse Engineering Frameworks to the Mechanical
Industry. CAD in Machinery Design: Implementation and Educational Issues, 233-240.

[10] Moraga, M., & Zhao, Y. (2018). Reverse Engineering a Legacy Software in a Complex System: A Systems
Engineering Approach. INCOSE International Symposium, 28(1), 1250-1264. https://doi.org/10.1002/j.2334-
5837.2018.00546.x

[11] Ponnusamy, S., & Eswararaj, D. (2023). Navigating the Modernization of Legacy Applications and Data:
Effective Strategies and Best Practices. Asian Journal of Research in Computer Science, 16(4), 239-
256. https://doi.org/10.9734/ajrcos/2023/v16i4386

[12] Tsai, J. C. A, Jiang, J. J., Klein, G., & Hung, S. Y. (2022). Legacy Information System Replacement:
Pursuing Quality Design of Operational Information Systems. Information & Management, 59(1),
103592. https://doi.org/10.1016/j.im.2022.103592

[13] Miskell, C., Diaz, R., Ganeriwala, P., Slhoub, K., & Nembhard, F. (2023). Automated Framework to Extract
Software  Requirements  from  Source  Code. ACM  NLPIR, South  Korea. https://doi.org/10.1145/
3639233.3639242

[14] Southwick, D., Resch, G., & Ratto, M. (2021). Iterative Prototyping and Co-Design. Knowledge,
Innovation, and Impact, 231-238. https://doi.org/10.1007/978-3-030-34390-3_30

[15] He, X. (2013). A Comprehensive Survey of Petri Net Modeling in Software Engineering. International
Journal of Software Engineering and Knowledge Engineering, 23(5). https://doi.org/10.1142/S021819401340010X

[16] Han, D., Wang, C., Bian, G., Shao, B., & Shi, T. (2023). A Novel Process Recommendation Method That
Integrates Disjoint Paths and Sequential Patterns. MDPI, Applied Sciences, 13(6), 3894. https://doi.org/10.3390/
app13063894

[17] Zhu, H., Chen, J., Cai, X., Ma, Z., Jin, R., & Yang, L. (2019). A Security Control Model Based on Petri
Net for Industrial 10T. 2019 IEEE International Conference on Industrial Internet (ICII). https://doi.org/10.1109/
IC11.2019.00040

[18] Yang, C. H,, Lin, Y. N., Shen, V. R. L., Shen, F. H. C., & Jheng, W. S. (2023). A Novel loT-Enabled
System for Real-Time Monitoring Home Appliances Using Petri Nets. https://doi.org/10.36227/techrxiv.22362472.v1

[19] Bouyakoub, S., & Belkhir, A. (2022). Things-Net: A Hierarchical Petri Net Model for Internet of Things
Systems. International Journal of Software Innovation, 10(1), 1-27. https://doi.org/10.4018/1JS1.297981

[20] Wang, J. (2022). Healthcare Patient Flow Modeling and Analysis with Timed Petri Nets. Advances in
Computing, Informatics, Networking and Cybersecurity, 181-204. https://doi.org/10.1007/978-3-030-87049-2_6

[21] Jabbar, M. A., & Hussain, M. (2022). Formal Modeling and Analysis of Integrated Healthcare System
Using Colored Petri Nets. VFAST Transactions on Software Engineering, 10(2), 211. http://vfast.org/journals/
index.php/VTSE

[22] Sobrinho, A., Almeida, 1., Chaves e Silva, L. D. D., Aratijo, A., Costa, T. F. F., & Perkusich, A. (2022).
Coloured Petri Nets for Abstract Test Generation in Software Engineering. Wiley, Software Testing, Verification &
Reliability, 1(6), 1. https://doi.org/10.1002/stvr.1837

142



A Petri Net-Based Approach to Extracting and Validating Requirements for Modelling...

Ouer Kepunnbkwnii®, Anapiii Kepanubknii?

! Kaenpa aBTomMaTh30BaHuX cucteM yrpasininus, Hauionansauil yHiBepeuter “JIbBiBChbKa MONIiTEXHIKA”,
Byi1. C. Banzepu, 12, JIbBiB, Ykpaina, oleh.b.kernytskyy@Ipnu.ua, ORCID 0009-0007-5318-6506

2 Kadenpa CucTEM aBTOMATU30BaHOTO MIPOEKTyBaHHs, Hanionansuuii yrisepcutet “JIbBiBCcbKa MOJITEXHIKA”,
Bys1. C. Bauzepu, 12, JIbBis, Ykpaina, andriy.b.kernytskyy@Ipnu.ua, ORCID 0000-0001-8188-559X

MIIXIJ] HA OCHOBI MEPEXK IETPI 10 BUJOBYBAHHSI TA IEPEBIPKHA BUMOT
JIUISI MOJEJTIOBAHHSI TA MOJIEPHI3ALIE APXATUHUX IT-CUCTEM

Otpumano: Cepniens 12, 2025 / Ilepernsayto: Ceprniens 25, 2025 / Ipwuitasto: Bepecens 15, 2025
© Kepruywxuii O.", Kepnuyvkuii A., 2025

Anoranis. 3actapini [T-cucremn MaroTh BupimianbHe 3Ha4YeHHS A1 (QYHKLIIOHYBaHHA 0araTbox
OpraHisalliif, aie CTBOPIOIOTH 3HAYHI TPYAHOIII ISl MOJEpHi3allil yepe3 IXHIO CKIIQIHICTh, 3aCTapili TeXHOJOTI]
Ta BIJICYTHICTh HaJIe)KHOT JOKyMeHTalii. BuiryueHHs Ta po3yMiHHS poOOYHX IPOLECiB i BOYJOBAaHUX BHMOT Yy
TaKUX CHCTeMax BAXJMBI Uil IX ajanrtamii 1o cy4acHOi iH(pacTpyKTypu, 30epirarodu BiAIOBiJHICTH
HOpPMAaTHBHUM BHMOTaM Ta ONEpAIliifHy IUTICHICTh. Y Wil CTaTTi AOCIIIKEHO BUKOPHUCTaHHS Mepex [lerpi sk
(opMmanpHOTO Ta TpadidHOrO IHCTPYMEHTY MOMETIOBAaHHS Ui BHpIMIeHHS mux mpobmem. Mepexi I[letpi
MPOIOHYIOTh NOTYKHY OCHOBY ISl BiZJOOpa)KCHHSI CHCTEMHHX POOOYMX MHpoleciB, (ikcalii mapaneiabHOCTI,
CHHXpOHI3alii Ta MpoueciB NPUHAHATTS pilieHb. MeTOoM0JI0risS NOYHHAETHCS 31 CTPYKTYPOBAHOTO MiIXOIy 10
BU3HAUCHHS BUMOT 13 3aCTapiIMX CUCTEM 32 JOIIOMOTOI0 3BOPOTHOTO NPOEKTYBAHHS, 3ITyYCHHS 3alliKaBJICHIX
CTOpIH Ta aHaji3y JaHMX. [3 BUKOPHCTaHHSIM INPOLECY CTBOPEHHS KPEAMTHOTO 3BITY SIK TEMaTHYHOTO
JIOCJTIJDKEHHS IPOLTIFOCTPOBAHO, K eheKTHBHO Mepexi [leTpi MoXyTh MoJentoBaTu ckiaaHi podoui mporecw,
30KpeMa TONepeIHE ONPAIIOBaHHs JaHUX, IEPEBIPKY aBTOPHU3aLil, IHTErpallil0 CepBEPHUX CIYKO Ta pe3epBHi
MEXaHi3MH.

PesynbraT JIEMOHCTPYIOTH IXHIN MOTEeHIIa s pOpMaTLHOTO aHalli3y, KOMYyHIKaIil MiXK TEXHIYHUMH
Ta HETEXHIYHMMH 3alliKaBIICHUMU CTOPOHAMH Ta IMOCTYIIOBOT MOZIEpHi3aLil 3acTapinux cucrteM. BUCBITICHO, K
Mepexi [leTpi maroTh oprasizamisM 3MOTy TOYHO PEKOHCTPYIOBATH HEJOKYMEHTOBaHI PO0OYi MpOIIECH,
3a0e3Meuyroun CTaly MOJEPHI3aIi0 1 30epiraroun OCHOBHI (hYHKIIIOHATBHI MOXIINBOCTI. Hanarouu neraibHy
METOJIOJIOTII0 Ta aHali3 Mepex [lerpi, 1e AOCIIIKEHHS MPONOHYE CTPYKTYpOBaHY OCHOBY /ISl BUDILICHHS
mpoOJIeM 3acTapiIuX CHCTEM Ta MPOCYBaHHS iHHOBAIIMHUX CTpATETiil MOJEpHi3aIIii.

Kuarouosi ciioBa: mepexi [lerpi, 3acrapini [T-cucremu, MosientoBaHHs: pOOOYHUX HPOLECIB, BUIOOYBaHHS
BUMOT, (hopMaibHa BajIiallis, MOJIEpHi3allis CHCTEMH, pe3epBHI MeXaHi3MH, aHaJIi3 MapaJieIbHOCTI, TUHAMIUHE
MOJICITIOBaHHSL.

* Corresponding author

@ @ © The Author(s). This is an open access article distributed under the terms of the Creative
Commons Attribution Licence 4.0 (https://creativecommons.org/licenses/by/4.0/)

143



