Chem. Chem. Technol., 2025, Vol. 19, No. 2, pp. 221–228 Chemistry

DIETHYL 2,2'-(1*H*-1,2,4-TRIAZOLE-3,5-DIYL)DIACETATE: SYNTHESIS STRATEGIES, CHEMICAL BEHAVIOR, CRYSTAL STRUCTURE AND HIRSHFELD SURFACE ANALYSIS

Oleksandr Vashchenko¹, Dmytro Khomenko¹, Roman Doroshchuk¹, Oleksandr Vynohradov¹, Ilona Raspertova^{1,⊠}, Volodymyr Trachevskii², Sergiu Shova³, Rostyslav Lampeka¹

https://doi.org/10.23939/chcht19.02.221

Abstract. 1,2,4-Triazolyl-3,5-diacetic acid ethyl ester was synthesized by condensation of hydrazine hydrate and N-acyl ethyl 3-ethoxy-3-iminopropanoate. Other methods for the synthesis are considered and their comparative analysis is carried out. The molecular structure of the title compound was established by X-ray analysis. Hirshfeld surface analysis was performed to investigate intermolecular interactions.

Keywords: 1,2,4-triazole, iminoesters, NMR spectroscopy, X-ray analysis, Hirshfeld surface analysis.

1. Introduction

1,2,4-Triazoles are prominent representatives of nitrogen-containing heterocycles, comprising five-membered rings with two carbon atoms and three nitrogen atoms positioned at the 1st, 2nd and 4th positions. With all atoms sp^2 -hybridized, these structures exhibit aromatic character, akin to pyrazole and imidazole, suggesting their potential utility in studying various biochemical processes ¹⁻³. In drug design, triazoles are increasingly utilized as bioisosteres and linkers to enhance the potency of lead molecules, with the introduction of additional functional groups enhancing specific properties ⁴⁻⁸. Notably, carboxyl and ether groups are well-known pharmacophores in the design of compounds with anti-inflammatory activity ⁹.

In our previous work, we investigated the synthesis and modification of derivatives of 1,2,4-triazolyl carboxylic¹⁰ and acetic acids^{11, 12}, highlighting their

potential for constructing target substances due to the presence of numerous diversification points. Furthermore, 1,2,4-triazoles show promise as ligands for complexing metal ions, prompting our interest in exploring their catalytic ^{13, 14}, fluorescent ^{14, 15}, and cytotoxic activities ¹⁶, particularly with chelators like 3-(2-pyridile)-1,2,4-triazole.

Recently, our focus has extended to copper(II) coordination compounds with different 1,2,4-triazole-containing chelators, demonstrating the crucial role of chelating arms in forming specific coordination compounds. Additionally, we have reported the complexation of "hybrid" ligands containing both 2-pyridyl and carboxyethyl substituents connected through carbon atoms to the 1,2,4-triazole core, yielding both typical and unusual coordination compounds with copper(II)^{13, 17} and palladium (II)¹⁸.

As a logical extension of our previous studies and to expand the chemical space of 1,2,4-triazoles, we propose investigating 1,2,4-triazolyl diacetic acid derivatives. However, a literature analysis revealed that 1,2,4-triazolyl-3,5-diacetic acid has not been synthesized previously, with only one study focusing on the synthesis of the corresponding diethyl ester. Kiseleva *et al.* achieved the synthesis of 1,2,4-triazolyl-3,5-diacetic acid diethyl esters from ethyl 3-ethoxy-3-iminopropanoate hydrochloride and hydrazine with low yield¹⁹. Therefore, prior to investigating the coordination chemistry of 1,2,4-triazolyl-3,5-diacetic acid, we sought to improve the methodology for its synthesis. In this paper, we present the molecular structure and two novel synthesis routes for 1,2,4-triazolyl-3,5-diacetic acid diethyl ester, starting from chloroethylmalonate.

2. Experimental

2.1. Materials

All the starting materials and solvents were obtained from Enamine Ltd. and UORSY, and were used as received.

¹ Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv, 01601, Ukraine

² G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36, Academician Vernadsky Blvd., Kyiv, 03680, Ukraine

³ "PetruPoni" Institute of Macromolecular Chemistry, 41 A, Aleea Gr. GhicaVoda, Iasi, 700487, Romania

[™] ilonabatyuk@gmail.com

[©] Vashchenko O., Khomenko D., Doroshchuk R., Vynohradov O., Raspertova I., Trachevskii V., Shova S., Lampeka R., 2025

2.2. Methods

 1 H NMR spectra were recorded on Varian Mercury 400 (400 MHz) spectrometer. 13 C NMR spectra were recorded on AVANCE-400 Bruker (100.613 MHz) spectrometer. All spectra are referenced to DMSO- d_6 residual DMSO peak (1 H NMR δ = 2.50 ppm; 13 C NMR δ = 39.5 ppm). Coupling constants are quoted to the nearest 0.1 Hz. Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (t), broad singlet (t) and combinations thereof. Elemental analyses were carried out with Perkin-Elmer 2400 CHN Analyzer. Melting points ($^{\circ}$ C, uncorrected) were measured with OptiMelt Automated Melting Point System (MPA 100). The IR spectra (KBr, pellet) were recorded with Spektrum BX Perkin Elmer spectrometer.

2.3. Experimental Procedures

TR¹ (Eq. (1)): Hydrazine hydrate (10.4 mL, 0.2 mol) was added to a stirred solution of ethyl 3-ethoxy-3-iminopropanoate (80 g, 0.5 mol) in 500 mL dry ethanol. The internal temperature was maintained between -5 °C and 0 °C. After complete addition of hydrazine hydrate, the reaction mixture was slowly heated to room temperature and stirred for an additional 2 hours. The precipitated 3-amino-1H-pyrazol-5-ol was filtered off, and the resulting solution was refluxed for 24 hours. The reaction mixture was then concentrated *in vacuo* and the residue was recrystallized from 500 mL of toluene to yield TR¹ as white crystals. (yield 29 %).

TR¹ (Eq. (2a)): Sodium ethylate (0.02 mol, 0.46 g of sodium in 25 mL of ethanol) was added to a solution of Ethyl malonyl hydrazide hydrochloride (4.0 g, 0.022 mol) in 25 mL of dry ethanol. The precipitated sodium chloride was filtered off, and then ethyl 3-ethoxy-3-iminopropanoate (3.8 g, 0.024 mol) was added to the solution. The reaction mixture was refluxed for 6 hours and then concentrated *in vacuo*. The resulting residue was recrystallized from 20 mL toluene to yield TR¹ as white crystals (yield 20%).

TR¹ (Eq. 2b): Chlorethylmalonate (1.92 mL, 0.015 mol) was added dropwise to a solution of ethyl 3ethoxy-3-iminopropanoate (1.59 g, 0.01 mol) and N,Ndiisopropylethylamine (1.9 mL, 0.0115 mol) in 25 mL of dichloromethane. The internal temperature maintained between 0 °C and +5 °C. After complete addition of chlorethylmalonate, the reaction mixture was slowly heated to room temperature and stirred for 6 hours. The solution was then washed with water (3×10 mL), dried over sodium sulfate, and concentrated in vacuo. The resulting brown oil was dissolved in 25 mL of dry ethanol, and hydrazine hydrate was added. The reaction mixture was stirred for 16 hours and then concentrated in vacuo. The resulting residue was recrystallized from 10 mL toluene to give \mathbf{TR}^1 as white crystals. (yield 42 %). M.p. 104–106 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 1.18 (6H, t, J = 6.0 Hz, $\underline{\text{CH}}_3\text{CH}_2$), 3.70 (2H, s, CH₂), 3.82 (2H, s, CH₂), 4.09 (4H, d, J = 6.0 Hz, CH₃ $\underline{\text{CH}}_2$), 13.67 (1H, brs, NH). ¹³C NMR (100 MHz, DMSO- d_6): δ = 13.9, 32.2, 34.2, 60.3, 60.4, 150.0, 157.0, 168.2, 169.3. IR (KBr, cm⁻¹): 3422, 2993, 1733, 1624, 1457, 1384, 1333, 1201, 1034. Anal. calc. for C₁₀H₁₅N₃O₄: C, 49.79; H, 6.27; N, 14.72. Found: C, 49.51; H, 6.492; N, 17.62.

3-Amino-1H-pyrazol-5-ol (1). 3-Amino-1H-pyrazol-5-ol was one of the byproducts in Eq. (1). Brown crystals (yield 38 %). M.p. >220 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.07 (1.66 H); 4.19 (0.21 H); 5.65 (0.49 H); 5.86 (1.56 H); 8.69 (0.33 H); 9.83 (0.70 H). IR (KBr, cm⁻¹): 3333, 3166, 1687, 1604, 768, 551. Anal. calc. for C₃H₅N₃O: C, 36.36; H, 5.09; N, 42.40. Found: C, 36.42; H, 4.98; N, 42.41.

Na₂TR². Sodium hydroxide (0.8 g, 0.02 mol) was added to a solution of **TR**¹ (2.41 g, 0.01 mol) in 15 mL of water, and the mixture was refluxed for 6 hours. The solution was then concentrated in vacuo, and the resulting oil was stirred in 10 mL of DMF for 2 hours. The resulting white precipitate was filtered off, washed with DMF (3×5 mL) and then washed with diethyl ether (3×5 mL) to yield **Na₂TR²** as white crystals. (yield 95 %). M.p. >220 °C. ¹H NMR (400 MHz, D₂O): δ = 3.63 (4H, CH₂). ¹³C NMR (100 MHz, D₂O): δ = 34.2, 154.7, 175.4. IR (KBr, cm⁻¹): 3382, 1595, 1386, 1263, 1067, 682. Anal. calc. for C₆H₅N₃Na₂O₄: C, 31.46; H, 2.99; N, 18.34. Found: C, 31.48; H, 3.02; N, 18.28.

TR². Hydrochloric acid (2.81 N, 1.78 mL) was added dropwise to the aqueous solution of Na₂TR² (0.558 g, 0.0025 mol) in 0.5 mL of water. The solution was stirred at 0 °C for 5 minutes and the resulting white precipitate was filtered off, washed with cold water (3×1 mL) and dried in air to yield TR² as white powder (yield 11 %). M.p. 97–98 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.63 (4H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6): δ = 33.5, 154.1, 170.4. IR (KBr, cm⁻¹): 3324, 1971, 1696, 1545, 1403, 1269, 1019, 793. Anal. calc. for C₆H₇N₃O₄: C, 38.93; H, 3.81; N, 22.70. Found: C, 38.92; H, 3.79; N, 22.75.

TR³. Methyl iodide (1.63 g, 0.0115 mol) was added to a solution of TR¹ (2.4 g, 0.01 mol) and potassium carbonate (2.07 g, 0.015 mol) in 50 mL DMF. The reaction mixture was stirred at room temperature for 6 hours. Subsequently, the reaction mixture was concentrated *in vacuo*, and the resulting residue was diluted with water and extracted with methyl *tert*-butyl ether (3×10 mL). The combined organic layers were washed with water (1×10 mL), dried over Na₂SO₄, and concentrated *in vacuo* to yield pure TR³ as a yellow oil (yield 20 %). ¹H NMR (400 MHz, DMSO- d_6): δ = 1.18 (3H, t, J = 7.2 Hz, CH₃CH₂), 1.20 (3H, t, J = 7.2 Hz,

<u>CH</u>₃CH₂), 3.64 (2H, *s*, CH₂), 3.75 (3H, *s*, CH₃), 4.00 (2H, *s*, CH₂), 4.07 (2H, *d*, J = 6.0 Hz, CH₃CH₂), 4.12 (2H, *d*, J = 6.0 Hz, CH₃CH₂). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 13.9$, 14.0, 31.7, 34.1, 35.1, 60.5, 61.1, 149.8, 155.9, 168.0, 169.2. IR (KBr, cm⁻¹): 3559, 2985, 1733, 1508, 1377, 1333, 1260, 1188, 1034. Anal. calc. for C₁₀H₁₅N₃O₄: C, 51.76; H, 6.71; N, 16.46. Found: C, 51.78; H, 6.67; N, 16.41.

Ethyl malonyl hydrazide (3). Chlorethylmalonate (3.76 g, 0.025 mol) was added dropwise to a solution of tert-butoxycarbonyl hydrazide (3.3 g, 0.025 mol) and N,N-diisopropylethylamine (4.76 mL, 0.0288 mol) in 50 mL of dichloromethane. The internal temperature was maintained between 0 °C and +5 °C. After the addition of all chlorethylmalonate the reaction mixture was slowly heated to room temperature and stirred for 6 hours. The solution was then washed with water (3×10 mL), dried over sodium sulfate, and concentrated in vacuo. The resulting brown oil was dissolved in 50 mL of 0.5 M HCl in dry ethanol. The reaction mixture was stirred for 18 hours and the precipitate was filtered off, washed with ethanol (3×2 mL) and dried to vield ethyl malonyl hydrazide hydrochloride as white crystals (yield 38 %). M.p. 118–120 °C. ¹H NMR (400 MHz, DMSO-d₆): 1.19 $(3H, t, J = 6.8 \text{ Hz}, \underline{CH_3}CH_2), 3.44 (2H, s, CH_2), 4.10 (2H, s)$ d, J = 6.0 Hz, CH₃CH₂), 5.49 (2H, brs, NH), 11.36 (1H, s, NH). IR (KBr, cm⁻¹): 3197, 2673, 2920, 1745, 1596, 1495, 1403, 1277, 1144. Anal. calc. for C₅H₁₁N₂O₃Cl: C, 32.89; H, 6.07; N, 15.34. Found: C, 32.68; H, 6.21; N, 15.63.

2.4. Crystal Data Collection and Refinement

Crystallographic measurements for compound TR¹ were carried out with an Oxford-Diffraction XCALIBUR E **CCD** diffractometer equipped with graphitemonochromated Mo-K_a radiation. The crystals were placed 40 mm from the CCD detector. Single crystals were positioned at 40 mm from the detector and 555 and 244 frames were measured each for 25, 5, s over 1° scan width for TR¹ respectively. The unit cell determination and data integration were carried out using the CrysAlis package of Oxford Diffraction²⁰. The structures were solved by direct methods using Olex2²¹ software with the SHELXS structure solution program and refined by full-matrix leastsquares on F^2 with SHELXL- 97^{22} . Atomic displacements for non-hydrogen, non-disordered atoms were refined using an anisotropic model. The hydrogen atoms have been placed by Fourier Difference accounting for the hybridisation of the supporting atoms and the possible presence of hydrogen bonds in the case of donor atoms.

TR¹. Empirical formula: $C_{10}H_{15}N_3O_4$, Mr = 241.25 g mol⁻¹, size $0.45\times0.10\times0.10$ mm³, monoclinic, space group $P2_1/n$, a = 5.0374(5) Å, b = 19.404(2) Å, c = 12.2055(12) Å, β = 96.114(10), V = 1186.3(2) Å³, Z = 4, $ρ_{calcd} = 1.351$ g cm⁻³, μ(MoKα) = 0.106 mm⁻¹, F(000) = 512, 4761 reflections in h(-5/5), k(-23/22), l(-14/14), measured in the range $3.95 \le Θ \le 50.05$, completeness $Θ_{max} = 100$ %, 2078 independent reflections, $R_{int} = 0.0571$, 156 parameters, 0 restraints, $R_{1obs} = 0.0607$, $wR_{2obs} = 0.1127$, $R_{1all} = 0.0793$, $wR_{2all} = 0.1213$, GoF = 1.106, largest difference peak and hole: 0.32/-0.22 e A⁻³.

3. Results and Discussion

3.1. Synthetic Procedures

As described above, the reaction of ethyl 3-ethoxy-3-iminopropanoate hydrochloride with hydrazine leads to the formation of 1,2,4-triazolyl-3,5-diacetic acid ethyl ester only in 33 % yield¹⁹. Slight changes in reaction conditions and the use of ethyl 3-ethoxy-3-iminopropanoate in the form of a base didn't increase the reaction yield. Unsurprisingly, aminopyrazolone 1 was one of the byproducts in this reaction (Eq. (1))²³. Therefore, we decided to explore alternative routes for the synthesis of TR¹ (Eq. 2). The synthesis of 1,2,4-triazolyl-3,5-diacetic acid diethyl ester TR¹ was performed in three steps (Eq. (2a)) or two steps (Eq. (2b)) starting from commercially available chloroethylmalonate.

For the preparation of **TR**¹ according to Eq. (2a), we used a fairly common method for the synthesis of the 1,2,4-triazole heterocycle from ethyl 3-ethoxy-3-iminopropanoate and ethyl malonyl hydrazide. BOC-hydrazide **2** was prepared according to a standard procedure²⁴ from BOC-hydrazine and chloroethylmalonate. Removal of the BOC-protection yielded hydrochloride **3** in high yields. Heating ethyl malonyl hydrazide with ethyl 3-ethoxy-3-iminopropanoate at reflux resulted in the formation of **TR**¹ with an overall yield 20 %.

Conditions and reagents: (I) hydrazine hydrate, ethanol, 0–5 °C, stirring for 2 hours; reflux 18 hours.

Conditions and reagents: (I) BOC-hydrazine, N,N-diisopropylethylamine, dichloromethane, 0–5 °C, 1 hour; (II) HCl, ethanol, rt, 6 hours; (III) ethyl 3-ethoxy-3-iminopropanoate, ethanol, reflux, 6 hours; (IV) ethyl 3-ethoxy-3-iminopropanoate, N,N-diisopropylethylamine, dichloromethane, 0–5 °C, 6 hours; (V) hydrazine hydrate, ethanol, rt, 4 hours.

The reaction of 3-ethoxy-3-iminopropanoate with chloroethylmalonate produced intermediates **4**. Subsequent reaction of imidate **4** with hydrazine yielded the title compound. The overall yield of this reaction was 42 %,

which was higher than that obtained with Eq. (2a) or the previously described method¹⁹. It should be noted that potentially this reaction could also be used for the synthesis of N¹ or N² substituted 1,2,4-triazolyl-3,5-diacetic acid diethyl esters²⁵. The identity of **TR**¹ obtained by different methods was confirmed using ¹H NMR, ¹³C NMR, IRspectroscopy, and elemental analysis.

Starting from TR^1 , we obtained the corresponding disodium salt Na_2TR^2 , diacid TR^2 and N^1 -methylated diester TR^3 (Eq. (3)).

Conditions and reagents: (I) NaOH, water, reflux, 4 hours; (II) 2.5N HCl, water, 5 °C; (III) methyl iodide, N,N-dimethylformamide, K₂CO₃, stirring, rt, 6 hours.

3.2. Spectroscopy

In the IR spectra of \mathbf{TR}^1 , there are strong peaks at 1738 cm⁻¹ assigned to stretching vibrations $\nu(C=O)$ and at 1202 cm⁻¹ assigned to bending vibrations $\nu(C-O-C)$ of ester groups.

A characteristic feature in the ¹³C NMR spectra for **TR**¹ in DMSO-d₆ solution is the separate position of all carbon signals, except the methyl group, which was not observed in the ¹³C NMR spectra acquired in CDCl₃ solution (Fig. 1). The same observation was made for the signals of methylene groups in the ¹H NMR spectrum.

This may be due to the slow interconversion of tautomers, resulting in non-equivalence of atoms situated close to the triazole. This phenomenon can be caused not only by the formation of intramolecular hydrogen bonds but also by association with dimethyl sulfoxide molecules, which stabilize tautomers¹⁵. However, the presence of an acidic proton in **TR**¹ is the reason for the broadening of carbon signals in the ¹³C NMR spectra, especially manifested in the ¹³C NMR spectra of **TR**¹ in CDCl₃ solution. Here, the low intensity of quaternary carbons, together with the possibility of **TR**¹ existing in several tautomeric forms, results in the absence of precise signals from triazolic carbons.

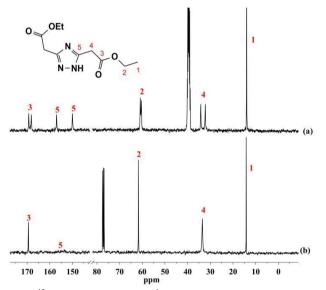


Fig. 1. 13 C NMR spectra of TR 1 in DMSO- d_6 (a) and CDCl $_3$ (b)

3.3. X-Ray Analysis of TR¹

The single crystal X-ray study confirmed that compound \mathbf{TR}^1 has a molecular crystal structure consisting of

neutral molecules, as shown in Fig. 2. No co-crystallized solvent was found in the crystal. The main crystal structure motif of \mathbf{TR}^1 can be described as a parallel packing of weakly interacting infinite chains formed by the intermolecular hydrogen bonding of N2-H groups as donors towards N1 atoms as acceptors. The structure of the one-dimensional supramolecular chain is depicted in Fig. 3.

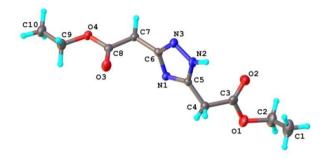
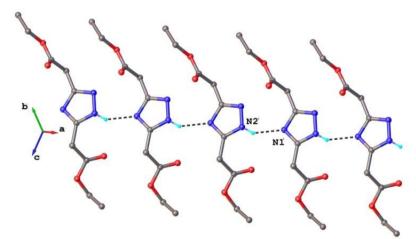
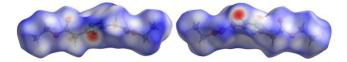



Fig. 2. X-ray molecular structure of TR¹ with atom labeling scheme and thermal ellipsoids at 50 % probability level


3.4. Hirshfeld Surface Analysis

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were performed using Crystal Explorer 17.5 software²⁶, with a standard resolution of the three-dimensional d_{norm} surfaces plotted over a fixed color scale of -0.5024 (red) to 1.2024 (blue) a.u. The dark-red spots arise as a result of short interatomic contacts and represent negative d_{norm} values on the surface, while the other weaker intermolecular interactions appear as light-red spots. View of the three-dimensional Hirshfeld surface of the title compound plotted over d_{norm} are shown in Fig. 4. The Hirshfeld surface representations with the function fragment patch plotted onto the surface are in the range of 0.0000 to 14.0000 with the mean value of 7.3638 (Fig. 5).

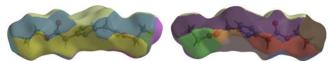


Fig. 3. View of the 1D supramolecular architecture in the crystal structure of **TR**¹. H-bond parameters: N2-H···N1 [N2-H 0.88 Å, H···N1 2.09 Å, N2···N1(1+x, y, z) 2.866(3) Å, N2-H···N1 146.6°]. Only H-atoms involved in hydrogen bonding are shown for clarity

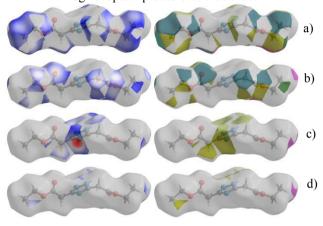

The coordination environment of the title molecule is determined by observing the color patches on the Hirshfeld surface, which indicate proximity neighboring molecules. Also the Hirshfeld surfaces mapped over d_{norm} and fragment patches are shown for the H···H (Fig. 6, a), H·O/O···H (Fig. 6, b), H···N/N···H (Fig. 6, c) and H···C/C···H (Fig. 6, d) contacts, the overall twodimensional fingerprint plot and the decomposed twodimensional fingerprint plots are given in Fig. 7. The red spots appearing near N1 and H2 atoms indicate their roles as the respective donors or acceptors in the N-H···N hydrogen bonds. The most significant contributions to the overall crystal packing are from H···H (45.4 %), H···O/O···H (29.5 %), H···N/N···H (17 %) and H···C/C···H (5.4 %) contacts. There is a small contribution from N···C/C···N (1.2 %) weak intermolecular contacts. The smallest contribution of the other weak intermolecular contacts (N···O/O···N − 0.9 %, C···O/O···C − 0.3 %, C···C -0.1 % and O···O -0.1 %) has a negligible effect on the packing. The relative percentage contributions to the overall Hirshfeld surface by elements: H.--all atoms - 69 %. O···all atoms -16.8 %. N···all atoms -10.4 % and C···all atoms - 3.8 %. The Hirshfeld surface representations with the function fragment patch plotted onto the surface also illustrate the significance of hydrogen atom contacts in the formation of crystal packing. Also, quantitative physical properties of the Hirshfeld surface for this compound were obtained, such as molecular volume (289.95 Å³), surface area (296.67 $Å^2$), globularity (0.714), as well as asphericity (0.513).

Fig. 4. View of the three-dimensional Hirshfeld surface of the title compound plotted over d_{norm}

Fig. 5. The Hirshfeld surface representation with the function fragment patch plotted onto the surface

Fig. 6. Hirshfeld surfaces mapped over d_{norm} and fragment patches for (a) H···H, (b) H···O/O···H, (c) H···N/N···H and (d) H···C/C···H interactions

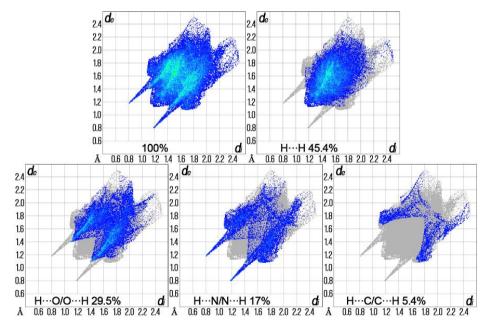


Fig. 7. The overall two-dimensional fingerprint plot and those delineated into specified interactions

4. Conclusions

Two novel synthetic routes for the preparation of 1,2,4-triazolyl-3,5-diacetic acid diethyl ester were explored. While the traditional method gives low product vield. modifications involving 3-ethoxy-3and chloroethylmalonate iminopropanoate showed promising results, enhancing the overall yield to 20 % and 42 %, respectively. These alternative routes offer efficient pathways for the synthesis of target substances and potentially its derivatives. The crystal structure of the title compound was established using X-ray analysis. The crystal structure revealed the formation of onedimensional supramolecular chains driven bv intermolecular hydrogen bonding interactions, offering valuable information for understanding its solid-state behavior and potential applications. This compound served as the precursor for obtaining three new compounds, namely N-methyl-1,2,4-triazolyl-3,5-diacetic acid ethyl ester, 1,2,4-triazolyl-3,5-diacetic acid and 1,2,4triazolyl-3,5-diacetic acid disodium salt. According to the Hirshfeld surface analysis, the most significant contributions to the overall crystal packing are from H···H (45.4 %), H···O/O···H (29.5 %), H···N/N···H (17 %) and H···C/C···H (5.4 %) contacts. H-atom contacts play a crucial role in determining the crystal packing. The abundance of interactions involving hydrogen atoms indicates that Van der Waals forces and hydrogen bonding are the primary contributors to the crystal structure. The globularity value (0.714) for TR^1 is less than one, suggesting a modest deviation from a spherical surface and indicating that this molecular surface is more structured compared to a sphere. The asphericity, which is a measure of the anisotropy of the crystal and is 0.513, shows a noticeable deviation from isotropy.

Acknowledgements

This work was supported by grants 22BF037-06 obtained from the Ministry of Education and Science of Ukraine.

References

[1] Dai, J.; Tian, S.; Yang, X.; Liu Z. Synthesis Methods of 1,2,3-/1,2,4-Triazoles: A Review. *Front Chem.* **2022**, *10*, 891484. https://doi.org/10.3389/fchem.2022.891484
[2] Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Triazoles and Tetrazoles: Prime Ligands to Generate Remarkable Coordination Materials. *Coord. Chem. Rev.* **2011**, *255*, 485–546. https://doi.org/10.1016/j.ccr.2010.10.038
[3] Naji, A. M.; Abdula, A. M.; Nief, O. A.; Abdullah E. K. Synthesis, Characterization, Antimicrobial and Molecular Docking

Study of Benzooxadiazole Derivatives. Chem. Chem. Technol. **2022**, 16, 25–33. https://doi.org/10.23939/chcht16.01.025 [4] Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella D. The 1,2,3-Triazole Ring as a Bioisostere in Medicinal Chemistry. Drug Discov. Today 2017, 22, 1572–1581. https://doi.org/10.1016/j.drudis.2017.05.014 [5] Hou, J.: Liu, X.: Shen, J.: Zhao, G.: Wang, P. G. The Impact of Click Chemistry in Medicinal Chemistry. Expert Opin. Drug Discov. 2012, 7, 489-501. https://doi.org/10.1517/17460441.2012.682725 [6] Malik, M. S.; Ahmed, S. A.; Althagafi, I. I.; Ansari, M. A.; Kamal, A. Application of Triazoles as Bioisosteres and Linkers in the Development of Microtubule Targeting Agents. RSC Med. Chem. 2020, 11, 327–348. https://doi.org/10.1039/C9MD00458K [7] Zhou, C.-H.; Wang, Y. Recent Researches in Triazole Compounds as Medicinal Drugs. Curr. Med. Chem. 2012, 19, 239-280. https://doi.org/10.2174/092986712803414213 [8] Khomenko, D.; Shokol, T.; Doroshchuk, R.; Raspertova, I.; Lampeka, R.; Volovenko, Y. Strategies for the Synthesis of [1,2,4] Triazolo [1,5-a] pyridine-8-carbonitriles. Chem. Chem. Technol. 2023, 17, 294–303. https://doi.org/10.23939/chcht17.02.294 [9] Krasovska, N.; Berest, G.; Belenichev, I.; Severina, H.; Nosulenko, I.; Voskoboinik, O.; Okovytyy, S.; Kovalenko, S. 5+1-Heterocyclization as Preparative Approach for Carboxy-Containing Triazolo[1,5-c] quinazolines with anti-Inflammatory Activity. Eur. J. Med. Chem. 2024, 266, 116137. https://doi.org/10.1016/j.ejmech.2024.116137 [10] Khomenko, D. M.; Doroshchuk, R. O.; Ohorodnik, Y. M.; Ivanova, H. V.; Zakharchenko, B. V.; Raspertova, I. V.; Vaschenko, O. V.; Dobrydnev, A. V.; Grygorenko O. O.; Lampeka R. D. Expanding the Chemical Space Of 3(5)-Functionalized 1,2,4-Triazoles. Chem. Heterocycl. Comp. 2022, 58, 116-128. https://doi.org/10.1007/s10593-022-03064-z [11] Khomenko, D. M.; Doroshchuk, R. O.; Vashchenko, O. V.; Lampeka R. D. Synthesis and Study of Novel 1,2,4-Triazolylacetic Acid Derivatives. Chem. Heterocycl. Comp. 2016, 52, 402–408. https://doi.org/10.1007/s10593-016-1901-z [12] Khomenko, D. M; Doroshchuk, R. O; Ivanova, H. V.; Zakharchenko, B. V.; Raspertova, I. V.; Vaschenko, O. V.; Shova, S.; Dobrydnev, A. V.; Moroz, Y. S.; Grygorenko, O. O.; Lampeka, R. D. Synthesis of α-Substituted 2-(1H-1,2,4-Triazol-3-vl)acetates and 5-Amino-2,4-dihydro-3H-pyrazol-3-ones via the Pinner Strategy. Tetrahedron Lett. 2021, 69, 152956. https://doi.org/10.1016/j.tetlet.2021.152956 [13] Petrenko, Y. P.; Piasta, K.; Khomenko, D. M.; Doroshchuk, R.O.; Shova, S.; Novitchi, G.; Toporivska, Y.; Gumienna-Kontecka, E.; Martins, L. M. D. R. S.; Lampeka, R.D. An Investigation of Two Copper (II) Complexes with a Triazole Derivative as a Ligand: Magnetic and Catalytic Properties. RSC Adv. 2021, 11, 23442-23449. https://doi.org/10.1039/D1RA03107D [14] Zakharchenko, B. V.; Khomenko, D. M.; Doroshchuk, R. O.; Raspertova, I. V.; Starova, V. S.; Trachevsky, V. V.; Shova, S.; Severynovska, O. V.; Martins, L. M. R. D. S.; Pombeiro, A. J. L.; et al. New Palladium (II) Complexes with 3-(2-Pyridyl)-5-alkyl-1,2,4-triazole Ligands as Recyclable C–C Coupling Catalysts. New J. Chem. 2019, 43, 10973–10984. https://doi.org/10.1039/C9NJ02278C [15] Vashchenko, O. V.; Khomenko, D. M.; Doroshchuk, R. O.; Severynovska, O. V.; Starova, V. S.; Trachevsky, V. V.; Lampeka, R. D. Structure and Fluorescence Properties of Uranyl Ion Complexes with 3-(2-Hydroxyphenyl)-5-(2-Pyridyl)-1,2,4-Triazole Derivatives, Theor. Exp. Chem. 2016, 52, 38–43.

https://doi.org/10.1007/s11237-016-9448-8

[16] Ohorodnik, Y. M.: Khomenko, D. M.: Doroshchuk, R. O.: Raspertova, I. V.; Shova, S.; Babak, M. V.; Milunovic, M. N. M.; Lampeka, R. D. Synthesis, Characterization and Antiproliferative Activity of Platinum (II) Complexes with 3-(2-Pyridyl)-N1,2methyl-1,2,4-triazoles. Inorg. Chim. Acta 2023, 556, 121646. https://doi.org/10.1016/j.ica.2023.121646 [17] Majdi-Nasab, A.; Heidarizadeh, F.; Motamedi H. Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II)

Complex and its Catalytic Activity in *n*-Arylation Reactions. *Chem.* Chem. Technol. 2023, 17, 557-566.

https://doi.org/10.23939/chcht17.03.557

[18] Khomenko, D. M.; Doroshchuk, R. O.; Lampeka, R. D. Synthesis, Characterization and Luminescent Properties of Palladium Complexes with 3-(2-Pyridyl)-1H-1,2,4-triazole-5-acetic Acid Ethyl Ester. Polyhedron 2016, 100, 82-88.

https://doi.org/10.1016/j.poly.2015.06.036

[19] Kiseleva, V. V.; Gakh, A. A.; Fainzil'berg, A. A. Synthesis of C-Azolylacetic Acid Esters Based on Carbethoxyethylacetimidate. Div. Chem. Sci. 1990, 39, 1888-1895.

https://doi.org/10.1007/bf00958256

[20] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.34.76, 2003.

[21] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Renement and Analysis Program. J. Appl. Cryst. 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

[22] Sheldrick, G. M. A Short History of SHELX. ActaCryst. 2008, A64, 112–122. https://doi.org/10.1107/S0108767307043930 [23] Graham, B.; Porter, H. D.; Weissberger, A. Investigation of Pyrazole Compounds. VIII. Synthesis and Acylation of Pyrazolones Derived from Hydrazine and Methylhydrazine. J. Am. Chem. Soc. 1949, 71, 983–988. https://doi.org/10.1021/ja01171a061

[24] Semple, J. E.: Rowley, D. C.: Brunck, T. K.: Ripka, W. C. Synthesis and Biological Activity of P₂–P₄ Azapeptidomimetic P₁-Argininal and P₁-Ketoargininamide Derivatives: A Novel Class of Serine Protease Inhibitors. Bioorg. Med. Chem. Lett. 1997, 7, 315–320. https://doi.org/10.1016/S0960-894X(97)00005-X [25] Kammoun, M.; Chihi, A.; Hajjem, B.; Bellassoued, M. Facile and Convenient Synthesis of 1-Perfluoroalkyl-1.2.4-triazoles. Synth. Commun. 2007, 38, 148-153. https://doi.org/10.1080/00397910701651367 [26] Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. Crystal Explorer: A Program for Hirshfeld Surface Analysis, Visualization and Ouantitative Analysis of Molecular Crystals. J. Appl. Cryst. 2021. 54, 1006–1011. https://doi.org/10.1107/S1600576721002910

> Received: April 22, 2024 / Revised: June 21, 2024 / Accepted: June 28, 2024

ДІЕТИЛ 2,2'-(1*H*-1,2,4-ТРІАЗОЛ-3,5-ДІІЛ)ДІАЦЕТАТ: СТРАТЕГІЇ СИНТЕЗУ, ХІМІЧНА ПОВЕДІНКА, КРИСТАЛІЧНА СТРУКТУРА Й АНАЛІЗ ПОВЕРХНІ ГІРШФЕЛЬДА

Анотація. Етиловий естер 1,2,4-триазоліл-3,5-діоцтової кислоти синтезовано конденсацією гідразин-гідрату та Nацил-етил-3-етокси-3-імінопропаноату. Розглянуто інші методи синтезу та виконано їхній порівняльний аналіз. Молекулярну будову досліджуваної сполуки встановлено за допомогою рентгеноструктурного аналізу. Для детального аналізу міжмолекулярних взаємодій здійснено аналіз поверхні Гірифельда.

Ключові слова: 1,2,4-триазол, іміноестери, ЯМР спектроскопія, рентгеноструктурний аналіз, аналіз поверхні Гіршфельда.