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Abstract. In the present study, zeolite-containing micro-

spherical composites based on Ukrainian kaolin were 

synthesized and modified with ammonium, lanthanum, and 

zirconium compounds. The modified composites were 

dealuminated by thermal steaming. The obtained materials 

were characterized by various physical and chemical 

methods and tested in the reaction of oxidative dehydro-

genation of n-butane with the participation of CO2. The 

influence of several factors on the characteristics of the 

synthesized samples and related changes in their activity 

and selectivity were analyzed. The results of the work 

showed the possibility of using such composites as 

catalysts for this reaction. 
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1. Introduction 

The main process aimed at deepening oil refining is 

catalytic cracking. As a result, in addition to the gasoline 

fraction, a significant amount of gas rich in unsaturated 

hydrocarbons (UHs) is produced. Light UHs, due to their 

high reactivity compared to their saturated counterparts, are 

indispensable chemical building blocks in the petrochemical 

industry and can be used to produce valuable petroleum 

products. In particular, 1,3-butadiene (1,3-BD) is an impor-

tant raw material for petrochemical production and a mate-

rial for various industries. Today, it is produced mainly by 

cryogenic distillation of the C4 fraction of crude oil cra-

cking.1,2 However, ever-growing demand for butadiene has 

stimulated the search for alternative production technologies. 
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For example, approaches are developing for 1,3-BD 

production by ethanol conversion3–7 or through dehydro-

genation of butane, both non-oxidative8,9 and oxidative.10–

12 This is facilitated by the availability of large quantities of 

alkane raw materials from shale gas and other sources.13 

Dehydrogenation of alkanes is a promising reaction for the 

production of olefins, and the development of new catalysts 

for this reaction is now of current importance.14 The 

inclusion of an oxidizing agent has a positive effect on the 

activity of catalysts and their resistance to coking. Thanks 

to the oxidant, less energy is consumed, and unwanted 

cracking reactions are suppressed. O2 is commonly used as 

an oxidant in oxidative dehydrogenation reactions of 

hydrocarbons,15 but in the case of butane, O2 contributes to 

a decrease in the selectivity of catalysts for bute-

nes/butadiene due to their high reactivity and deep 

oxidation to CO2 and H2O.16 The use of sulfur-containing 

compounds,17,18 N2O18–20 and halogens18 as oxidants 

instead of or together with oxygen or air has been studied. 

However, the vast majority of studies focus on CO2,18,20,21 

because the mild nature of the oxidant prevents excessive 

oxidation of hydrocarbons in oxidative dehydrogenation 

with the participation of CO2 (CO2-OD). The requirements 

for CO2-OD catalysts are efficient activation of CO2 and 

selective activation of C–H bonds of hydrocarbons with 

inhibition of C–C bond activation/breaking while main-

taining high catalytic activity.22 

FAU (Y),23 BEA (Beta),24 and MFI (ZSM-5)25 

zeolites modified by dealumination24 and impregnated with 

Zn,26 Cr, and/or V23–25 compounds are considered as the 

basis of zeolite catalysts for the dehydrogenation of light 

alkanes. Carriers with moderate23 or low24 acidity, achieved 

by dealumination, are preferred, apparently because they 

inhibit undesirable side reactions of cracking. The 

disadvantage of existing zeolite catalysts is their low 

activity. The preparation of an active catalyst with high 

selectivity for butenes and 1,3-BD, which would provide 

high yields of olefins, remains one of the most important 

problems in the dehydrogenation of n-butane. Among 

zeolites, natural materials are of great interest due to their 

availability and low cost. Modified natural zeolites are used 
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as catalysts for many acid-base27,28 and redox29–31 reactions. 

However, few studies have been devoted to the oxidative 

dehydrogenation of light alkanes in the presence of natural 

zeolites. 

One of the ways to increase the efficiency of 

catalysts for CO2-OD of light alkanes can be the use of 

zeolite-containing microspheres, since the use of zeolite in 

the form of a thin surface layer will reduce the role of 

micropores as diffusion barriers, reducing the diffusion 

path of reaction products in the space where active sites are 

concentrated. This will increase the selectivity for target 

dehydrogenation products, restraining the course of 

secondary reactions involving them, such as cracking, 

oligomerization, aromatization, etc., as well as reduce coke 

formation. The latter is an important factor in the efficiency 

of catalysts for this reaction, considering the high 

concentration of UHs in the reaction space. 

Taking into account the relevance of finding new 

active and selective catalysts for the production of light 

UHs, the aim of this work was to determine the catalytic 

activity in the reaction of CO2-OD of n-butane of 

microspherical composites synthesized on the basis of 

Ukrainian kaolin, the zeolite phase of which was modified 

by the introduction of La and Zr for bringing in Lewis 

acidity, and dealuminated by steaming. 

2. Experimental 

2.1. Materials 

Kaolin from the Prosyanivske deposit (Ukraine) was 

used as a raw material for the synthesis of zeolite-

containing microspheres according to a known method.32 

To begin, kaolin microspheres were calcined at 700 °C to 

obtain metakaolin microspheres (MSmk) and at 1000 °C to 

obtain microspheres of aluminosilicate spinel mixed with 

active SiO2. In the next step, both types of microspheres 

were mixed and subjected to hydrothermal treatment in an 

aqueous NaOH solution to produce a zeolite-containing 

microspherical composite (about 30 wt% of Y-type 

zeolite). After that, the composite was converted to the 

protonic form by 4-fold ion exchange with an aqueous 

solution of NH4NO3 (3 mol/L) followed by calcination at 

550 °C (HMS sample). Lanthanum and zirconium were 

introduced into the composite from aqueous solutions of 

La(NO3)3 (LaMS sample, 3.5 wt% of La) and ZrOCl2 

(ZrMS sample, 4.5 wt% of Zr), respectively. Thermal 

steam dealumination of the samples was carried out at 800 

°C, 2 hours (deLaMS and deZrMS samples). The zeolite 

content in the dealuminated samples was 12 wt% and 15 

wt% for deLaMS and deZrMS, respectively. 

2.2. Methods 

Isotherms of low-temperature (–196 °С) nitrogen 

adsorption/desorption were measured on a NOVA 1200e 

automatic sorptometer (Quantachrome Instruments) after 

evacuating the samples in situ at a temperature of 250 °С 

for 3 h. NovaWin software was used to calculate the 

parameters of a porous structure of the composites. The 

specific surface area (SBET) was calculated using the 

multipoint BET method; the specific surface area excluding 

micropores (St) and the volume of micropores (Vmicro) – by 

the t-method, using the de Boer equation; the specific 

surface area of micropores (Smicro) – as SBET – St; the total 

pore volume (V) – as the volume of adsorbed nitrogen at 

p/p0 ~0.99. The volume of mesopores (Vmeso) was calcu-

lated as V – Vmicro, considering the proportion of 

macropores to be insignificant. Pore size distribution was 

determined using density functional theory (DFT). 

FTIR spectra of the composites in the field of 

framework vibrations (400–1400 cm-1) were recorded on 

the IRAffiniti-1s Fourier spectrometer (Shimadzu) with a 

single-reflection ATR accessory Specac Quest GS 10801-

B. A sample was applied to the surface of the diamond 

prism of the ATR accessory, and the spectrum relative to 

air was recorded. 

The acid characteristics of the composites were 

studied by the method of thermally programmed desorption 

(TPD) of probe molecules (NH3) from their surface using 

an automatic system АМІ-300Lite (Altamira Instruments). 

The samples were activated in a He flow at 500 °C, after 

which they were cooled to a temperature of 200 °C, and 

ammonia adsorption was carried out for 30 min. Physically 

adsorbed probe molecules were removed by purging in a 

He flow. Desorption of NH3 from the surface of the 

samples was carried out by linearly increasing the tempera-

ture to 500 °C and holding at this temperature for 30 min. 

The catalytic tests were carried out on a setup based 

on a CrystalLux 4000M chromatograph with a quartz 

reactor. The chromatographic unit is equipped with two 

types of detectors: a PID for analyzing hydrocarbon 

components and a TCD for analyzing carbon oxides. 

Hydrocarbon components were separated on an Agilent 

J&W GC-ALUMINA capillary column (phase – Al2O3, 50 

m, inner diameter 0.535 mm), and carbon oxides on a 

packed column filled with SCN activated carbon (50 m, 

inner diameter 3 mm). Catalyst samples (150 mg) were 

activated at 450 °C for 30 min in an Ar flow. The reaction 

was carried out in the temperature range of 450–650 °C 

with a step of 50 °C. Reaction conditions: WHSVC4H10 = 

3.6 h-1, volume ratio of the components of the reaction 

mixture and carrier gas C4H10/CO2/Ar = 1/2/17, flow rate 

70 ml/min, reaction duration 10 min until sampling for 

analysis. Analysis conditions: injector – 120 °C; thermostat 

of the columns – 100 °C (for the capillary column, 
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programmed heating was set to 190 °C at a rate of 10 

°C/min from 15 minutes of analysis with a 6 minutes 

holding time at the final temperature); inlet pressure to the 

capillary column – 0.15 atm, split ratio – 1:60; flow through 

the packed column – 30 ml/min; PID temperature – 120 °C 

(flows through the detector: H2 – 30 mL/min, air – 350 

mL/min, Ar – 30 mL/min); TCD temperature – 120 °C 

(flow through the shoulders – 30 mL/min); analysis time – 

30 min. 

Based on the chromatographic analysis, the 

conversion of butane (X (mol% С1)), the selectivity for 

reaction products (Sj (mol/100 mol of converted butane)), 

and their yield (Yj (mol% С1)) were calculated by formulas 

(1)–(3): 

j
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where Сj is the concentration of C-atoms of the identified 

carbon-containing j-product in the reaction products 

(vol%); C is the concentration of C-atoms of unconverted 

butane in the reaction products (vol%); nj is a number of C-

atoms in the identified carbon-containing j-product. 

3. Results and Discussion 

3.1. Physical-chemical properties  

of the composites 

In Fig. 1, N2 adsorption/desorption isotherms and 

pore size distribution for metakaolin microspheres and 

zeolite-containing composites on their basis are shown. 

Fig. 2 demonstrates a comparative view of the porous 

characteristics of the samples. 
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Fig. 1. N2 adsorption/desorption isotherms and DFT pore size distribution  

for metakaolin microspheres and zeolite-containing composites on their basis 

 

According to the adsorption data, metakaolin 

microspheres are characterized by low porosity in general 

and do not have any microporosity. As a result of the 

synthesis, microspheres acquire both micro- and 

mesoporosity. The character of the pore size distribution 

for all zeolite-containing composites is similar and 

remains the same after dealumination. The composites 

contain mesopores with a diameter of 4–13 nm. Most of 

them are characterized by a size of about 8 nm. The 
number of pores decreases slightly after the introduction 

of lanthanum and zirconium, especially in the case of the 

La-containing sample. Micropores in the initial, non-

dealuminated samples make up about 15% of the total 

porosity.  

After dealumination, the specific surface area 

decreases due to a lessening of microporosity. The 

proportion of micropores drops by an order of magnitude. 

At the same time, the number of mesopores remains 

almost the same, which is most pronounced for the Zr-
containing sample. 
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Fig. 2. Porosity characteristics of metakaolin microspheres and studied zeolite-containing composites 

 

Dealumination of the samples is confirmed by the 

analysis of their FTIR spectra in the region of framework 

vibrations, in particular, by the high-frequency shift of the 

absorption band corresponding to the antisymmetric 

stretching vibrations of T–O bonds of framework 

tetrahedra, from 1020 cm-1 to 1060 cm-1 (Fig. 3A).  

The total content of acid sites in the samples was 

estimated by TPD of ammonia. The analysis of the 

ammonia TPD profiles (Fig. 3B) showed that the initial 

samples (curves 1–3) contain acid sites characterized by 

maxima in the range of 250–400 °C, that is, they are sites 

of medium strength with a slight predominance of weaker 

ones. In the LaMS and deLaMS samples, the content of 

weaker acid sites is the lowest in their group (curves 2, 2'), 

while stronger sites slightly prevail in the LaMS sample 

before dealumination. After dealumination, the samples 

(curves 2', 3') lose a significant part of the sites; the strength 

of the sites does not undergo noticeable changes. This 

correlates with the loss of microporosity in the dealu-

minated samples. Thus, the acid characteristics of the 

studied composites are similar and remain so after 

dealumination, regardless of the metal introduced. 
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Fig. 3. (A) Fragments of FTIR spectra and (B) ammonia TPD profiles of the (1–3) initial  

and (2', 3') dealuminated zeolite-containing composites (1) HMS, (2, 2') LaMS, and (3, 3') ZrMS 
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3.2. Catalytic properties  

of the composites in the reaction  

of CO2-OD of butane 

The reaction was carried out both in the presence 

and without a catalyst. In the blank experiment without a 

catalyst, the conversion does not depend on the presence of 

CO2 in the system, as does the selectivity for butane 

dehydrogenation products (C4-UHs) at significant 

conversion values (Fig. 4). In both cases, the conversion 

occurs mainly in the direction of formation of cracking 

products. Obviously, in the absence of a catalyst, thermal 

cracking occurs. In the presence of a catalyst (HMS), the 

presence of CO2 in the system significantly affects the 

character of the reaction: the degree of butane conversion 

and selectivity for C4-UHs increase. Although CO2 is a 

thermodynamically stable molecule, there are several ways 

to activate it on catalytically active surfaces.33 Comparison 

of the blank experiments with the experiments in the 

presence of a catalyst confirms both the catalytic nature of 

dehydrogenation on the studied composites and the 

participation of CO2 in this reaction. As a result, target 

products (butenes, 1,3-BD, and C2–C3 UHs) and by-

products (C1–C3 alkanes) were formed (Fig. 5). 
The HMS sample in the protonic form is the most 

active: butane conversion on it begins to increase from 
500 °С (Fig. 4A). On La- and Zr-containing composites, 
the activation of transformations is shifted towards higher 
temperatures by 50–100 °C (initial and dealuminated 
samples, respectively) compared to HMS. At the 
beginning of the reaction, the main products are 
dehydrogenation products – C4-UHs (Fig. 4B). Selectivity 
for them decreases with increasing temperature due to 
intensification of cracking to C1–C3 hydrocarbons. As a 
result, the yield of the latter, in particular С2–С3 UHs, 
becomes predominant (Fig. 5). Obviously, the intro-
duction of metals into the composite inhibits the process 
of cracking of C4 hydrocarbons, since the yield of butenes 
in LaMS and ZrMS samples, unlike HMS, regularly 
increases with the degree of conversion, as well as the 
yield of the most valuable 1,3-BD. 

 

  
а b 

 

Fig. 4. (A) Butane conversion and (B) selectivity for С4-UHs obtained on samples of microspherical composites of different 

composition and without a catalyst. Experiments that did not use CO2 are marked "–CO2" 

 

The La- and Zr-containing composites show simi-

lar catalytic behavior (Fig. 4, 5). At the same time, Zr 

seems to inhibit the cracking of C4 hydrocarbons some-

what more effectively, while the La-containing sample is 

somewhat more effective in dehydrogenating butenes to 

1,3-BD (Fig. 5). 

The selectivity of deLaMS and deZrMS samples for 

target products increases, but at very low conversion 

degrees, and this concerns only the most valuable isomer, 

1,3-BD. However, this is quickly lost as the conversion 

degree increases. The reverse side of dealumination is both 

the partial loss of the active surface due to the thermal 

steam treatment procedure and the decrease in the basicity 

of the zeolite framework caused by its depletion in 

aluminum. This results in less efficient adsorption and 

activation of CO2 on the dealuminated composite, which is 

supported by the similar character of the dependences 

obtained for the dealuminated samples, on the one hand, 

and the HMS sample tested in the absence of CO2, on the 

other hand (Fig. 5). The same conclusion was reached by 

Alvarez and co-workers33 based on calculations of the 

characteristic OCO angle and CO bond length of the CO2 
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molecule in various adsorbed forms. They stated that the 

formation of a bent and reactive CO2 on the surface of 

oxides is promoted by more basic oxides. The effect of 

dealumination, similar to that caused by the absence of 

CO2, has the consequence of a sharp decrease in the 

selectivity for dehydrogenation products. As a result, in the 

case of dealuminated samples, a decrease in the yield of C4-

UHs is observed against the background of an increase in 

the yield of cracking products at the same conversion rates, 

since the latter are achieved at a higher temperature. 

 

 

 
Fig. 5. Yields of butane conversion products on samples of microspherical composites of different composition 

 

4. Conclusions 

In the present study, zeolite-containing micro-

spherical composites based on Ukrainian kaolin were 

synthesized and modified with ammonium, lanthanum, and 

zirconium compounds. The modified composites were 
subjected to thermal steam treatment for dealumination. 

The physicochemical properties of the obtained materials 

were characterized using low-temperature nitrogen adsor-

ption/desorption, FTIR spectroscopy, and thermally 

programmed ammonia desorption. 

Samples of the microspherical composites of 

different compositions were tested in the reaction of 
oxidative dehydrogenation of butane with the participation 
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of CO2, and their activity in this reaction was revealed. It 

was found that the introduction of La and Zr inhibits the 

cracking reaction of C4 hydrocarbons, which leads to an 

increase in the selectivity of the catalysts for the target C4-

UHs. No distinct differences were observed in the course 

of the reaction on La- and Zr-containing samples. It was 

shown that dealumination reduces the conversion of 

reagents, which is explained by the decrease in the number 

of acid sites, degradation of the active surface of the 

samples during steaming, and the decrease in the basicity 

of their zeolite framework. 

Therefore, the results of the work show the possi-

bility of using zeolite-containing microspherical compo-

sites modified with La or Zr as catalysts for the reaction of 

CO2-OD of butane to C4-UHs. Increasing the selectivity of 

the studied composite catalysts for 1,3-BD requires an 

increase in their oxidation potential, for example, by 

introducing oxides of a high degree of oxidation. Further 

studies are needed to classify acid sites by type and 

strength, as well as to determine the nature of carriers of 

Lewis acid sites in such composites and the role of these 

sites in the reaction. Given the negative effect of 

dealumination on the activity and selectivity of the samples 

under study, the use of this procedure in the preparation of 

catalysts seems inappropriate. 
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ОКИСНЕ ДЕГІДРУВАННЯ н-БУТАНУ  

ЗА УЧАСТЮ CO2 НА МІКРОСФЕРИЧНИХ 

ЦЕОЛІТОВМІСНИХ КОМПОЗИТАХ  

НА ОСНОВІ УКРАЇНСЬКОГО КАОЛІНУ 
 

Анотація. У цьому дослідженні на основі українського 

каоліну синтезовано цеолітовмісні мікросферичні композити і моди-
фіковано їх сполуками амонію, лантану та цирконію. Модифіковані 

композити деалюміновано термопаровою обробкою. Одержані мате-

ріали охарактеризовано з використанням низки фізико-хімічних 
методів і протестовано в реакції окисного дегідрування н-бутану за 

участю СО2. Проаналізовано вплив ряду чинників на характеристики 

синтезованих зразків і пов'язані з цим зміни їхньої активності і 
селективності. Результати роботи показали принципову можливість 

використання таких композитів як каталізаторів цієї реакції. 

 
Ключові слова: каолінова мікросфера, цеоліт FAU, компо-

зитний каталізатор, перехідний метал, окисне дегідрування, н-бутан. 


