Chem. Chem. Technol., 2025, Vol. 19, No. 3, pp. 495-502 Chemistry

FABRICATION AND TAILORING THE MORPHOLOGICAL AND ELECTRICAL FEATURES OF SILICON NITRIDE-SILICON DIOXIDE/POLYMETHYL METHACRYLATE HYBRID NANOCOMPOSITES FOR NANOELECTRONIC FIELDS

Ghaith Ahmed¹, Arshad Fadhil Kadhim², Najah M. L. Al Maimuri³, Hamed Ibrahim⁴, Ahmed Hashim^{*, 5}, **Mohammed H. Abbas**⁵

https://doi.org/10.23939/chcht19.03.495

Abstract. The goal of this research is to create PMMA and SiO₂-Si₃N₄ nanoparticles doped PMMA films with enhanced structural and electrical properties to employ in various quantum electronics fields. The casting process was used to create the (PMMA-SiO₂-Si₃N₄) nanocomposite films. In the development of nanocomposite materials, the hybrid nanocomposite films with 2.3%, 4.6% and 6.9% contents of nanoparticles were prepared. Using an optical microscope (OM), the morphology of the nanocomposites was examined. At room temperature, the electrical characteristics of (PMMA-SiO₂-Si₃N₄) nanocomposites were investigated. The results revealed that the dielectric constant and dielectric loss of (PMMA-SiO₂-Si₃N₄) nanocomposites reduced as the frequency of the applied electric field increased. The electrical conductivity of alternating current rises with rising frequency. With increasing concentrations of SiO₂-Si₃N₄ nanoparticles, the dielectric constant, dielectric loss, and AC electrical conductivity of (PMMA-SiO₂-Si₃N₄) nanocomposites were enhanced. When the SiO₂-Si₃N₄ NPs content reached 6.9% at 100Hz, the dielectric constant increased from 3.86 to 4.76 while the dielectric loss increased from 0.19 to 0.29. Finally, the obtained results demonstrated that the (PMMA-SiO₂-Si₃N₄) nanocompo sites have elevated

values of dielectric constant compared with dielectric loss, which makes them suitable for a variety of quantum electronics applications.

Keywords: PMMA; conductivity; Si₃N₄; nanocomposites; SiO₂; quantum electronics.

1. Introduction

The concept of nanocomposite material has grown greatly over the years to include a wide range of systems, including one-dimensional, two-dimensional, dimensional, and amorphous materials comprised of clearly different components and blended at the nanoscale. Nanocomposites may be described as "materials with a nanoscale structure that improve the macroscopic properties of products." Clay, carbon, or polymer nanocomposites, or a mixture of these materials with nanoparticle building blocks, are examples of nanocomposites. Conductive polymer composites are lightweight materials that can combine the properties of electrically conductive metals with polymer capabilities. These composites are employed in a variety of applications such as acoustic emission sensors, angular acceleration accelerometers, integrated decoupling capacitors, electronic packaging, electromagnetic frequency interference shields, and antistatic devices.2 PMMA has various fields in numerous productive and technological applications. PMMA has the advantage of a distinguished combination of good optical characteristics (transparency in a broad series from the near UV to the near IR). Additionally, PMMA is extremely appropriate for several imaging & nonimaging microelectronic fields like photo-resistance for direct write e-beams, process of X-ray & deep-UV microlithographic processes. It is used to create a variety of optical devices like optical lenses. PMMA has good thermal stability, electrical characteristics, safety, resistance to

¹Department of Anesthesia techniques, Hilla University college, Babylon, Iraq

²The general Directorate for Education in Al-Najaf Al-Ashraf, Al-Najaf Al-Ashraf, Iraq.

³Building and Construction Technologies Engineering Department, College of Engineering and Engineering Technologies, Al-Mustaqbal University, 51001, Babylon, Iraq.

⁴Al-Zahraa University for Women, Kerbala, Iraq

⁵Department of Physics, University of Babylon, College of Education for Pure Sciences, Babylon, Iraq.

^{*} ahmed_taay@yahoo.com

Ó Ahmed G., Kadhim A.F., Al Maimuri N.M.L., Ibrahim H., Hashim A., Abbas M.H., 2025

weather, molding ability, and simple shaping.³ PMMA offers several advantages for applications, including its ability to withstand high temperatures, simplicity of laboratory manipulation, lightweight, low cost, esthetic appeal, color, and absence of toxicity. Because of its great features such as low density, high strength, strong thermal shock resistance, and good resistance to oxidation and corrosion, silicon nitride (Si₃N₄) ceramics are regarded as an essential contender. However, the inherent brittleness of Si₃N₄ precludes its extensive industrial utilization. Much work has been expended in recent decades to enhance the mechanical characteristics of Si₃N₄ ceramic materials, particularly fracture toughness. ⁵ SiO₂ (silicon dioxide), often known as silica, is a metalloid oxide that belongs to the fourteenth group of the periodic table. It is a silicic acid polymer composed of linked tetrahedral SiO₄ units. Natural and synthesized SiO₂ can be found as crystals (quartz, cristobalite, and tridymite) and amorphous forms. These ceramic materials exhibit unique features in their bulk form, such as abrasion, optical ultraviolet (UV) filtering, luminescence, and biocompatibility. 6 SiO2 nanoparticles are commonly used in polymers to increase heat resistance, radiation resistance, optical and electrical characteristics.⁷⁻¹⁷ The metal nitride or oxide was added to polymers to improve their electronic, dielectric, and optical properties. 18-25 The PMMA-nanocomposites were studied for different fields.²⁶ ³¹ The present work aims to create Si₃N₄/SiO₂/PMMA nanostructure films with better electrical characteristics than other types of nanocomposites, making them promising nanocomposites for use in various electronic nanodevices.

2. Materials and Methods

The silicon nitride (Si₃N₄) nanopowder and silicon dioxide(SiO₂) nanopowder were obtained from US Research Nanomaterials, Inc. (Si₃N₄, 15-30 nm, purity 99.9%) and (SiO₂, 98+%, 60-70nm, amorphous). The (PMMA-SiO₂-Si₃N₄) nanocomposites were fabricated by dissolving 1 g of PMMA in 30 ml of chloroform, and mixed at room temperature for 30 minutes using a magnetic stirrer to get the

PMMA solution. Then, SiO₂-Si₃N₄ nanoparticles were added to the PMMA solution to achieve the content of nanoparticles of 2.3%, 4.6%, 6.9% at SiO₂:Si₃N₄ ratio of 50:50 (w/w). The PMMA-SiO₂-Si₃N₄ NCs were cast on a glass Petri dish at room temperature. The structural properties of (PMMA-SiO₂-Si₃N₄) nanocomposites were studied using an optical microscope (OM). The dielectric characteristics were measured using an LCR meter (HIOKI 3532-50 LCR Hi TESTER) within the frequency range of 100Hz-5MHz. Permittivity (ε') is determined by Eq. (1):^{32,33}

$$\mathcal{E}' = C_p d/\varepsilon_o A \tag{1}$$

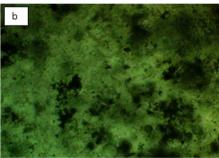
where C_p is the capacitance and d is the film thickness. The dielectric constant is determined according to Eq. (2):³⁴

$$\mathcal{E}' = C_P / C_o \tag{2}$$

Where C_p means parallel capacitance and Co signifies vacuum capacitance. To compute dielectric loss by using the relation:³⁵

$$\mathcal{E}'' = \mathcal{E}' D \tag{3}$$

where D is the dispersion factor, the AC conductivity was calculated as:³⁶


$$\sigma_{A.C} = \omega \mathcal{E}_o \mathcal{E}'' \tag{4}$$

where ω is an angular frequency ($\omega = 2\pi f$).

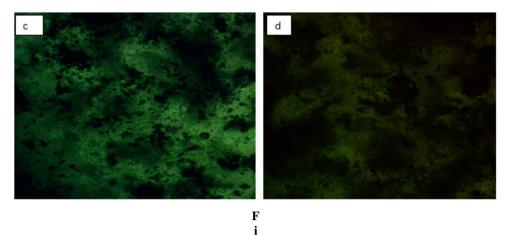

3. Results and Discussion

Fig. 1 shows optical microscope images of PMMA and PMMA-SiO₂-Si₃N₄ nanocomposites with different SiO₂-Si₃N₄ concentrations at a magnification of 10. This figure reveals the distribution and propagation of SiO₂-Si₃N₄ nanoparticles inside the PMMA medium with different contents of SiO₂-Si₃N₄ NPs, which absorbed and scattered the incident light photons. The surface energy components of the polymer and the nanoparticles differ, which may lead to nanoparticle agglomeration. At low content, the NPs are propagated as clusters.³⁷⁻⁴⁰ When the content of SiO₂-Si₃N₄ nanoparticles increases, the nanoparticles form a network of paths within the polymer matrix.⁴¹⁻⁴⁵

Fig 1. Optical microscopic images of PMMA-SiO₂-Si₃N₄ nanostructures at a magnification of 10x: a. Pure PMMA, b. 2.3 wt.% SiO₂-Si₃N₄ NPs,

Figs. 2 and 3 show the dependence of the dielectric ^g changes in the electric field are too quick for the space electric field, whereas in the higher frequency range, i applications.

constant and dielectric loss of PMMA-SiO₂-Si₃N_{4 1} charges to react, and the polarization effect does not exist, nanocomposites on frequency. The results demonstrate that , so increasing the frequency. This leads to a decrease in the the dielectric constant and dielectric loss are larger in the dielectric constant and dielectric loss. The dielectric lower frequency range and decrease with increasing C constant and dielectric loss increased with increasing frequency for all samples, which is due to Maxwell- o content of SiO₂-Si₃N₄ NPs, which is related to the rise in Wagner polarization, which generates higher dielectric ⁿ the number of charge carriers. ⁴⁷⁻⁵⁹ At 100 Hz, when the constants and dielectric losses. Insulator-conductor t contacts create this kind of polarization. This interfacial polarization is induced by the build-up of space charges or dipoles at the interfaces. In the lower frequency range, space charges have plenty of time to react to the applied t important and potential nanomaterials for many electronic

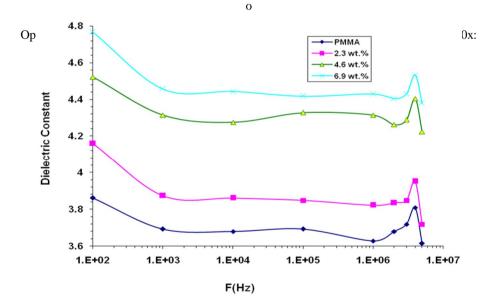


Fig. 2. Dielectric constant for nanocomposites vs. frequency

The increase in permittivity might be produced by defects influence on the motion of the field wall related to the space charges at the interfaces. Consequently, a lesser excitation field was capable of producing typically in the

movement of field walls, and the ε' reliance on an exciting field is weak. Additionally, these consequences confirmed that the interfaces of nanocomposites play a significant role in the increase of the dielectric properties. As well, the interfacial type of polarization provides significant corroboration of the homogeneous distribution of SiO_2 - Si_3N_4 nanostructures in the PMMA medium. Consequently, the enhancement in the ϵ' values is strongly caused by the increase in dispersion of SiO_2 - Si_3N_4 nanostructures inside the PMMA matrix. At the low frequencies, the ϵ' has high values, which may be due to the interfacial type of polarization. The interfacial polarization is created at the lower frequency and decreases with the rise of the applied field frequency. At higher frequencies, the movement of

polar molecular rotation of PMMA/SiO₂-Si₃N₄ nanostructures is not fast enough to obtain equilibrium with an electric field. Thus, with rising of the frequency, the ϵ' decreased. The higher ϵ'' values were demonstrated at lower frequency which may be due to the effect of Maxwell–Wagner. Furthermore, the reduce of ϵ' and ϵ'' values with an increase in the frequency related to the eliminate of space charge type of polarization from total polarization wherever this polarization type was the extra contributing at the lower frequencies. 60,61

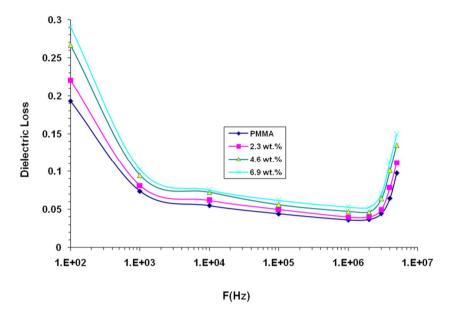


Fig 3. Dielectric loss for nanocomposites vs. frequency

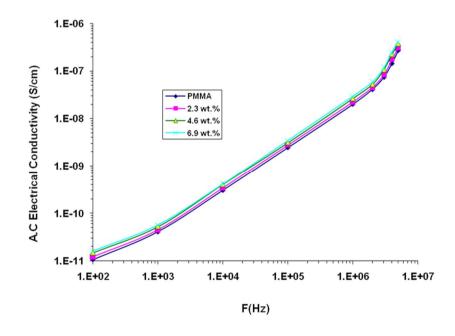


Fig 4. AC conductivity of (PMMA-SiO₂-Si₃N₄) nanocomposites vs. frequency

Fig. 4 depicts the fluctuation of AC electrical conductivity with electric field frequency for PMMA-SiO₂-Si₃N₄ nanocomposites at room temperature. As seen from the image, the AC electrical conductivity rises with frequency due to space charge polarization. This is caused by both charge carrier stimulation of higher states in the conduction band and low-frequency space charge polarization. Electronic polarization and hopping charge carriers cause an increase in conductivity at high frequencies. The primary chain motion and ion motions are the two factors that influence AC conductivity. The influence of SiO₂ and Si₃N₄ NPS concentration on the electrical conductivity of a PMMA) mix at 100 Hz. When the frequency increased from 100Hz to 2MHz, the electrical conductivity of PMMA increased from 1.07×10 11 to $4.09{\times}10^{\text{-}8}$ S/cm and from $1.62{\times}10^{\text{-}11}$ to $5.86{\times}10^{\text{-}8}$ S/cm for 6.9% SiO₂-Si₃N₄ NPs. Since the charge carrier density in the polymer medium rises with the concentration nanoparticles, the AC electrical conductivity increases. 62-70

4. Conclusions

The current work comprises the casting technique for producing PMMA films and SiO2-Si3N4 NPs doped PMMA. The PMMA-SiO₂-Si₃N₄ nanostructures' structural and dielectric characteristics were examined for use in different nanoelectronic techniques. The structural characteristics of PMMA-SiO₂-Si₃N₄ nanostructures revealed a great dispersion of SiO2 and Si3N4 NPs in the PMMA medium, as well as effective integration of Si₃N₄-SiO₂ NPs into the PMMA matrix. The results showed that dielectric constant and dielectric loss of PMMA-SiO₂-Si₃N₄ nanocomposites decreased, while the conductivity increased, as the frequency of the applied electric field increased. The dielectric constant, dielectric loss, and AC electrical conductivity of PMMA-SiO₂-Si₃N₄ nanocomposites rise with increasing concentrations of SiO₂-Si₃N₄ nanoparticles, which can be advantageous for various electrochemical applications. The dielectric constant increased from 3.86 to 4.76 while the dielectric loss increased from 0.19 to 0.29 when the SiO₂-Si₃N₄ NPs content reached 0f 6.9% at 100Hz. When the frequency increased from 100Hz to 2MHz, the electrical conductivity of PMMA rose from 1.07×10^{-11} to 4.09×10^{-8} S/cm and from 1.62×10^{-11} to 5.86×10^{-8} S/cm for 6.9% SiO₂-Si₃N₄ NPs. These results make the PMMA-SiO₂-Si₃N₄ nanostructures welcome in a variety of quantum electronics applications.

References

- [1] Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B.J., Xu, T. Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. *Chem. Soc. Rev.* **2013**, *42*, 2654–2678. https://doi.org/10.1039/c2cs35375j
- [2] Marhoon, I.I.; Majeed, A.H.; Abdulrehman, M.A. Dielectric Behavior of Medical PMMA Polymer Filled with Copper Nanobud Particles. *Advanced Electromagnetics* **2019**, *8*, 50–56. https://doi.org/10.7716/aem.v8i3.1088
- [3] Shi, Z.; Zhao, G.; Wang, G.; Zhang, L.; Wei, C.; Chai, J. Development of ultralight, tough and hydrophobic polymethylmethacrylate/polyvinylidene fluoride shape memory foams for heat insulation applications. *Mater. Des.* **2023**, *225*, 111527. https://doi.org/10.1016/j.matdes.2022.111527
- [4] Sadeq, J.A.; Majeed, A.M.A.; Hussain, R.K.; Bamsaoud, S.F. Synthesis and Characterization of PMMA/HAP/MgO Nanocomposite as an Antibacterial Activity for Dental Applications. *Al-Mustansiriyah Journal of Science* **2023**, *34*, 129–134. https://doi.org/10.23851/mjs.v34i2.1330
- [5] Hu, Y.; Chen, Z.; Zhang, J.; Xiao, G.; Yi, M.; Zhang, W.; Xu, C. Preparation and mechanical properties of Si₃N₄ nanocomposites reinforced by Si₃N₄@ rGO particles. *J. Am. Ceram. Soc.* **2019**, *102*, 6991–7002. ttps://doi.org/10.1111/jace.16546
- [6] Mallakpour, S.; Naghdi, M. Polymer/SiO₂ nanocomposites: Production and applications. *Prog. Mater Sci.* **2018**, *97*, 409–447. https://doi.org/10.1016/j.pmatsci.2018.04.002
- [7] Gao, X.; Zhu, Y.; Zhao, X.; Wang, Z.; An, D.; Ma, Y.; Guan, S.; Du, Y.; Zhou, B. Synthesis and characterization of polyurethane/SiO₂ nanocomposites. *Appl. Surf. Sci.* **2011**, 257, 4719–4724. https://doi.org/10.1016/j.apsusc.2010.12.138
- [8] Hashim, A.; Mohammed, B.; Hadi, A. Synthesis and Augment Structural and Optical Characteristics of PVA/SiO₂/BaTiO₃ Nanostructures Films for Futuristic Optical and Nanoelectronics Applications. *J Inorg Organomet Polym* **2024**, *34*, 611–621. https://doi.org/10.1007/s10904-023-02846-y
- [9] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Fabrication and Ameliorating the Performance of PS/SiO₂-Sb₂O₃ Futuristic Films for High Energy Storage Capacitors and Biomedical Applications. *Trans. Electr. Electron. Mater.* **2025**. https://doi.org/10.1007/s42341-025-00609-9
- [10] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Synthesis and tuning the morphological and optical features of PS/SiO₂–Sb₂O₃ promising hybrid nanomaterials for radiation shielding and futuristic optoelectronics applications. *J Mater Sci: Mater Electron* **2025**, *36*, 480. https://doi.org/10.1007/s10854-025-14557-w
- [11] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Manufacturing and Enhancing the Features of PS/SiO₂–CeO₂ Nanostructures for Energy Storage and Antimicrobials Applications. *J Inorg Organomet Polym* **2025**. https://doi.org/10.1007/s10904-025-03651-5
- [12] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.Kh. Production and tailoring the morphological and optical features of PS/SiO₂-In₂O₃ futuristic films for optoelectronics and radiation shielding applications. *Ceramics International* **2025**, *51*, 14328–14336. https://doi.org/10.1016/j.ceramint.2025.01.269

- [13] Abdulsalam, H.S.; Hashim, A.; Mohammed, M.K. Synthesis and tuning the morphological and optical features of PS/SiO₂—Sb₂O₃ promising hybrid nanomaterials for radiation shielding and futuristic optoelectronics applications. *J Mater Sci: Mater Electron* **2025**, *36*, 480. https://doi.org/10.1007/s10854-025-14557-w
- [14] Abbas, M.H.; Ibrahim, H.; Hashim, A. Ameliorating and Tailoring the Features of Silica-Silicon Carbide Nanoceramic Doped Polyethylene Oxide for Promising Optoelectronics Applications. *Silicon* **2025**, *17*, 697–707.
- https://doi.org/10.1007/s12633-025-03227-5
- [15] Hashim, A.; Ahmed, G.; Ibrahim, H. Ameliorating the Features of TiN/SiO₂ Promising Nanoceramic Doped Optical Polymer for Multifunctional Optoelectronics Applications. *Silicon* **2025**, *17*, 585–598. https://doi.org/10.1007/s12633-025-03220-y
- [16] Hashim, A.; Kareem, A.; Ibrahim, H. Production and Ameliorating the Characteristics of (SiO₂-CdS) Futuristic Nanoceramic Doped Optical Material for Flexible Nanoelectronics Applications. *Silicon* **2025**, *17*, 517–530.
- https://doi.org/10.1007/s12633-024-03213-3
- [17] Sattar, Z.; Hashim, A. Synthesis of PMMA/PEG/SiO₂/SiC Multifunctional Nanostructures and Exploring the Microstructure and Dielectric Features for Flexible Nanodielectric Applications. *Silicon* **2024**, *16*, 6181–6192. https://doi.org/10.1007/s12633-024-03138-x
- [18] Mohammed, M.K.; Abbas, M.H.; Hashim, A.; Rabee, R.; Habeeb, M.A.; Hamid, N. Enhancement of optical parameters for PVA/PEG/Cr₂O₃ nanocomposites for photonics fields. *Rev. Compos. Mater. Av.* **2022**, *32*, 205–209. https://doi.org/10.18280/rcma.320406
- [19] Kareem, A.; Hashim, A.; Hassan, H.B. Synthesis and boosting the morphological, structural and optical features of PEO/Si₃N₄/CeO₂ promising nanocomposites films for futuristic nanoelectronics applications. *Silicon* **2024**, 1-12. https://doi.org/10.1007/s12633-024-02891-3
- [20] Hassan, H.B.; Hasan, A.S.; Hashim, A. Synthesis and boosting the structural, optical and electronic characteristics of PS/SiC/In₂O₃ promising nanohybrid structures for tailored optoelectronics applications. *Opt. Quantum Electron.* **2024**, *56*, 272. https://doi.org/10.1007/s11082-023-05904-4
- [21] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Fabrication and tuning the morphological and optical characteristics of PMMA/PEO/SiC/BaTiO₃ newly quaternary nanostructures for optical and quantum electronics fields. *Opt. Quantum Electron.* **2023**, *55*, 989. https://doi.org/10.1007/s11082-023-05208-7
- [22] Ahmed, H.; Hashim, A. Tuning the characteristics of novel (PVA-Li-Si₃N₄) structures for renewable and electronics fields. *Silicon* **2022**, *14*, 4079–4086. https://doi.org/10.1007/s12633-021-01186-1
- [23] Ahmed, H.; Hashim, A. Design and characteristics of novel PVA/PEG/Y₂O₃ structure for optoelectronics devices. *J. Mol. Model.* **2020**, *26*, 210. https://doi.org/10.1007/s00894-020-04479-1 [24] Hassan, H.B.; Hasan, A.S.; Hashim, A. Fabrication and advanced optical and electronic characteristics of PVA/SiC/CeO₂ hybrid nanostructures for augmented nanoelectronics and optics fields. *Opt. Quantum Electron.* **2024**, *56*, 309. https://doi.org/10.1007/s11082-023-05940-0
- [25] Hazim, A.; Abduljalil, H.M.; Hashim, A. Design of PMMA doped with inorganic materials as promising structures for

- optoelectronics applications. *Trans. Electr. Electron. Mater.* **2021**, 22, 851–868. https://doi.org/10.1007/s42341-021-00308-1 [26] Hashim, A.; Alshrefi, S.M.; Abed, H.H.; Hadi, A. Synthesis and Boosting the Structural and Optical Characteristics of PMMA/SiC/CdS Hybrid Nanomaterials for Future Optical and Nanoelectronics Applications. *J Inorg Organomet Polym* **2024**, 34, 703–711. https://doi.org/10.1007/s10904-023-02866-8 [27] Ahmed, H.; Hashim, A. Design and tailoring the structural and spectroscopic characteristics of Sb₂S₃ nanostructures doped PMMA for flexible nanoelectronics and optical fields. *Opt Quant Electron* **2023**, *55*, 280. https://doi.org/10.1007/s11082-022-04528-4
- [28] Hashim, A.; Abed, H.H.; Alshrefi, S.M. Ameliorating and Tuning the Structural, Morphological, and Optical Characteristics of Chromium Oxide/Silicon Carbide Promising Hybrid Nanocomposites Doped PMMA for Futuristic Nanoelectronics and Photonics Applications. *Silicon* **2024**, *16*, 5087–5095. https://doi.org/10.1007/s12633-024-03065-x
- [29] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Synthesis and Boosting the Morphological and Optical Characteristics of SiC/SrTiO₃ Nanomaterials Doped PMMA/PEO for Tailored Optoelectronics Fields. *Silicon* **2024**, *6*, 603–614. https://doi.org/10.1007/s12633-023-02706-x
- [30] Sattar, Z.; Hashim, A. Fabrication of PMMA/PEG/SnO₂/SiC quaternary multifunctional nanostructures and exploring the microstructure and optical features for radiation attenuation and flexible photonics applications. *J Mater Sci: Mater Electron* **2024**, *35*, 2015. https://doi.org/10.1007/s10854-024-13780-1
- [31] Ahmed, G.; Kadhim, A.F.; Hashim, A.; Ibrahim, H. Fabrication and exploring the structural and optical features of Si₃N₄/SiO₂ hybrid nanomaterials doped PMMA for promising optoelectronics fields. *Opt Quant Electron* **2024**, *56*, 1308. https://doi.org/10.1007/s11082-024-07217-6
- [32] Abdel-Baset, T.; Hassen, A. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. *Physica B* **2016**, *499*, 24–28.
- https://doi.org/10.1016/j.physb.2016.07.002
- [33] Ishaq, S.; Kanwal, F.; Atiq, S.; Moussa, M.; Azhar, U.; Losic, D. Dielectric properties of graphene/titania/polyvinylidene fluoride (G/TiO₂/PVDF) nanocomposites. *Materials* **2020**, *13*, 205. https://doi.org/10.3390/ma13010205
- [34] Selcuk, A.; Orhan, E.; Ocak, S.; Gökmen, U. Investigation of dielectric properties of heterostructures based on ZnO structures. *Mater. Sci.-Pol.* **2017**, 35. https://doi.org/10.1515/msp-2017-0108.
- [35] Elbayoumy, E.; El-Ghamaz, N.A.; Mohamed, F.S.; Diab, M.A.; T. Nakano, Dielectric permittivity, AC electrical conductivity and conduction mechanism of high crosslinked-vinyl polymers and their Pd (OAc) 2 composites. *Polymers* **2021**, *13*, 3005. https://doi.org/10.3390/polym13173005.
- [36] Sabu, M.; Bementa, E.; Vinse Ruban, Y. J.; Ginil Mon, S. A novel analysis of the dielectric properties of hybrid epoxy composites. *Adv. Compos. Hybrid Mater.* **2020**, *3*, 325–335. https://doi.org/10.1007/s42114-020-001660
- [37] Hashim, A.; Ibrahim, H.; Hadi, A. Boosting of morphological, structural and optical characteristics of SiC-NiO inorganic nanomaterials merged organic polymer for optoelectronics applications. *J. Inorg. Organomet. Polym. Mater.* **2024**, 1–8. https://doi.org/10.1007/s10904-024-03260-8

- [38] Hashim, A.; Hadi, A.; Abbas, M. Synthesis and unraveling the morphological and optical features of PVP-Si₃N₄-Al₂O₃ nanostructures for optical and renewable energies fields. *Silicon* **2023**, *15*, 6431–6438. https://doi.org/10.1007/s12633-023-02529-
- [39] Hashim, A.; Hadi, A.; Ibrahim, H.; Rashid, F.L. Fabrication and boosting the morphological and optical properties of PVP/SiC/Ti nanosystems for tailored renewable energies and nanoelectronics fields. J. *Inorg. Organomet. Polym. Mater.* **2024**, *34*, 1678–1688. https://doi.org/10.1007/s10904-023-02908-1 [40] Hashim, A.; Ibrahim, H.; Rashid, F.L.; Hadi, A. Synthesis and Augmented Morphological and Optical Properties of Si₃N₄-TiN Inorganic Nanostructures Doped PVP for Promising Optoelectronics Applications. *J Inorg Organomet Polym* **2025**, *35*, 827–837. https://doi.org/10.1007/s10904-024-03324-9 [41] Kadhim, A.F.; Ahmed, G.; Hashim, A. Fabrication and Tuning the Structural and Optical Features of SiO₂/ Si₃N₄ Nanomaterials Doped PS for Promising Optoelectronics Applications. *J Inorg Organomet Polym* **2024**, *34*, 4267–4276. https://doi.org/10.1007/s10904-024-03075-7
- [42] Hashim, A.; Ibrahim, H.; Hadi, A. Fabrication and augmentation of optical and structural characteristics of PVA/SiC/CoFe₂O₄ hybrid nanocomposites for tailored optical and quantum electronics applications. *Opt Quant Electron* **2024**, *56*, 1177. https://doi.org/10.1007/s11082-024-07141-9
- [43] Agool, I.R., Kadhim, K.J. & Hashim, A. Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone—titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. *Int J Plast Technol* 20, 121–127 (2016). https://doi.org/10.1007/s12588-016-9144-5
- [44] Sattar, Z.; Hashim, A. Quaternary PMMA-PEG/SnO₂-SiC Nanocomposite Films for Flexible Nanodielectric and Energy Storage Applications. *Silicon* **2025**.

https://doi.org/10.1007/s12633-025-03300-z

- [45] Hashim, A.; Ibrahim, H.; Hadi, A. Fabrication of PS/Si₃N₄/SrTiO₃ multifunctional nanocomposites and boosting their microstructure and optical and dielectric features for energy storage and nanodielectric applications. *J Mater Sci: Mater Electron* **2025**, *36*, 312. https://doi.org/10.1007/s10854-025-14295-z
- [46] Hashim, A.; Ibrahim, H.; Hadi, A. Fabrication of SiC-Al₂O₃ Nanoceramic Doped Organic Polymer for Flexible Nanoelectronics and Optical Applications. *Silicon* **2024**, *16*, 6575–6587. https://doi.org/10.1007/s12633-024-03172-9
- [47] Mohammed, M.; Khafagy, R.; Hussien, M.S.; Sakr, G.; Ibrahim, M.A.; Yahia, I.; Zahran, H. Enhancing the structural, optical, electrical, properties and photocatalytic applications of ZnO/PMMA nanocomposite membranes: Towards multifunctional membranes. *J. Mater. Sci.: Mater. Electron.* **2021**, 1–26. https://doi.org/10.1007/s10854-021-07402-3
- [48] Rajesh, K.; Crasta, V.; Rithin Kumar, N.; Shetty, G.; Rekha, P. Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. *J. Polym. Res.* **2019**, *26*, 99. https://doi.org/10.1007/s10965-019-1762-0
- [49] Kadhim, A.F.; Hashim, A. Fabrication and tuning the structural and dielectric characteristics of PS/SiO₂/SrTiO₃ hybrid nanostructures for nanoelectronics and energy storage devices. *Silicon* **2023**, *15*, 4613–4621. https://doi.org/10.1007/s12633-023-02381-y

- [50] Dergal, F.; Lerari, D.; Bachari, K. Spontaneous Polymerization of 4-Vinylpyridine Monomer on Micron-Sized Mica Platelets. *J. Eng. Res. App.* **2023**, *17*, 800–806. https://doi.org/10.23939/chcht17.04.800
- [51] Abdullah, O.G.; Saleem, S.A. Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly (vinyl alcohol) films. *J. Electron. Mater.* **2016**, *45*, 5910–5920. https://doi.org/10.1007/s11664-016-4797-6
- [52] Sattar, Z. and A. Hashim, Synthesis of PMMA/PEG/SiO₂/SiC multifunctional nanostructures and exploring the microstructure and dielectric features for flexible nanodielectric applications. *Silicon* **2024**, *16*, 6181–6192. https://doi.org/10.1007/s12633-024-03138-x
- [53] Meteab, M.H.; Hashim, A.; Rabee, B.H. Synthesis and characteristics of SiC/MnO₂/PS/PC quaternarynanostructures for advanced nanodielectrics fields. *Silicon* **2023**, *15*, 1609–1620. https://doi.org/10.1007/s12633-022-02114-7
- [54] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Tailoring the influence of hybrid SiC/SrTiO₃ nanomaterials doped PMMA/PEO for promising nanodielectric and nanoelectronic applications. *Silicon* **2024**, *16*, 1905–1915. https://doi.org/10.1007/s12633-023-02796-7
- [55] Kareem, A.; Hashim, A.; Hassan, H.B. Ameliorating and tailoring the morphological, structural, and dielectric features of Si₃N₄/CeO₂ futuristic nanocomposites doped PEO for nanoelectronic and nanodielectric applications. *J. Mater. Sci.: Mater. Electron.* **2024**, *35*, 461. https://doi.org/10.1007/s10854-024-12278-0
- [56] Hashim, A.; Hadi, A. Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials—magnesium oxide nanoparticles. *Ukrainian Journal of Physics* **2017**, 62. https://doi.org/10.15407/ujpe62.12.1050 (2017)
- [57] Hashim, A.; Hadi, A. A Novel Piezoelectric Materials Prepared from (Carboxymethyl Cellulose-Starch) Blend-Metal Oxide Nanocomposites. *Sensor Letters* **2017**, 15. https://doi.org/10.1166/sl.2017.3910
- [58] Hashim, A.; Hadi, A. Novel of (Niobium Carbide/Polymer Blend) Nanocomposites: Fabrication and Characterization for Pressure Sensor. *Sensor Letters* **2017**, 15. https://doi.org/10.1166/sl.2017.3892
- [59] Hashim, A.; Habeeb, M.A.; Hadi, A.; Jebur, Q.M.; Hadi, W. Fabrication of Novel (PVA-PEG-CMC-Fe₃O₄) Magnetic Nanocomposites for Piezoelectric Applications. *Sensor Letters* **2017**, 15. https://doi.org/10.1166/sl.2018.3935
- [60] Ahmed, G.; Hashim, A. Synthesis of PMMA/PEG/Si₃N₄ nanostructures and exploring the structural and dielectric characteristics for flexible nanoelectronics applications. *Silicon* **2023**, *15*, 3977–3985. https://doi.org/10.1007/s12633-023-02322-0
- [61] Reddy, P.L.; Deshmukh, K.; Chidambaram, K.; Ali, M.M.N.; Sadasivuni, K.K.; Kumar, Y.R.; Lakshmipathy, R.; Pasha, S.K. Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles. *J. Mater. Sci.: Mater. Electron.* **2019**, *30*, 4676–4687. https://doi.org/10.1007/s10854-019-00761-y
- [62] Jaafar, H.K.; Hashim, A.; Rabee, B.H. Fabrication and unraveling the morphological, structural, and dielectric features of PMMA-PEO-SiC–BaTiO₃ promising quaternary nanocomposites

for multifunctional nanoelectronics applications. *J. Mater. Sci.*: *Mater. Electron.* **2024**, *35*, 128. https://doi.org/10.1007/s10854-024-11924-x

- [63] Hussien, H.A.J.; Hashim, A. Fabrication and analysis of PVA/TiC/SiC hybrid nanostructures for nanoelectronics and optics applications. *J. Inorg. Organomet. Polym. Mater.* **2024**, 1–12. https://doi.org/10.1007/s10904-024-03007-5
- [64] Kadhim, A.F.; Hashim, A. Fabrication and tuning the structural and dielectric characteristics of PS/SiO₂/SrTiO₃ hybrid nanostructures for nanoelectronics and energy storage devices. *Silicon* **2023**, *15*, 4613–4621. https://doi.org/10.1007/s12633-023-02381-y.
- [65] Abbas, M.H.; Ibrahim, H.; Hashim, A.; Hadi, A. Fabrication and Tailoring Structural, Optical, and Dielectric Properties of PS/CoFe₂O₄ Nanocomposites Films for Nanoelectronics and Optics Applications. *Trans. Electr. Electron. Mater.* **2024**, 1–9. https://doi.org/10.1007/s42341-024-00524-5
- [66] Hadi, A.; Hashim, A. Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. *Ukrainian Journal of Physics* **2017**, 62. https://doi.org/10.15407/ujpe62.12.1044
- [67] Vasudevan, P.; Thomas, S. Synthesis and dielectric studies of poly (vinyl pyrrolidone)/titanium dioxide nanocomposites. *IOP Conf. Ser.: Mater. Sci. Eng.* **2015**, *73*, 012015. https://doi.org/10.1088/1757-899X/73/1/012015
- [68] Divya, R.; Meena, M.; Mahadevan, C.; Padma, C. Investigation on CuO dispersed PVA polymer films. *J. Eng. Res. App.* **2014**, *4*, 1–7.

https://www.ijera.com/papers/Vol4_issue5/Version%205/A045050107.pdf

- [69] Hojjat, A.; Mahmood, B. Effect of EVA content upon the dielectric properties in LDPE-EVA Films. *Int. J. Eng. Res. Afr.* **2015**, *4*, 69–72. https://doi.org/10.17950/ijer/v4s2/206
- [70] Tantis, I.; Psarras, G.; Tasis, D. Functionalized graphene-poly (vinyl alcohol) nanocomposites: Physical and dielectric properties. *eXPRESS Polym. Lett.* **2012**, 6. https://doi.org/10.3144/expresspolymlett.2012.31

Received: February 05, 2025 / Revised: May 10, 2025 / Accepted: May 29, 2025

ВИГОТОВЛЕННЯ Й АДАПТАЦІЯ МОРФОЛОГІЧНИХ ТА ЕЛЕКТРИЧНИХ ХАРАКТЕРИСТИК ГІБРИДНИХ НАНОКОМПОЗИТІВ НІТРИДУ КРЕМНІЮ-ДІОКСИДУ КРЕМНІЮ/ПОЛІМЕТИЛМЕТАКРИЛАТУ ДЛЯ ГАЛУЗЕЙ НАНОЕЛЕКТРОНІКИ

Анотація. Метою цього дослідження ϵ створення плівок з ПММА та легованих SiO_2 - Si_3N_4 -наночастинками ПММА з покращеними структурними й електричними властивостями для використання в різних галузях квантової електроніки.

Процес лиття був використаний для створення плівок нанокомпозитів (ПММА-SiO₂-Si₃N₄). У рамках розробки нанокомпозитних матеріалів були отримані гібридні нанокомпозитні плівки з вмістом наночастинок 2,3%, 4,6% та 6,9%. За допомогою оптичного мікроскопа було досліджено морфологію нанокомпозитів. За кімнатної температури було досліджено електричні характеристики нанокомпозитів (ПММА-SiO₂-Si₃N₄). Результати показали, що діелектрична проникність і діелектричні втрати нанокомпозитів (ПММА- SiO_2 - Si_3N_4) зменшуються зі збільшенням частоти прикладеного електричного поля . Електропровідність змінного струму зростає зі збільшенням частоти. Зі збільшенням кониентрації наночастинок SiO₂-Si₃N₄ діелектрична проникність. діелектричні втрати й електропровідність змінного струму нанокомпозитів (ПММА-SiO₂-Si₃N₄) покращувалися. Діелектрична проникність збільшувалася з 3,86 до 4,76, тоді як діелектричні втрати збільшувалися з 0,19 до 0,29, коли вміст наночастинок SiO_2 - Si_3N_4 досяг 6,9% за 100 Гц. Отже, отримані результати показали, що нанокомпозити (ПММА-SiO2-Si3N4) мають підвищені значення діелектричної проникності порівняно з діелектричними втратами, що робить їх придатними для використання в різних сферах квантової електроніки.

Ключові слова: ПММА, провідність, Si₃N₄, нанокомпозити, SiO₂, квантова електроніка.