INFORMATION SYSTEMS AND NETWORKS

Issue 18, part 2, 2025
https://doi.org/10.23939/sisn2025.18.2.061

YIK 004.4°2

ON SOME APPROACHES TO INTELLIGENT COUNTERACTING
CYBERATTACKS WITHIN MICROSERVICE ARCHITECTURE

Oleksiy Oletsky?, Vitalii Moholivskyi?

1.2 National University of Kyiv-Mohyla Academy,
Department of Multimedia Systems, Kyiv, Ukraine
L E-mail: oletsky@ukma.edu.ua, ORCID: 0000-0002-0553-5915
2 E-mail: v.moholivskyi@ukma.edu.ua, ORCID: 0009-0001-2654-7798

© Oletsky O., Moholivskyi V., 2025

An approach to counteracting cyberattacks based on state machines within a microservice
architecture is suggested. It focuses on intelligent analysis of actual and possible intrusions. The approach
is devised for applications with a microservice architecture deployed on the Kubernetes platform. For
purposes of the study, a special dataset has been developed. We have reproduced selected common
vulnerabilities and exposures reported in 2024 and collected network traffic of intrusion cyberattacks
based on them. A dataset focuses on intrusion attacks targeting software systems deployed in Kubernetes.
It contains not only network data captured during attacks but also scripts to reproduce each of the studied
attacks, which is particularly helpful for developing and testing intrusion response systems.

Keywords — cybersecurity, cyberattack datasets, network intrusion detection, intrusion response,
data mining, microservice architecture, state machines, Kubernetes.

Problem Statement

The problem of effective intrusion detection and counteraction is becoming increasingly urgent. As adver-
saries adopt more sophisticated attack techniques, defenders must apply intelligent, data-driven methods that
analyze network and application telemetry to detect anomalies and select appropriate, timely countermeasures.

The significance of this problem can be illustrated by the following reports. According to IBM’s Cost of a
Data Breach report, the global average data breach cost reached 4.88 million dollars in 2024, which is a 10 %
increase over the previous year (IBM, 2024). Moreover, it could have been significantly higher without the
appliance of automation and artificial intelligence in cyberthreat detection (IBM, 2024). Automated approaches
for intrusion detection have become essential in defending against cyberattacks (Goldschmidt & Chuda, 2025).

Applications based on microservice architecture are getting more widespread. This architecture has
clear advantages; however, if not designed rigorously enough, it is much more vulnerable than traditional
architectures. The issue of supervising and coordinating microservices, which is important even in a normal
situation, becomes especially crucial if a cyberattack takes place. On the other hand, if such a microservice-
based application is properly designed, supervised, and coordinated, it becomes more stable and resistant to
accidental or deliberate faults.

Analysis of Recent Studies and Publications

There are many approaches to detecting intrusions. Traditional ones, such as signature detection (Kwon,
Kim, & Lee, 2022) and intelligence sharing (Alaeifar et al., 2024) show a lack of reliability while dealing with
unknown attacks, and the problem is more urgent within microservices. So, we think that using Al-based methods

62 O. Oletsky, V. Moholivskyi

such as behavioral analysis (Palaparthy et al., 2024) and anomaly detection (Palaparthy et al., 2024; Moustafa &
Slay, 2016) should be very helpful. Most of these methods are based on Data Mining and reinforcement learning
(Buczak & Guven, 2016; Yin et al., 2017). Discussed approaches are compared in Table 1.

Table 2
A comparison of approaches to threat detection

Method Known threats Unknown threats

Signature detection highly detectable undetectable
Anomaly detection detectable highly detectable
Behavioral analysis detectable highly detectable

Intelligence sharing highly detectable undetectable
Advanced Machine Learning detectable highly detectable
Hybrid highly detectable highly detectable

The development of a cybersecurity system requires high-quality datasets of known threats to evaluate
the obtained results. At the same time, cybersecurity is among the fields with the least amount of publicly
available datasets. Some widely acknowledged ones are:

1. CIC-IDS-2017 (Sharafaldin et al., 2018; Engelen et al., 2021)

2. BCCC-CSE-CIC-IDS2018 (Shafi et al., 2025)

3. CIC-BCCC-NRC TabularloTAttack-2024 (Sasi et al., 2024)

4. The UNSW-NB15 Dataset (Moustafa & Slay, 2016; Moustafa & Slay, 2015; Sarhan et al., 2021)

CIC-1DS-2017 was created by the Canadian Institute for Cybersecurity, University of New Brunswick. It
is the first modern dataset of such volume. The dataset consists of realistic traffic that simulates network activity
with the relevant labels. It is widely used to evaluate intrusion detection models and algorithms.

BCCC-CSE-CIC-IDS2018 and CIC-BCCC-NRC TabularloTAttack-2024 were created by Beha-
viour-Centric Cybersecurity Center, York University. The BCCC-CSE-CIC-1DS2018 dataset is an enhanced
version of CSE-CIC-1DS2018, which fixed a lot of issues present in CIC-IDS-2017 (Engelen et al., 2021)
and went through a few cycles of improvement already.

The raw network packets in the UNSW-NB15 dataset were generated using the IXIA PerfectStorm
tool at the Cyber Range Lab of UNSW Canberra, creating a combination of realistic, modern normal
activities and simulated contemporary attack behaviors.

Those datasets are highly valuable for training intrusion detection systems. However, they are not
quite convenient for developing and testing intrusion response systems as they do not contain specific steps
required to reproduce attacks. In this context, the dataset “The Kubernetes dataset for misuse detection”
(Sever & Dogan, 2023) stands out with its approach tailored specifically for microservices architectures and
Kubernetes workloads. It consists of network activity data collected from a Kubernetes-based environment,
containing realistic benign behaviors and labeled examples of container-based cyberattacks. However, it also
does not include an automated programmable way to reproduce attacks, only a general description, which is
not quite convenient for research related to intrusion response. The main problem with existing datasets is
that they are weakly oriented on behavioral aspects, e.g., examples of attacks are not reproducible.

Concerning intrusion response systems, they mostly use network-level firewall rules, shutdown of
compromised systems, or even only passive responses consisting of monitoring and alerting (Inayat et al.,
2016; Wang & Stolfo, 2004; Stakhanova et al., 2007). Some studies focus heavily on intrusion prevention
rather than response (Kaul, 2025). In (Savchenko et al., 2025), the technological and technical processes
affecting the development and cybersecurity of Digital Twins in the dairy industry are investigated. The
research focuses on creating a comprehensive monitoring system that enables early detection of deviations
and potential threats in production, which helps maintain product quality and, at the same time, reduces
cybersecurity risks. Neglecting cyberthreat detection and response in Digital Twins may lead to devastating
consequences in physical systems; thus, it requires special attention. Methods not only for detecting

On some approaches to intelligent counteracting cyberattacks within microservice architecture 63

intrusions but those for planning reasonable responses and for intelligent counteracting are not highly
developed currently. An interesting approach to adaptive cost-based intrusion response has been suggested
in (Kourki Nejat & Kabiri, 2017), but it can be entrenched by more sophisticated application-aware response
techniques. In this paper, we are developing an approach aiming at solving such problems.

Formulation of the Article’s Objective

In (Oletsky & Moholivskyi, 2024a), we suggested an approach to supervising and coordinating
microservices involving their declarative descriptions based on so-called state machines (Sipser, 2012;
“XState documentation,” n.d.). In particular, this approach enables applying mathematical methods for the
analysis and optimization of application structure based on such a declarative description. A software
demonstrative prototype implementing such an approach has been developed; it functions in Kubernetes
environment. This article objectives are developing and studying a prototype of a state machine-driven
intrusion detection and response system that helps to manage the growing number and complexity of
emerging cyberthreats. We aim to provide solid means of supervision and coordination that are necessary
both during the cyberthreat detection and the response stages.

This study is focused on exploring possibilities related to detecting possible cyberattacks and
counteracting them. There is always a lack of recent cyberattack datasets that include both the necessary data
and scripts to reproduce such attacks, specifically within a Kubernetes environment. So, we have created a
new dataset for this investigation. Only selected recent CVEs reported in 2024 were included in this dataset;
thus, these vulnerabilities are not present in any existing datasets. It makes this dataset not only useful for
our research but also for the cybersecurity community, as it accommodates a constant need for datasets with
recent vulnerabilities. This need is especially relevant for 2024, as according to the CVE Program, the
number of reported CVE records has increased by 38 % in 2024 (Common Vulnerabilities and Exposures
Program, n.d.).

Main Results

Integrating state machine-based supervision and coordination into the Intrusion Detection and
Response (IDR) System for Kubernetes enhances its effectiveness in several ways. In (Oletsky &
Moholivskyi, 2024b), we described the application of state machines for supervising and coordinating
microservices in web applications. It discusses both orchestration and choreography approaches, introduces
a prototype library based on state machines, and highlights benefits such as centralized control, declarative
system descriptions, enhanced visualization, and improved monitoring of complex distributed workflows.

State machines provide a clear visual representation of the system's states and transitions, offering
centralized control over the IDR system’s workflows. This visualization aids in understanding and managing
the system's behavior, especially during complex intrusion scenarios. By defining workflows declaratively,
state machines facilitate the specification of intrusion detection and response processes. This approach
simplifies the design, implementation, and modification of detection rules and response strategies within the
Kubernetes environment. State machines enable real-time monitoring of the IDR system’s current state,
assisting in tracking ongoing processes and identifying anomalies. State machine-based coordination
supports the dynamic scaling of microservices, accommodating varying loads and evolving security
requirements. This flexibility is essential for adapting to new threats and integrating additional detection
mechanisms as needed.

Fig. 1 shows the proposed system design. The figure pictures three Kubernetes namespaces: the
arbitrary application namespace, the kube-system Kubernetes system namespace, and the namespace where
the designed IDR system is deployed.

64 O. Oletsky, V. Moholivskyi

Application namespace \

IDR Smart Router |—)/ Deployments or Statefulsets \

R S

|

|

| { Penalty Low-Priority

| | Deployments '

| Network File
: : @9 I interface [\ |L—- system 9
\
_ e J _ 1 //

kube-system \ / IDR system namespace \
namespace

/——{resources-monitor] [network-sniffer]— [file-system-monitor]

| v v v

@ [collected data store]

e \ T coordinator T
intrusion-detector - intrusion-res onder]
Kubernetes APls [State Machines P

Fig. 1. The architecture of the Intrusion detection and response system for Kubernetes

Within the application namespace, standard user applications requiring protection are deployed using
Kubernetes abstractions such as Deployments, StatefulSets, and others. These workloads operate within pods
that interact with networking interfaces and shared or persistent file systems. To ensure security-aware traffic
routing, the architecture introduces an IDR Rate Limiter and IDR Smart Router.

The IDR Rate Limiter can throttle or isolate potentially harmful traffic patterns. The logic of the rate
limiter is governed by a set of formalized state machines, which define system responses under different
security states.

The IDR Smart Router controls the flow of external and internal requests directed to application
workloads. It dynamically manages request flow based on the system's security state. When the system
detects potential threats or suspicious activity, the smart router can reconfigure traffic paths to reassign
suspicious traffic to penalty low-priority deployments, a form of workload degradation that reduces privy-
leges or computational priority until further investigation is completed. This enables proactive containment
without halting all application functionality, ensuring continued availability under partial compromise.

The IDR system namespace forms the defensive intelligence core of the architecture. It contains
several monitoring components, including the resources monitor, network sniffer, and file system monitor.
These components are tasked with collecting telemetry on computational resource usage, packet-level
network activity, and file system interactions, respectively. These streams of data are consolidated in a
unified data store, which forms the analytical base for detecting suspected intrusions.

The intrusion detector constantly analyzes collected data, applying rule-based heuristics, signature
detection, and machine learning techniques to identify potential threats. Upon detecting a confirmed
intrusion, the system escalates the event to the coordinator, which is powered by state machines. The
coordinator determines the appropriate course of action based on predefined security workflows, ensuring a
structured transition between states, for example, normal, suspicious, mitigation, and recovery. By following
a declarative approach to security automation, the state machine framework allows for transparent and
predictable intrusion-handling processes, reducing response time and minimizing manual intervention.

On some approaches to intelligent counteracting cyberattacks within microservice architecture 65

Following the coordinator’s decision, the intrusion responder can execute mitigation strategies in
accordance with the detected threat and the importance scores of microservices (Oletsky & Moholivskyi,
2024b). A declarative description of the system based on the state machine allows for evaluating measures
of importance across microservices mathematically; one approach of such a sort based on Page Rank-like
methods has been suggested in (Oletsky & Moholivskyi, 2024b). For example, if a certain Kubernetes
container is compromised, the responder might isolate it from the network, revoke access permissions, or
even terminate the deployment entirely to prevent further threat propagation. By integrating directly with
Kubernetes APIs, the IDR system can enforce these security measures in real-time, adjusting network
policies, scaling down risky deployments, or redirecting malicious traffic as needed. This proactive response
mechanism helps maintain system stability while limiting the potential damage caused by cyberthreats.

Fig. 2 illustrates how a state machine defines an intrusion response workflow. It pictures an intrusion
response state machine, detailing the transition processes and decision-making criteria involved when
handling security incidents. Initially, the system starts in the "scheduled" state, awaiting for
"STATE_MACHINE_START" event. The primary task at this stage is to initiate an alert through the
"raiseAlert" process. This is represented by invoking the "raiseAlert" action, transitioning the machine to the
"choosingResponseStrategy" state based on a triggered event.

» error: ralsedlert

i STATE_WACHINE_START: { raiseAlert
target: ‘raiseAlert’ scheduled = STATE_MACHINE_START -+ P setérmorind
} (D) IHVOKE | raisaadest [saisehlurt]
f |
:Insnle!-.‘. [B spplyRatsLimiting * aror: applyRatelimiting
invoke: b smthlertings (O F sevmitlon —————+ [—

id: “raisedlert’, (D) WVOKE [anplyRateLiiting lepntyRateLiiting)

sres CraiseAlert’, :
orDose: | :
target: ‘chessingResponseStrategy”, :
actions: ‘setlertinfo’ choosingResponseStrate : i ityPy i
5 ghesp ay : applyRoutingToLowRricrityProcessing » ermor: appiyRoutingTobawPriortyProcessing

nErrer: { H : |
targets “errered”, € DAL seveityModerate [WVOKE [applyReutingTol cwPriorityProcessing b sencEnoicaication

actions: ‘setErrorinfa’ lapptyfioutieg Tol owPricrityProcessing)
} 5
i : ‘
thaos ingResponseStrategy: { applyEmergencyShutdown

i & ELSEW saverityign * aror: appiyEmegentyShusdown

o | [SVOKE S appivEmargancyShutdown b semSErmoraitication

guard ‘severitylow', L
{appiyEmergencyShutdown)

target: ‘aspplyRateLimiting’,

* dane: applyfatelimiting
weardi CseverityModerate”,
target: “applyRoutingTelowfriorityProcessing”, b sendThieathstication
|
guard: ‘severityWigh', = done: applpRouting Tl cwPricrityProcessing

target: ‘applyfsergencyShutdown’,
b sendThisatbottication

[completed [errored

I * done: preparingRepon grror: prepasingReport

seolyRateLiniting: (-
* done: apphyEmergencyShuldown
) 9 b selfepariini b setimuralo

seplyRout ingTelowbr lorityProcessiog: {= e — |

8
applytmergencyShutdoun: {=
¥ %

¥ pregaringhepart: iJ- preparingReport
.3

completed: { M WVOKE / preparingReport (preparngReparn)

type: "fimal’,
ke
errored: {

type: fisal

}
b

Fig. 2. The example of a state machine used for intrusion response
and its visualization created using XState Visualizer

Upon entering the "choosingResponseStrategy,” the state machine evaluates the severity of the
intrusion. This decision is governed by three conditional paths: "severityLow," "severityModerate," and
"severityHigh." If the intrusion is assessed as low severity, the system proceeds to "applyRateLimiting." For
moderate severity, it initiates "applyRoutingToLowPriorityProcessing,” and for high severity, it does
"applyEmergencyShutdown". Each of these actions triggers subsequent states or notifications, such as
"sendThreatNotification," indicating real-time communication of threats.

The final stages involve completing the response actions and transitioning to report preparation.
Successful completion leads to a "completed" state where a report is prepared, whereas errors during
processing lead to an "errored" state, causing error-specific notifications.

66 O. Oletsky, V. Moholivskyi

This state machine shows well-structured, easily visualizable, and automated handling of security
incidents.

The proposed IDR system leverages state machines to coordinate detection, analysis, and response actions
in a structured manner. The use of multi-dimensional monitoring covering resources, network activity, and
filesystem ensures comprehensive security coverage. By automating enforcement and dynamically adjusting
security policies through Kubernetes APIs, the system enhances resilience against intrusions while allowing
legitimate workloads to continue operating smoothly. This approach provides a scalable and efficient solution for
securing Kubernetes environments against a wide range of evolving threats.

To properly evaluate the suggested solution, it’s required to reproduce attacks within the testing envi-
ronment. For this purpose, we have created a dataset that not only includes data for training detection models but
also steps to reproduce attacks in a controlled environment to develop and evaluate suggested response strategies.

A custom dataset of few selected common vulnerabilities and exposures of 2024 was collected by the
authors of this paper. The repository containing received data and reproduction instructions is available on
GitHub (Moholivskyi, 2025). The repository documents the creation of a dataset containing network traffic
captures associated with specific Common Vulnerabilities and Exposures (CVEs). It provides resources and
instructions for setting up a local Kubernetes cluster to replicate and analyze both benign and malicious
traffic patterns related to these vulnerabilities.

A local deployment of Kubernetes is used as an environment for the dataset collection. The use of
Kubernetes for this task serves two main purposes. It enhances the reproducibility of the research and
simulates the conditions of commercial production workloads. According to the CNCF 2023 annual survey,
84 % of cloud service providers and consumers use or evaluate Kubernetes (Cloud Native Computing
Foundation, 2023). Thus, we ensure that our intrusion cyberattack dataset is collected in an environment that
closely matches the conditions in which our intrusion detection system will operate in a production
environment. Network traffic is captured as package capture files on a pod container network interface level.
These files are then processed by NTLFlowLyzer (Shafi et al., 2025) to extract network layer features for
further preliminary analysis. We have used the Random Forest machine learning algorithm for the initial
analysis of the collected dataset.

Despite existing datasets with sound data, having one’s own dataset is very helpful during
cybersecurity research. Moreover, a dataset of data related to recent exposures is highly valuable to the
community. While reproducing recent vulnerabilities is complex and time-consuming, having such data to
additionally evaluate new developments is always useful. Kubernetes is used as an environment to reproduce
attacks and collect data. Utilizing Kubernetes for this task not only ensures that research results are
reproducible but also brings us as close as possible to the conditions in which we want to detect attacks.
CVEs to reproduce for dataset collection were selected based on the following criteria:

e they should be recent, meaning reported in 2024;

o they should have a network trace as only network activity is recorded for the dataset;

e it should be possible to reproduce them in the Kubernetes.

e Based on defined criteria CVEs listed in Table 2 have been selected.

Table 2
Reproduced vulnerabilities

. CVSS

Vulnerability Category CWE Known threats Unknown threats Score
CVE-2024-27983 Denial of Service CWE-362 highly detectable undetectable 8.2

Overflow, CWE-20, .

CVE-2024-31449 Execute code CWE-121 detectable highly detectable 7.0
CVE-2024-21538 Denial of service CWE-1333 detectable highly detectable 75
CVE-2024-21534 Execute code CWE-94 highly detectable undetectable 9.8

On some approaches to intelligent counteracting cyberattacks within microservice architecture 67

The table contains the CVE security vulnerability database identifier for each entry. Each entry can
have one or many categories according to the CVE database and one or many CWE. Finally, the Common
Vulnerability Scoring System (CVSS) Score is provided for each row.

CVE-2024-27983 is a Node.js HTTP/2 vulnerability that leads to the denial of service state of the web
server. It is a flaw in HTTP/2 implementation in Node.js. An attacker can exploit it by sending a specific
sequence of HTTP/2 frames. This triggers a race condition in the Http2Session destructor, which causes the
server to crash.

CVE-2024-31449 is a Redis Lua scripting stack buffer overflow issue. This vulnerability can
potentially lead to remote code execution.

CVE-2024-21538 is a regular expression denial of service (ReDoS) in the cross-spawn package. Due
to broken input validation, an attacker can craft a specially designed, large string that results in high CPU
usage and possible application failure.

CVE-2024-21534 is a Remote Code Execution (RCE) vulnerability in the jsonpath-plus package. The
issue arises from insufficient input validation and the insecure default use of the vm module in Node.js, which
allows attackers to execute arbitrary code on the affected system.

A local Kubernetes cluster was deployed using minikube to simulate enterprise network conditions.
Required configurations were applied, including enabling necessary addons and deploying predefined
services. A combination of benign and malicious network traffic was generated. Targeted CVEs were
exploited in a controlled manner to replicate attack scenarios.

Network traffic was recorded using packet capture files. Additional flow-based representations were
created to facilitate analysis using NTLFlowLyzerFlow (Shafi et al., 2025). The collected traffic was
organized into structured datasets, divided into benign and malicious traffic.

The initial dataset analysis involved a structured approach to preprocessing, training, and evaluating
a machine learning model for detecting malicious network activity. The dataset was first loaded and
preprocessed by replacing infinite values with not a number and imputing missing values using the mean.
Non-relevant columns, such as IP addresses, timestamps, and flow identifiers, were removed to ensure the
model focused on meaningful network traffic features. The dataset was then split into training (60 %) and
testing (40 %) subsets, followed by standardization to normalize feature values. A Random Forest model
was trained with different max depths. Performance metrics such as accuracy, precision, recall, and F1-score
were computed to evaluate the model’s ability to detect malicious activity.

Table 3 shows the performance of a Random Forest model at different tree depths. As the collected dataset
was insignificant in size, even depth 1 provides satisfactory performance. On a larger dataset, the results would
not have been as positive. However, the objective is only to get an initial insight into the collected dataset.

Table 3
The performance of the Random Forest on the collected dataset
Depth Accuracy, Precision, Recall, F1 Fa_lsfe Tr_u_e Fals_e True_:
% % % Positive Positive Negative | Negative
1 91.15 79.37 75.37 77.32 105 404 132 2037
2 95.37 99.52 77.24 86.97 2 414 122 2140
3 95.41 99.76 77.24 87.07 1 414 122 2141
5 99.74 98.71 100 99.35 7 536 0 2135
10 99.70 98.71 99.81 99.26 7 535 1 2135

At depth 1, the model achieves an accuracy of 91.15 %, but precision (79.37 %) and recall (75.37 %)
are relatively low, indicating misclassifications. The false negative count (132) shows that many malicious
samples were missed. At depths 2 and 3, accuracy improves to 95.37 % and 95.41 %, and precision rises
significantly to 99.52 % and 99.76 %, meaning fewer benign samples were misclassified. However, recall

68 O. Oletsky, V. Moholivskyi

remains at 77.24 %, implying that some attacks are still undetected. The false negative count (122) supports
this observation. At depth 5, the model achieves near-perfect recall (100 %) with 99.74 % accuracy. There
are zero false negatives, meaning all malicious samples were correctly identified. However, there are 7 false
positives, meaning a few benign samples were incorrectly flagged as malicious. At depth 10, performance
remains nearly the same, suggesting depth 5 is optimal for the dataset.

This dataset is tailored specifically to test our state machine-based intrusion response strategies and
does not act as the standalone basis for an intrusion detection system. At the same time, despite its modest
size, it is a valuable addition to other datasets as it contains recent vulnerability data.

Conclusions

An approach to counteracting cyberattacks on the base of state machines offers significant enhancements
in managing complex cyberthreats within microservice architecture. Utilizing state machine-based supervision
and coordination for the Kubernetes Intrusion Detection and Response (IDR) system provides a logical and visual
framework that simplifies the declaration, monitoring, visualization, and support of detection and response
workflows. By defining them declaratively, the system becomes more transparent and predictable. The suggested
approach ensures efficient handling of intrusion scenarios and structural execution of the appropriate response
strategies. State machines are also used for granular control over network traffic by dynamically adjusting throttle
or isolation logic based on detected threats. The proactive containment strategy aids in preserving operational
continuity even when partial system compromises occur, for example, by rerouting suspicious traffic to low-
priority deployments. This form of penalty workload degradation reduces privileges and computational priority,
allowing further investigation to be conducted without significant disruption. The proposed system represents a
scalable and efficient solution for securing Kubernetes environments. It establishes a solid foundation for the
development of advanced cybersecurity mechanisms, which can provide robust protection against a variety of
potential threats.

Another valuable finding in this paper is a specialized dataset of cyberattacks. We have replicated
certain common vulnerabilities and exposures reported in 2024 and gathered network traffic data during
cyberattacks based on these vulnerabilities. This dataset concentrates on intrusion attacks aimed at software
systems deployed in Kubernetes environments. It includes both network data captured during the attacks and
scripts to automatically reproduce each of the analyzed attacks. It is especially valuable when developing
and testing intrusion response systems. The use of Kubernetes to replicate network conditions ensures that
the dataset accurately represents real-world scenarios, enhancing its utility for intrusion detection research.
The selection process for CVEs, based on recency and reproducibility in Kubernetes, guarantees that the
dataset remains relevant and applicable to modern environments. Moreover, a dataset of data related
specifically to recent exposures is highly valuable to the community.

REFERENCES

Alaeifar, P., Pal, S., Jadidi, Z., Hussain, M., & Foo, E. (2024). Current approaches and future directions for
cyber threat intelligence sharing: A survey. Journal of Information Security and Applications, 83, 103786.
doi:10.1016/j.jisa.2024.103786

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153-1176. doi:10.1109/comst.2015.2494502

Cloud Native Computing Foundation. (2023). CNCF annual survey 2023. Retrieved from https://ww.cncf.io/
reports/cncf-annual-survey-2023

Common Vulnerabilities and Exposures Program. (n.d.). CVE metrics. Retrieved from https://www.cve.org/
about/Metrics

Engelen, G., Rimmer, V., & Joosen, W. (2021). Troubleshooting an intrusion detection dataset: The
CICIDS2017 case study. In 2021 IEEE Security and Privacy Workshops (SPW). IEEE. doi:10.1109/
spw53761.2021.00009

On some approaches to intelligent counteracting cyberattacks within microservice architecture 69

Goldschmidt, P., & Chuda, D. (2025). Network intrusion datasets: A survey, limitations, and
recommendations. arXiv. doi:10.48550/arXiv.2502.06688

IBM. (2024). Cost of a data breach 2024. Retrieved from https://www.ibm.com/reports/data-breach

Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion response systems:
Foundations, design, and challenges. Journal of Network and Computer Applications, 62, 53-74.
d0i:10.1016/j.jnca.2015.12.006

Kaul, D. (2025). Blockchain-powered cyber-resilient microservices: Al-driven intrusion prevention with
zero-trust policy enforcement. SSRN Electronic Journal. doi:10.2139/ssrn.5096255

Kourki Nejat, S., & Kabiri, P. (2017). An adaptive and cost-based intrusion response system. Cybernetics
and Systems, 48(6-7), 495-509. doi:10.1080/01969722.2017.1319693

Kwon, H.-Y., Kim, T., & Lee, M.-K. (2022). Advanced intrusion detection combining signature-based and
behavior-based detection methods. Electronics, 11(6), 867. doi:10.3390/electronics11060867

Moholivskyi, V. (2025). Selected CVE dataset 2024. GitHub. Retrieved from https://github.com/vitalii-
moholivskyi/selected-cve-dataset-2024

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion detection
systems. In 2015 Military Communications and Information Systems Conference (MilCIS). IEEE.
doi:10.1109/milcis.2015.7348942

Moustafa, N., & Slay, J. (2016). The evaluation of network anomaly detection systems: Statistical analysis
of the UNSW-NB15 data set and the comparison with the KDD99 data set. Information Security Journal, 25(1-3),
18-31. d0i:10.1080/19393555.2015.1125974

Oletsky, O., & Moholivskyi, V. (2024a). Coordination of microservices using state machines. NaUKMA
Research Papers. Computer Science, National University of Kyiv-Mohyla Academy, 7, 4-10. doi:10.18523/2617-
3808.2024.7.4-10

Oletsky, O., & Moholivskyi, V. (2024h, November 20-21). On supervising and coordinating microservices
within web applications on the basis of state machines. In Selected Papers of the XI International Scientific
Conference "Information Technology and Implementation" (IT&I 2024), Kyiv, Ukraine (pp. 442-454). CEUR
Workshop Proceedings. Retrieved from https://ceur-ws.org/\VVol-3909/Paper_35.pdf

Palaparthy, K., Reddy, Y. M., Paul, J. V., & Raju, S. (2024). Enhancing insider threat detection through
integrated behavioral, signature, and anomaly based detection methods. International Journal of Scientific Research
in Engineering and Management, 8(12), 1-6. doi:10.55041/ijsrem39835

Sarhan, M., Layeghy, S., Moustafa, N., & Portmann, M. (2021). NetFlow datasets for machine learning-based
network intrusion detection systems. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering (pp. 117-135). Cham, Switzerland: Springer. doi:10.1007/978-3-030-72802-1 9

Sasi, T., Lashkari, A. H., Lu, R, Xiong, P., & Igbal, S. (2024). An efficient self attention-based 1D-CNN-
LSTM network for loT attack detection and identification using network traffic. Journal of Information Intelligence.
doi:10.1016/j.jiixd.2024.09.001

Savchenko, T., Lutska, N., Vlasenko, L., Sashnova, M., Zahorulko, A., Minenko, S., Ibaiev, E., & Tytarenko,
N. (2025). Risk analysis and cybersecurity enhancement of Digital Twins in dairy production. Technology Audit
and Production Reserves, 2(2(82)), 37-49. https://doi.org/10.15587/2706-5448.2025.325422

Sever, Y., & Dogan, A. H. (2023). A Kubernetes dataset for misuse detection. ITU Journal of Future and
Evolving Technologies, 4(2), 383-388. d0i:10.52953/fplr8631

Sharafaldin, 1., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In Proceedings of the 4th International Conference on Information
Systems Security and Privacy. SCITEPRESS. doi:10.5220/0006639801080116

Shafi, M., Lashkari, A. H., & Roudsari, A. H. (2025). NTLFlowLyzer: Towards generating an intrusion
detection dataset and intruders’ behavior profiling through network and transport layers traffic analysis and pattern
extraction. Computers & Security, 148, 104160. doi:10.1016/j.cose.2024.104160

Sipser, M. (2012). Introduction to the theory of computation. Boston, MA: Thomson South-Western.

Stakhanova, N., Basu, S., & Wong, J. (2007). A taxonomy of intrusion response systems. International
Journal of Information and Computer Security, 1(1-2), 169-184. doi:10.1504/ijics.2007.012248

Wang, K., & Stolfo, S. J. (2004). Anomalous payload-based network intrusion detection. In E. Jonsson, A.
Valdes, & M. Almgren (Eds.), Recent advances in intrusion detection (pp. 203-222). Berlin, Germany: Springer.
doi:10.1007/978-3-540-30143-1_11

XState. (n.d.). XState documentation. Retrieved from https://xstate.js.org/docs/

Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent
neural networks. IEEE Access, 5, 21954-21961. doi:10.1109/access.2017.2762418

70

O. Oletsky, V. Moholivskyi

PO JEAKI IIJIXOIA 10 IHTEJEKTYAJBHOI IPOTUII KIFEPATAKAM
B PAMKAX MIKPOCEPBICHOI APXITEKTYPHU

Ouaekciii Onenskmniil, Biragiii MoroJiBcbKkmii?

L2 HanjonanbHuii ynisepcuter «KueBo-MorunsHchbka akaaeMis»,
Kadenpa mynbrumenilinux cucrem, Kuis, Ykpaina
LE-mail: oletsky@ukma.edu.ua, ORCID: 0000-0002-0553-5915
2E-mail: v.moholivskyi@ukma.edu.ua, ORCID: 0009-0001-2654-7798

© Oneyvkuii O., Moconisecokuii B., 2025

3anponoHoBaHo miaxia nJs nmporTuAail KifepaTakaM y paMkKax MikpocepBicHOI apxiTekTypHu 3
BUKOPHCTAHHAM MojeJseil Ha 0CHOBI MalIuH cTaHiB. CTBOpeHe pillIecHHS OPi€HTOBaHE HA IHTEJIEeKTYAJIb-
HMIi aHATi3 NOTOYHUX Ta NOTEHUIHHMX MepexKeBUX BTOPrHeHb. MeTo/ po3podJieHo /sl 3aCTOCYBaHb, 110
(yHKIiOHYIOTH y cepeaoBHILI MiKpocepBiCHOI apXiTeKTypH, po3ropuyToi Ha miuatdopmi Kubernetes. Y
paMKax JocaiTxeHHs: 0yy0 3i0panHo cnenianizopanmii HaGip nanux. s nboro 0yJio BiATBOPEHO HU3KY
MOLIUPEHNX BPA3TUBOCTell 3apeecTpoBannx y 2024 poui, Ta 3i0pano BinmoBinnmii MmepesxeBuii Tpadik
ki0epartak. 3i0panuii Ha0ip JaHUX 30cepelKy€e€ThCA Ha aTaKaX, CIPAMOBAHUX NMPOTH NMPOrPaAMHHUX CHC-
TeM, po3ropuyTux y Kubernetes. Bin mictuth Mepe:keBi aani, 3adikcoBani mix yac arak, Ta CKPUNTH AJIs
BiITBOPEHHS KOKHOI 3 TOCTII:KEHHX aTaK, 0 € BAXKIMBHUM IS MOAAJBIIOI PO3POOKH TAa TeCTyBAHHS
CHCTeM BHSIBJICHHH i pearyBaHHsl HA BTOPTHEHHS.

Kiro4oBi cnoBa — kibepOe3nexa, Ha0opn faHuMX Ki0epaTak, BUSIBJICHHSI MepesKeBUX BTOPIrHEHb,
pearyBaHHsl Ha BTOPrHEHHsl, iHTEJCKTYAJIbHUI aHAJI3 JaHUX, MIKpOcepBiCHa apXiTekTypa, MAIIUHH
craniB, Kubernetes.

mailto:oletsky@ukma.edu.ua
mailto:v.moholivskyi@ukma.edu.ua

	On some approaches to intelligent counteracting cyberattacks within microservice architecture
	Oleksiy Oletsky1, Vitalii Moholivskyi2
	Problem Statement
	Analysis of Recent Studies and Publications
	Formulation of the Article’s Objective
	Main Results
	Conclusions
	REFERENCES
	Про деякі ПІДХОДИ ДО ІНТЕЛЕКТУАЛЬНОЇ ПРОТИДІЇ КІБЕРАТАКАМ В РАМКАХ МІКРОСЕРВІСНОЇ АРХІТЕКТУРИ
	Олексій Олецький1, Віталій Моголівський2

