
INFORMATION SYSTEMS AND NETWORKS

Issue 18, part 2, 2025

https://doi.org/10.23939/sisn2025.18.2.096

UDC 004.89

A PATTERN SEARCH ALGORITHM
IN GRAPH REPRESENTATIONS OF TEXTUAL DATA

FOR AN ONTOLOGY CONSTRUCTION SYSTEM

Andrii Chornyi1, Andrii Berko2

1, 2 Lviv Polytechnic National University,
Information Systems and Networks Department, Lviv, Ukrainе,

1 E-mail: andrii.o.chornyi@lpnu.ua, ORCID: 0009-0007-4005-4088
2 E-mail: andrii.y.berko@lpnu.ua, ORCID: 0000-0001-6756-5661

© Chornyi A., Berko A., 2025

The article presents the development and formalization of an algorithm for pattern matching in
graph representations of textual data as a core component of syntactic-semantic transformations for
ontology construction from text documents. The study aims to bridge the gap between natural language
processing and formal logic by introducing a universal SPARQL-based approach for executing transf-
ormation rules directly on graph database servers. The proposed method integrates RDF data repre-
sentation with formal graph transformation techniques, including Double Pushout (DPO), ensuring
correctness and mathematical rigor. Through the use of graph indexing schemes such as SPO, POS, and
OSP, the proposed approach transforms the computationally expensive subgraph isomorphism task from
exponential to practical polynomial complexity. The implementation achieves up to 73% runtime
reduction during repeated executions due to server-side caching. The research contributes a flexible,
formalized, and scalable mechanism for automatic ontology construction, facilitating deep semantic ana-
lysis and causal reasoning from textual sources. The algorithm’s extensibility allows dynamic rule
introduction without recompilation, making it suitable for applications in semantic web systems, kno-
wledge extraction, and AI-driven natural language understanding.

Within the scope of this research, an algorithm was developed and analyzed for identifying
homomorphic and isomorphic matches of pattern subgraphs within syntactic graphs, leveraging RDF
representations and SPARQL queries enhanced with filter generation algorithms for shape-based mat-
ching. The study demonstrates that the complexity of pattern search can be effectively mitigated through
graph database indexing strategies, such as SPO, POS, and OSP indexes, reducing exponential complexity
to polynomial levels for practical text block sizes. Experimental evaluation confirmed the scalability and
efficiency of the proposed approach, revealing substantial runtime reductions during repeated executions
as a result of server-side caching.

The work contributes flexible, formalized, and efficient methods for automatic ontology construction
from natural language texts, enabling deep semantic analysis and causal reasoning. The approach supports
extensibility and dynamic rule introduction without code recompilation, making it suitable for real-world
semantic web and knowledge extraction systems. The results have implications for NLP, ontology engineering,
and applications requiring interpretability and scalability in processing complex textual data.

Keywords - ontology construction, syntactic-semantic transformation, SPARQL, pattern mat-
ching, graph isomorphism, natural language processing, rule formalization.

A pattern search algorithm in graph representations of textual data for an ontology construction system 97

Problem statement

The search for a compromise solution in representing deductive rules for ontology construction from
text is a pressing issue situated at the intersection of natural language processing and logical formalism in
ontology engineering. The challenge lies in developing a set of rules that are both intuitively comprehensible
to humans and, at the same time, formally rigorous and accessible for automated computer processing.
Contemporary approaches demonstrate that successful ontology construction from text is feasible only
through the use of logical axioms expressed in a controlled language, which reduces the inherent ambiguity
of natural language while preserving sufficient expressiveness for knowledge modeling. Thus, the com-
promise is achieved by designing formal yet flexible constructs that can subsequently be translated into
description logic or related formalisms.

One promising direction involves the development of logical constructs that are independent of any
specific programming language or tool, thereby enhancing both the interoperability and the comprehend-
sibility of the rules for humans and machines alike.

The extension of the deductive approach to the task of natural language text recognition, with consideration
of causal reasoning, opens new opportunities in semantic analysis and machine learning. Rule-oriented constructs,
in which the left-hand side represents the cause and the right-hand side the effect, enable the direct formalization
of causal relations within ontologies. This, in turn, enhances the depth of modeling by allowing not only the
extraction of facts but also the interpretation of causal interactions in texts–an aspect critically important for
intelligent analysis and decision-making in complex domains. The formalization of deductive rules for ontology
construction from text holds the potential to transcend the boundaries of NLP, addressing diverse causality-related
tasks across fields ranging from medicine to the social sciences and engineering.

Analysis of Recent Studies and Publications

One of the earliest practical implementations of a rule-oriented approach to ontology construction from
text was proposed in the OntoHarvester system (Mousavi, Kerr, Iseli, & Zaniolo, 2014). This system is based on
deep NLP and employs the SemScape framework, which transforms text into structured graphs (TextGraphs). In
these graphs, the vertices represent candidate terms, while the edges correspond to grammatical relations.

The idea of employing graph databases for representing syntactic graphs with the aim of unifying data
from multiple text parsers was introduced in the work of (Chornyi & Dosyn Dmytro, 2025). This approach
is intended to improve the accuracy of subsequent ontology construction through rule-oriented trans-
formations into semantic graphs. Furthermore, using a graph database server with the Apache Jena Fuseki
Java library, the study demonstrates the possibility of optimizing transformation efficiency by means of query
result caching. The findings indicate that repeated execution of data retrieval queries from a syntactic graph
is significantly faster than the initial execution. This feature, combined with the formalization of syntactic-
semantic transformation rules within an ETL (Extract, Transform, Load) process – where Extract denotes
retrieval from the syntactic graph – opens new opportunities for performance optimization through the
clustering of queries by dataset. In this work, a practical implementation of syntactic-semantic transfor-
mation as an ETL process was developed at the level of a graph database server using the widely adopted
SPARQL query language. Such an implementation allows new rules to be introduced on the fly, since
executing new scripts does not require code compilation. Nevertheless, challenges remain with the classi-
fication and clustering of scripts, as this would necessitate the development of a custom SPARQL interpreter.
Consequently, as part of the continued development of the ontology construction system from text, the
formalization of transformation rules in a graph-based representation was proposed.

In addition, ETL is traditionally understood as a data integration workflow oriented toward batch
processing, in which data are typically transformed outside the target system prior to loading. ETL operates
in the context of data streams and practical data handling, with its transformations being less formalized and
primarily optimized for the efficient processing of large data volumes. Overall, ETL may constitute a chain
of multiple transformations involving different architectural layers.

98 A. Chornyi, A. Berko

The formalization of rules for syntactic–semantic transformations at the graph level necessitates the
adoption of a more atomic formalism, one that provides mathematically grounded operations with guarantees
of correctness. One such formalism is the Double-Pushout (DPO) approach. In particular, (Söldner & Plump,
2024) present a general formalization of the foundations of the DPO method for graph transformations. Their
work offers an in-depth and rigorous formalization of DPO graph transformation theory, accompanied by
original and detailed proofs of fundamental results. Of particular practical importance for graph-based
syntactic–semantic transformations is the validation of the Church–Rosser property, which ensures that
parallel and independent rule applications can be reordered while still yielding isomorphic results. To this
end, the concepts of parallel and sequential independence were introduced, with the proofs relying on the
decomposition and permutation of pushout diagrams.

Authors (Andersen, et al., 2024) present a method for the automatic inference of graph transformation
rules, which combines generative and dynamic approaches. The authors posit that the DPO framework serves
as the foundational basis for this method. The proposed approach is oriented toward reverse engineering:
known system transitions (i.e., graph dynamics) are provided as input, and the task is to construct a minimal
set of DPO rules capable of reproducing these transitions. Furthermore, the DPO formalism enables the
formalization and resolution of the model compression problem: initially, maximal rules corresponding to
each individual transition are reduced to a set of candidate subrules, from which a minimal subset is selected
that generates all transformation transitions. This approach is particularly valuable for creating graph
dynamic models that are both compact and accurate.

A graph transformation approach similar to DPO, namely the Pushout-Image (POIM) method, is
presented by (Duval, Echahed, & Prost, 2020). This approach provides a formal modeling of RDF and
SPARQL based on category theory and algebraic graph transformations. RDF graphs and SPARQL templates
are treated as objects of specific categories, with a clear distinction between the roles of variables and blank
nodes. POIM interprets CONSTRUCT queries as graph rewriting rules L→K←R and executes them in two
steps: first, the input graph is merged with the template by substituting variables and creating new blank
nodes; second, all elements not included in the result are pruned. The authors demonstrate that the approach
reproduces the official SPARQL semantics for both CONSTRUCT and SELECT queries, with SELECT
queries implemented via translation into corresponding CONSTRUCT queries. Unlike classical methods
such as DPO or MPOC-PO, POIM is specifically oriented toward generating query results without retaining
extraneous data and can be generalized to other graph data models, with the potential for optimization
through efficient matching algorithms.

A somewhat simpler approach to graph transformations is the Single Pushout (SPO) method, which is
described in (König & Stünkel , 2020) as a categorical approach to graph transformations based on the use
of partial morphisms and a single pushout. The core idea is that element deletion is performed automatically
together with associated edges, which simplifies rule application and renders this approach technically less
restrictive compared to the Double Pushout (DPO) method. The key distinction from DPO lies in the absence
of a gluing condition and the need to compute a complement, allowing SPO to apply rules more rapidly,
albeit with less stringent control over the structural integrity of the graph.

In another study (Stünkel & König, 2021), SPO is presented as a practically oriented tool for
transformations in systems of graph-like structures. The authors emphasize that, due to its simpler application
conditions, SPO is well-suited for experimental scenarios, particularly those permitting the automatic
removal of “dangling” elements. Unlike DPO, which focuses on rigorous analysis of properties and rule
conflicts, SPO provides greater flexibility and speed in syntactic-semantic transformation tasks, although
additional mechanisms are required to restore integrity in cases where semantics play a critical role.

In the work (Mežnar, Bevec, Lavrač, & Škrlj, 2022), SPO is discussed within the broader context of
graph-based methods applied to ontology learning and completion tasks. The authors highlight that flexible
graph transformations, such as SPO, can serve as a mechanism for preprocessing and restructuring
knowledge structures, which are subsequently utilized by machine learning algorithms. This facilitates the
creation of new connections between concepts and the refinement of semantic relationships, which is

A pattern search algorithm in graph representations of textual data for an ontology construction system 99

essential for ontology modeling. Unlike DPO, where strictness and conflict control are paramount, SPO
enables rapid and intuitive modifications, making it a practical tool for systems focused on integrating
syntactic and semantic levels of knowledge processing.

The first and characteristic step common to any approach to graph transformation (SPO, DPO, or
POIM) is the search for a subgraph in the source graph according to a given pattern. In the study (Mennicke,
Nagel, Kalo, Aumann, & Balke, 2017), the SPARQL query language – designed for working with RDF data
– is examined in relation to classical notions of pattern matching in graph theory. The authors demonstrate
that basic graph patterns (BGPs) combined with filters in SPARQL can reproduce results equivalent to
subgraph isomorphism, whereas the use of BGPs alone without filters corresponds to matches based on dual
simulation. They further analyze the limitations of dual simulation and show that the introduction of local
constraints on match size and the pruning of irrelevant elements makes it possible to formulate queries that
capture strong simulation, which is computationally far more efficient than isomorphism. This work thus
provides a novel perspective on the expressive power of SPARQL and outlines the potential of strong
simulation for optimizing query processing in large graph databases. A comparative table of the three
approaches discussed in the study is provided below.

Table 3

Approaches to Pattern Matching in Graphs
(Mennicke, Nagel, Kalo, Aumann, & Balke, 2017)

Approach Matching
Requirements

Match
Size

Correspondence
in SPARQL

Computational
Complexity

Specific
Features

Subgraph
Isomorphism

The match
structure must

fully correspond
to the pattern

(bijective
mapping of

nodes and edges)

Exactly as
in the

pattern

BGP +
inequality filter
on all variables

(bijectivity)

NP-complete

The strictest
match, with no
“extra” nodes

or edges

Dual
Simulation

Edge direction is
preserved both

forward and
backward;
additional

nodes/edges are
allowed

May be
arbitrary

BGP only
(without filter) Polynomial

May return
large matches,

including
irrelevant
elements

Strong
Simulation

As in dual
simulation, but:

(1) size is
bounded by the

pattern diameter,
(2) only relevant
nodes and edges

are retained

Locally
bounded

by
diameter

Combination of
BGPs + diameter

constraint (via
join and center

check)

Polynomial

More
controlled
matching,

suitable for
search

optimization

A significant role in the computational efficiency of each pattern-matching algorithm is played by the

technologies of storage, indexing, processing, and optimization of SPARQL queries in graph database
management systems.

In particular, the efficiency of storing RDF graphs using different indexing approaches for rapid
pattern-based triple retrieval is examined in the study (Ali, Saleem, Yao, Hogan, & Ngonga Ngomo, 2021).
The most common approach is the creation of six indexes for all permutations of triples: SPO, SOP, PSO,

100 A. Chornyi, A. Berko

POS, OSP, and OPS. These indexes enable efficient support for all possible query patterns, ensuring
𝑂𝑂(log (𝑛𝑛)) access time to data regardless of the position of variables or constants within a triple. Some
systems employ three key indexes (SPO, POS, OSP), which already cover all query types, while others
construct the full set of six to achieve higher performance. The article also discusses more advanced types
of indexes, such as entity-based, property-based, and path indexes, which are used to optimize star queries,
path queries, and complex structural searches in graphs.

As graph database management systems continue to evolve rapidly, research and development efforts
increasingly focus on novel indexing methods in addition to the standard ones. In particular, the work (Al-
Ghezi & Wiese, 2024) demonstrates that for the efficient operation of distributed triple stores, it is not only
the presence of basic indexes such as SPO, POS, and OSP that matters, but also the adaptation of their
configuration to the current workload. The dynamic index management approach implemented in the
UniAdapt system proposed by the authors improves SPARQL query performance while optimizing the use
of limited disk space and main memory.

The study (Salehpour & Davis, 2021) introduces another novel approach to RDF data indexing for the
optimization of SPARQL query execution, based on the concept of Extended Characteristic Sets (ECS). The
primary focus is on how this index enables efficient processing of complex queries involving numerous
object-subject and subject-subject joins, which typically pose challenges for traditional systems.

The ongoing trend of continuous development and optimization in graph database management
systems suggests the appropriateness of performing syntactic-semantic transformations directly at the
database level using the SPARQL language. Moreover, this approach provides flexibility in selecting a graph
database management system and identifying the optimal solution for improving the overall performance of
syntactic-semantic transformation algorithms.

Formulation of the Article’s Objective

The objective of this study is to develop and formalize an algorithm for pattern matching in graph
representations of textual data as a key stage of syntactic–semantic transformations. This approach will enable an
intuitive, human-understandable interpretation of transformation rules and provide a foundation for a universal
mechanism for their subsequent execution at the graph database server level using the SPARQL language.

Main Results

Regardless of the specific approach to syntactic–semantic transformation, each rule typically consists
of a left-hand side (LHS), which defines the structure to be matched in the syntactic graph, and a right-hand
side (RHS), which specifies the structure to be created in the semantic graph.

Fig. 1. General scheme of a syntactic–semantic transformation rule

In all cases, the initial stage of the transformation involves a common task – finding a pattern in the
source graph, in this instance, in the syntactic graph. The pattern is defined as the subgraph specified in the
left-hand side of the transformation rule. Furthermore, the algorithm for solving this task exhibits the highest
time complexity compared to the other stages of syntactic–semantic transformation.

A pattern search algorithm in graph representations of textual data for an ontology construction system 101

The main objective of the study at this stage is to represent the pattern of the target syntactic subgraph
in RDF format. To demonstrate the approach, a rule for creating person entities mentioned in the text in the
<First Name> – <Last Name> format is used (Chornyi & Dosyn Dmytro, 2025), specifically its left-hand
side, which can be described by the following condition:

If there exists a “compound” relation between nodes in the syntactic graph, and the subject and object
of this relation are, in turn, connected to the literal “PERSON” via a NamedEntityTagAnnotation relation.

The first challenge in the task of searching for graph patterns specified in RDF format is the
representation of abstract entities, in this case, nodes. In RDF, this is addressed through the concept of a
blank node. Thus, the pattern described above can be represented as follows.

The next challenge in addressing this task was the creation of a universal SPARQL script capable of
applying an RDF pattern with abstract (blank) nodes to a syntactic graph. To achieve this, the following
graph intersection logic was employed.

Let a pattern graph 𝐺𝐺𝑃𝑃 and a syntactic graph 𝐺𝐺 be given, both consisting of triples.

𝑡𝑡 = (𝑠𝑠,𝑝𝑝, 𝑜𝑜) | 𝑡𝑡 ∈ 𝐺𝐺𝑃𝑃

𝑡𝑡′ = (𝑠𝑠′,𝑝𝑝′, 𝑜𝑜′) | 𝑡𝑡′ ∈ 𝐺𝐺
(1)

Then, the comparison of triples from these two graphs can be expressed as follows.

 (𝑠𝑠,𝑝𝑝, 𝑜𝑜) ≡ (𝑠𝑠′,𝑝𝑝′, 𝑜𝑜′) ⟺ �
𝑝𝑝 = 𝑝𝑝′

(𝑠𝑠 = 𝑠𝑠′ ∨ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠))
(𝑜𝑜 = 𝑜𝑜′ ∨ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑜𝑜))

 (2)

Thus, the intersection of a pattern graph with a syntactic graph can be represented as (3).

𝐺𝐺 ∩ 𝐺𝐺𝑃𝑃 = {(𝑠𝑠′,𝑝𝑝′, 𝑜𝑜′) ∈ 𝐺𝐺 |∃(𝑠𝑠, 𝑝𝑝, 𝑜𝑜) ∈ 𝐺𝐺𝑃𝑃 ∶ (𝑝𝑝 = 𝑝𝑝′) ∧ �𝑠𝑠 = 𝑠𝑠′ ∨ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠)� ∧

(𝑜𝑜 = 𝑜𝑜′ ∨ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑜𝑜))}
(3)

In the form of a SPARQL script, such an intersection can be represented as a transformation into the
resulting graph 𝐷𝐷 as illustrated in Code snippet 1, where:

<http://localhost:3330/opgraph/syngraph> is the syntactic graph,
<http://localhost:3330/opgraph/rule1/dpo/l> is the pattern graph,
<http://localhost:3330/opgraph/morphism/dpo/d> is the resulting graph.
A more complex task is the identification of abstract relations, since these are not predefined in RDF.

However, this can be addressed by representing the relation as a constant within a custom namespace, serving
as an artificial auxiliary entity, for example, provisionally as <crocus:abstractRelation>.

However, such a solution would significantly reduce the level of abstraction in the graph-based
representation of patterns, tying them to a specific implementation through a particular namespace. To avoid
this, the parent class of all predicates in the RDF namespace, namely <rdf:Property> (RDF 1.2 Schema,
2025), was used to represent abstract relations (predicates) in the patterns of the syntactic-semantic
transformation.

@prefix nlp: <http://nlp.stanford.edu#> .

[] nlp:NamedEntityTagAnnotation "PERSON" ;
 nlp:compound [
 nlp:NamedEntityTagAnnotation "PERSON"
] .

102 A. Chornyi, A. Berko

This formalism falls within the generally accepted concept according to which each triple contains a
predicate, and every predicate belongs to the class rdf:Property.

∀𝑠𝑠∀𝑝𝑝∀𝑜𝑜(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠,𝑝𝑝, 𝑜𝑜) → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝))

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) ≡ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟:𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
(4)

Accordingly, Code snippet 1 was transformed into the Code snippet 2.
Since this script compares each triple individually, it does not perform the task of subgraph pattern

matching but rather executes a “content-based” selection, instantiating the abstraction. In other words, it
searches for homomorphic matches of the pattern 𝐺𝐺𝑃𝑃 within the graph 𝐺𝐺.

Considering that the most computationally intensive operation in this script is the joining of triples
from both graphs, its complexity was evaluated as follows.

Let 𝑛𝑛𝐺𝐺 denote the number of triples in the syntactic graph, and 𝑛𝑛𝑃𝑃 the number of triples in the pattern
graph. Then, the complexity of triple matching for these graphs is 𝑂𝑂(𝑛𝑛𝐺𝐺) and 𝑂𝑂(𝑛𝑛𝑃𝑃), respectively.

Thus, the worst case corresponds to a naïve join with a complexity of 𝑂𝑂(𝑛𝑛𝐺𝐺 × 𝑛𝑛𝑃𝑃).
In practice, the use of indexes such as SPO, POS, OSP, and others significantly reduces the extent of graph

traversal. Without indexes, the execution time grows exponentially, whereas with indexes it approaches near-
linear behavior even for large graphs (up to 100,000 nodes), as demonstrated in the study (Pokorný, Valenta, &
Troup, 2018). The complexity of this operation in a real-world setting is estimated to be (5).

 𝑂𝑂(min (𝑛𝑛𝐺𝐺 ,𝑛𝑛𝑃𝑃) × log (max (𝑛𝑛𝐺𝐺 ,𝑛𝑛𝑃𝑃))) (5)

Since in our case the pattern graph is always significantly smaller than the syntactic graph 𝑛𝑛𝑃𝑃 ≪ 𝑛𝑛𝐺𝐺,
the actual (practical) complexity of this script can be expressed as (6).

 𝑂𝑂(𝑛𝑛𝑃𝑃 × log (𝑛𝑛𝐺𝐺)) (6)

Thus, the script presented in Code snippet 2 plays a crucial role in the graph pattern search algorithm.
First, it is universal for all types of RDF patterns and therefore does not require additional logic at the
application level of syntactic-semantic transformation. Second, it generates a graph for further processing

INSERT
{
 GRAPH <http://localhost:3330/opgraph/morphism/dpo/d>
 {
 ?sd ?p ?od.
 }
}
WHERE
{
 GRAPH <http://localhost:3330/opgraph/syngraph>
 {
 ?sg ?p ?og.
 BIND(?sg AS ?sd)
 BIND(?og AS ?od)
 }
 GRAPH <http://localhost:3330/opgraph/rule1/dpo/l>
 {
 ?s ?p ?o.
 BIND(IF(isBLANK(?s), ?sg), ?s) AS ?sd)
 BIND(IF(isBLANK(?o), ?og), ?o) AS ?od)
 }
}

Code snippet 1. Intersection of the graph 𝐺𝐺 and the pattern 𝐺𝐺𝑃𝑃 with abstract nodes in SPARQL.

A pattern search algorithm in graph representations of textual data for an ontology construction system 103

that is smaller than the input syntactic graph, thereby reducing the computational cost of subsequent
operations. Third, at this stage, an important task is addressed – the instantiation of abstract nodes and
predicates, which in many cases constitute an integral part of graph patterns. Fourth, taking data indexing
into account, the algorithm exhibits relatively low complexity.

The result of the intersection 𝐺𝐺 ∩ 𝐺𝐺𝑃𝑃 using the script from Code snippet 2 is a set of triples.

 𝑇𝑇𝑑𝑑 = {𝑡𝑡 ∈ 𝐺𝐺 | 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ(𝑡𝑡,𝐺𝐺𝑃𝑃)} (7)

That is, the set 𝑇𝑇𝑑𝑑 contains all triples of the graph 𝐺𝐺 that match at least one triple of the pattern graph
𝐺𝐺𝑃𝑃, but are not necessarily part of the subgraph 𝐷𝐷𝑖𝑖 corresponding to the pattern 𝐺𝐺𝑃𝑃.

The next challenge in this study was the search for isomorphic matches with the pattern graph 𝐺𝐺𝑃𝑃
within the set 𝑇𝑇𝑑𝑑. In other words, it was necessary to employ the SPARQL language to reconstruct the
template in the form shown in Fig. 2, which is not explicitly evident in 𝐺𝐺 ∩ 𝐺𝐺𝑃𝑃.

As shown in Fig. 2, shaping the set of three triples requires the imposition of certain conditions, namely,
the equality of nodes for forming a star or a chain, as well as the equality of edges.

To address the task of searching for isomorphic matches with the pattern graph depicted in Fig. 2, a
SPARQL script (Code snippet 3) was developed. In the INSERT clause, it constructs a meta graph which
contains subgraphs representing the identified isomorphic correspondences to 𝐺𝐺𝑃𝑃. The actual search for
isomorphisms is performed within the WHERE clause of the script. Isomorphism is achieved through the
use of the bijection ℝ𝑛𝑛𝑃𝑃×𝑛𝑛𝑃𝑃 ↔ ℝ𝑛𝑛𝑃𝑃

2
 and the application of the aforementioned conditions by means of

SPARQL filters (Mennicke, Nagel, Kalo, Aumann, & Balke, 2017).

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

INSERT
{
 GRAPH <http://localhost:3330/opgraph/morphism/dpo/d>
 {
 ?sd ?pd ?od.
 }
}
WHERE
{
 GRAPH <http://localhost:3330/opgraph/syngraph>
 {
 ?sg ?pq ?og.
 BIND(?sg AS ?sd)
 BIND(?og AS ?od)
 }
 GRAPH <http://localhost:3330/opgraph/rule1/dpo/l>
 {
 ?s ?p ?o.
 BIND(IF(?p = rdf:Property, ?pg, ?p) AS ?pd)
 BIND(IF(isBLANK(?s), ?sg), ?s) AS ?sd)
 BIND(IF(isBLANK(?o), ?og), ?o) AS ?od)
 }
}

Code snippet 2. Intersection of the graph 𝐺𝐺 and the pattern 𝐺𝐺𝑃𝑃 with abstract nodes and predicates in
SPARQL.

http://www.w3.org/1999/02/22-rdf-syntax-ns

104 A. Chornyi, A. Berko

Fig. 2. A pattern graph for person extraction from text

The bijection ℝ𝑛𝑛𝑃𝑃×𝑛𝑛𝑃𝑃 ↔ ℝ𝑛𝑛𝑃𝑃
2
, in this case, ensures the selection of a set of triples corresponding to

the size of the pattern graph at each stage. This is achieved through vectorization, where the vector represents
a set of triples 𝑇𝑇 ∈ 𝑇𝑇𝑑𝑑 of size |𝐺𝐺𝑃𝑃|, with 𝐺𝐺𝑃𝑃 being the pattern graph. Accordingly, considering that the set of
triples 𝑇𝑇 forms a matrix with three columns (𝑠𝑠,𝑝𝑝, 𝑜𝑜), the bijective function for this case takes the following
form.

 ℝ𝑛𝑛𝑃𝑃×3 ↔ ℝ3𝑛𝑛𝑃𝑃 , (8)

where 𝑛𝑛𝑃𝑃 = |𝐺𝐺𝑃𝑃|.
In turn, the application of filters to the vector ℝ3𝑛𝑛𝑃𝑃 ensures the verification of conformity with the

pattern’s structure.

 𝑓𝑓:ℝ3𝑛𝑛𝑃𝑃 → {𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓} (9)

The algorithmic complexity of the script presented in Code snippet 3 can be formally expressed as
follows.

 𝑂𝑂 = 𝑂𝑂𝐼𝐼 + 𝑂𝑂𝑊𝑊 , (10)

where 𝑂𝑂𝐼𝐼 – the complexity of INSERT clause, 𝑂𝑂𝑊𝑊 – the complexity of WHERE clause.
The complexity of the INSERT clause is always proportional to the amount of data, which in this case

is the product of the number of identified matches and the size of the pattern graph 𝐺𝐺𝑃𝑃.

 𝑂𝑂𝐼𝐼 = 𝑂𝑂(𝑘𝑘𝑛𝑛𝑃𝑃) , (11)

where 𝑘𝑘 is the number of identified subgraphs 𝐷𝐷𝑖𝑖 corresponding to the pattern 𝐺𝐺𝑃𝑃, and 𝑛𝑛𝑃𝑃 = |𝐺𝐺𝑃𝑃|.
The complexity of the WHERE clause, in the worst-case scenario where database indexing is not

considered, is NP-complete with respect to the size of the pattern; that is, if the pattern size is treated as a
variable component. Since the set of patterns is finite, the set of permissible 𝑛𝑛𝑃𝑃 = |𝐺𝐺𝑃𝑃| is also finite.

 |𝐺𝐺𝑃𝑃| ≪ ∞ (12)

Therefore, it is reasonable to assess the algorithm’s complexity for each individual pattern 𝐺𝐺𝑃𝑃 and for
variable input data in the form of a graph 𝐺𝐺.

For convenience, we introduced the coefficient 𝑚𝑚 as the cardinality of the pattern graph.

 𝑚𝑚 = 𝑛𝑛𝑃𝑃 = |𝐺𝐺𝑃𝑃| (13)

A pattern search algorithm in graph representations of textual data for an ontology construction system 105

In this case, the size of the graph 𝐺𝐺 can be represented by the variable 𝑛𝑛 = 𝑛𝑛𝐺𝐺 . Accordingly, the naïve
complexity of the WHERE clause can be expressed as (14).

 𝑂𝑂𝑊𝑊 = 𝑂𝑂(𝑛𝑛𝑚𝑚) = 𝑂𝑂(𝑛𝑛|𝐺𝐺𝑃𝑃|) (14)

Taking graph database indexing into account, specifically the use of SPO, POS, and OSP indexes, the

complexity degree decreases by at least one order (15).

 𝑂𝑂𝑊𝑊 = 𝑂𝑂(𝑛𝑛𝑚𝑚−1) (15)

Thus, the overall complexity of the script presented in Code snippet 3, for each pattern with
cardinality m, can be expressed as a polynomial of degree 𝑚𝑚 − 1.

PREFIX : <http://crocus.science/dpo/rule1/l#>

INSERT
{

GRAPH ?dGraph
{

?s1 ?p1 ?o1 .
?s2 ?p2 ?o2 .
?s3 ?p3 ?o3 .

}
GRAPH <http://localhost:3330/opgraph/meta>

{
?dGraph :type :subgraph

}
}

WHERE
{

SELECT ?dGraph ?s1 ?p1 ?o1 ?s2 ?p2 ?o2 ?s3 ?p3 ?o3
WHERE

{
GRAPH <http://localhost:3330/opgraph/morphism/dpo/d>

{
?s1 ?p1 ?o1.
?s2 ?p2 ?o2.
?s3 ?p3 ?o3.

}
FILTER (?s3 = ?o1)

FILTER (?s2 = ?s1)
FILTER (?p2 != ?p1)

FILTER (?p3 != ?p1)

BIND(IRI(CONCAT("http://localhost:3330/opgraph/d-graph-",
STRUUID())) AS ?dGraph)

}
}

Code snippet 3. Searching for isomorphic matches with the pattern 𝐺𝐺𝑃𝑃 using SPARQL.

106 A. Chornyi, A. Berko

 𝑂𝑂 = 𝑂𝑂(𝑛𝑛𝑚𝑚−1) + 𝑂𝑂(𝑘𝑘𝑘𝑘) , (16)

where n is the size of the input graph, represented by the set 𝑇𝑇𝑑𝑑 generated by executing the script shown in
Code snippet 2; 𝑚𝑚 is the cardinality of the pattern graph 𝐺𝐺𝑃𝑃 relative to which the transformation is performed;

and 𝑘𝑘 is the number of identified subgraphs 𝐷𝐷𝑖𝑖 corresponding to the pattern 𝐺𝐺𝑃𝑃.
Taking these substitutions into account, the overall complexity of the pattern search algorithm, which

consists of the sequential execution of the scripts presented in the Code snippet 2 and the Code snippet 3,
respectively, takes the following form.

 𝑂𝑂 = 𝑂𝑂(𝑛𝑛𝑚𝑚−1) + 𝑂𝑂(𝑘𝑘𝑘𝑘) + 𝑂𝑂(𝑚𝑚 × log(𝑛𝑛𝐺𝐺)) (17)

Let us consider the case where the input graph 𝐺𝐺 consists solely of subgraphs corresponding to the
pattern 𝐺𝐺𝑃𝑃. Then, the number of identified subgraphs 𝐷𝐷𝑖𝑖 will be 𝑘𝑘 ≈ 𝑛𝑛

𝑚𝑚
, which approximates the worst-case

scenario. In this case, the following statement (18) holds true.

 𝑂𝑂(𝑘𝑘𝑘𝑘)~𝑂𝑂(𝑛𝑛) (18)

In this case, the overall complexity of the pattern search algorithm turns into equation (19).

 𝑂𝑂 = 𝑂𝑂(𝑛𝑛𝑚𝑚−1) + 𝑂𝑂(𝑛𝑛) + 𝑂𝑂(𝑚𝑚 × log(𝑛𝑛𝐺𝐺)) (19)

Unlike the script presented in the Code snippet 2, which generates a homomorphic projection of the

pattern 𝐺𝐺𝑃𝑃 onto the graph 𝐺𝐺 and is universal for any patterns and graphs, Code snippet 3 is specific to each

pattern 𝐺𝐺𝑃𝑃, necessitating the implementation of an algorithm for the automated generation of pattern search
scripts. To this end, a formalism based on SPARQL filter blocks was introduced, representing filtering
operators in pairwise form, as opposed to a set of logical conditions combined using ‘AND’ or ‘OR’ operators
(Mennicke, Nagel, Kalo, Aumann, & Balke, 2017). This representation provides better insight into
regularities and enables the algorithmic generation of a filter set based on the structure of the pattern graph.

In order to develop an algorithm for the automatic generation of SPARQL filters, which are intended
to perform ‘shape-based’ matching with a pattern graph, the basic figures that constitute the overall structure
of an RDF graph were formalized (Fig. 3).

Fig. 3. Basic structures of an RDF graph.

A pattern search algorithm in graph representations of textual data for an ontology construction system 107

Next, the mathematical model of this algorithm is presented. Let a pattern graph be given.

 𝐺𝐺𝑃𝑃 = (𝑇𝑇, 𝑆𝑆,𝑃𝑃,𝑂𝑂), (20)

where 𝑇𝑇 = �𝑡𝑡0,𝑡𝑡1,𝑡𝑡2, … 𝑡𝑡𝑛𝑛−1� is a set of triples with cardinality 𝑚𝑚 = |𝐺𝐺𝑃𝑃|, defining the number of triples 𝑡𝑡𝑖𝑖 =
(𝑠𝑠𝑖𝑖 ,𝑝𝑝𝑖𝑖 , 𝑜𝑜𝑖𝑖), such that 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 (the set of subjects), 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 (the set of predicates/relations), and 𝑜𝑜𝑖𝑖 ∈ 𝑂𝑂 (the set
of objects).

The task was to develop an algorithm that generates a conjunction of constraints in the form of
SPARQL filters (21)

 Φ(𝐺𝐺𝑃𝑃) = �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(∙) (21)

where each filter represents either an equality (=) or inequality (≠) relation between the variables
{? 𝑠𝑠𝑖𝑖 , ? 𝑝𝑝𝑖𝑖 , ? 𝑜𝑜𝑖𝑖}.

The condition for an isomorphic match between the resulting subgraph 𝐷𝐷𝑖𝑖 and the pattern graph 𝐺𝐺𝑃𝑃 is

defined as the correspondence of all basic structures (Fig. 3) composing both 𝐷𝐷𝑖𝑖 and 𝐺𝐺𝑃𝑃. The filter generation
algorithm is implemented via cyclic pairwise comparison of variables within the sets 𝑆𝑆,𝑃𝑃,𝑂𝑂 and cross-
comparison of elements in the sets 𝑆𝑆,𝑂𝑂. To optimize subsequent filter application, exclusion sets are created,
which include one of the indices from each pairwise comparison when the equality condition 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗 holds,

since this equality eliminates the need to compare other elements with 𝑥𝑥𝑗𝑗 if a comparison with 𝑥𝑥𝑖𝑖 has already
been performed.

Thus, the creation of filters for verifying the correspondence of 𝐷𝐷𝑖𝑖 to all subject stars of 𝐺𝐺𝑃𝑃 (Fig. 3) is
implemented according to the following logic.

∀𝑖𝑖, 𝑗𝑗(0 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑚𝑚) 𝜙𝜙𝑖𝑖,𝑗𝑗

(𝑠𝑠):

�(𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑗𝑗) ↔ (? 𝑠𝑠𝑖𝑖 =? 𝑠𝑠𝑗𝑗) ⋀ ((𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑗𝑗) → (𝑗𝑗 ∈ 𝐸𝐸𝑠𝑠))�
(22)

Similarly, for filters corresponding to object stars (Fig. 3) is expressed as (23).

∀𝑖𝑖, 𝑗𝑗(0 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑚𝑚) 𝜙𝜙𝑖𝑖,𝑗𝑗

(𝑜𝑜):

�(𝑜𝑜𝑖𝑖 = 𝑜𝑜𝑗𝑗) ↔ (? 𝑜𝑜𝑖𝑖 =? 𝑜𝑜𝑗𝑗) ⋀ ((𝑜𝑜𝑖𝑖 = 𝑜𝑜𝑗𝑗) → (𝑗𝑗 ∈ 𝐸𝐸𝑜𝑜))�
(23)

The generation of filters to verify the correspondence of 𝐷𝐷𝑖𝑖 to all chains in 𝐺𝐺𝑃𝑃 (Fig. 3) is performed
using a cross-comparison logic between the elements of 𝑆𝑆,𝑂𝑂.

∀𝑖𝑖, 𝑗𝑗(0 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑚𝑚) 𝜙𝜙𝑖𝑖,𝑗𝑗

(𝑠𝑠𝑠𝑠):

�(𝑠𝑠𝑖𝑖 = 𝑜𝑜𝑗𝑗) ↔ (? 𝑠𝑠𝑖𝑖 =? 𝑜𝑜𝑗𝑗) ⋀ ((𝑠𝑠𝑖𝑖 = 𝑜𝑜𝑗𝑗) → ((𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑠𝑠𝑠𝑠))�
(24)

An integral part of the isomorphism of the basic graph structures (Fig. 3) is the correspondence of all
predicates within them, which is implemented as (25).

∀𝑖𝑖, 𝑗𝑗(0 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑚𝑚) 𝜙𝜙𝑖𝑖,𝑗𝑗

(𝑝𝑝):

�(𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑗𝑗) ↔ (? 𝑝𝑝𝑖𝑖 =? 𝑝𝑝𝑗𝑗) ⋀ ((𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑗𝑗) → (𝑗𝑗 ∈ 𝐸𝐸𝑝𝑝))�
(25)

The indices of elements that should not participate in filtering are added to the exclusion sets.

 𝐸𝐸𝑠𝑠 ⊆ {0, … ,𝑚𝑚 − 1}, (26)

108 A. Chornyi, A. Berko

𝐸𝐸𝑜𝑜 ⊆ {0, … ,𝑚𝑚 − 1},

𝐸𝐸𝑝𝑝 ⊆ {0, … ,𝑚𝑚 − 1},

𝐸𝐸𝑠𝑠𝑠𝑠 ⊆ {(𝑖𝑖, 𝑗𝑗)|𝑖𝑖 < 𝑗𝑗, 𝑖𝑖 < 𝑚𝑚}

Thus, the resulting constraint function takes the form shown below.

Φ(𝑃𝑃) = �𝜙𝜙𝑖𝑖,𝑗𝑗

(𝑠𝑠)

𝑖𝑖<𝑗𝑗
𝑗𝑗∉𝐸𝐸𝑠𝑠

⋀� 𝜙𝜙𝑖𝑖,𝑗𝑗
(𝑝𝑝)⋀� 𝜙𝜙𝑖𝑖,𝑗𝑗

(𝑜𝑜)

𝑖𝑖<𝑗𝑗
𝑗𝑗∉𝐸𝐸𝑜𝑜

𝑖𝑖<𝑗𝑗
𝑗𝑗∉𝐸𝐸𝑝𝑝

⋀ � 𝜙𝜙𝑖𝑖,𝑗𝑗
(𝑠𝑠𝑠𝑠)

𝑖𝑖<𝑗𝑗
(𝑖𝑖,𝑗𝑗)∉𝐸𝐸𝑠𝑠𝑠𝑠

.
(27)

The implementation of this algorithm was carried out in Java. By integrating this method into the
algorithm for generating the selection vector ℝ𝑛𝑛𝑃𝑃

2
 of the bijection ℝ𝑛𝑛𝑃𝑃×𝑛𝑛𝑃𝑃 ↔ ℝ𝑛𝑛𝑃𝑃

2
 and applying it to our

pattern graph (Fig. 2), we obtained the SPARQL query shown in the Code snippet 4.
Evidently, the variable indices in the generated SPARQL query (Code snippet 4) depend on the order

of the triples in the pattern as read from the graph database. However, comparing Code snippet 4 and Code
snippet 3 in terms of filtering, it is clear that the automatically generated filter block is more comprehensive
and accounts for constraints that may not be immediately obvious to a human. This implementation ensures

the isomorphism of subgraphs 𝐷𝐷𝑖𝑖 ⊆ 𝐺𝐺 with the pattern graph 𝐺𝐺𝑃𝑃 without human intervention.

The development of an algorithm for the automatic search of morphisms to a pattern graph specified

in RDF format enabled the experimental evaluation of its runtime complexity. The algorithm was
implemented using the intelligent agent CROCUS (Chornyi & Dosyn Dmytro, 2025). The test data consisted
of sets of sentences, each containing a match to the pattern shown in Fig. 2. The number of textual blocks,
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, ranged from 1 to 100 sentences, with a step of 1 sentence for the range 1 – 20 and a step of 5 sentences
for the range 20 – 100. Additionally, for each block of sentences, the values of 𝑛𝑛 – the cardinality of the triple

set 𝑇𝑇𝑑𝑑 generated in the first part of the algorithm (Code snippet 2) – and 𝑛𝑛𝐺𝐺 – the size of the syntactic graph
(number of triples) – were computed.

SELECT ?s0 ?p0 ?o0 ?s1 ?p1 ?o1 ?s2 ?p2 ?o2
WHERE

{
 GRAPH <http://localhost:3330/opgraph/rule1/dpo/l>
 {
 ?s0 ?p0 ?o0 .
 ?s1 ?p1 ?o1 .
 ?s2 ?p2 ?o2 .
 }

FILTER(?s0 != ?s1)
 FILTER(?p0 != ?p1)
 FILTER(?o0 != ?o1)
 FILTER(?s0 != ?s2)
 FILTER(?p0 = ?p2)
 FILTER(?o0 = ?o2)
 FILTER(?s1 = ?s2)
 FILTER(?s0 = ?o1)
}

Code snippet 4. SPARQL query for searching the vector ℝ𝑛𝑛𝑃𝑃
2
.

A pattern search algorithm in graph representations of textual data for an ontology construction system 109

During the study, the actual runtime 𝑇𝑇 of the pattern search algorithm in the syntactic graph was
measured, along with the runtime upon repeated execution 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (to evaluate the impact of graph database
server caching algorithms). Additionally, the reduction in runtime upon repetition, ∆𝑇𝑇/𝑇𝑇, was calculated, as
well as the expected runtime complexity of the algorithm, 𝑂𝑂𝑇𝑇, based on the previously derived polynomial
complexity 𝑂𝑂𝑇𝑇 = 𝑛𝑛𝑚𝑚−1 + 𝑛𝑛 + 𝑚𝑚 × log (𝑛𝑛𝐺𝐺).

The results of the study are illustrated in Fig. 4, Fig. 5 and Fig. 6.

Fig. 4. Calculated and experimental runtime complexity of the algorithm for searching subgraphs isomorphic

 to a pattern of cardinality m=3 in the syntactic graph of a text block ranging from 1 to 20 sentences.

Fig. 5. Calculated and experimental runtime complexity of the algorithm for searching subgraphs isomorphic

 to a pattern of cardinality m=3 in the syntactic graph of a text block ranging from 20 to 100 sentences.

110 A. Chornyi, A. Berko

Fig. 6. Relative runtime reduction of the algorithm for searching subgraphs isomorphic to a pattern of cardinality

m=3 in the syntactic graph of a text block ranging from 1 to 100 sentences upon repeated execution.

Conclusions

The experimental studies conducted in this work demonstrate the temporal complexity of a pattern
search algorithm (subgraph isomorphism) within syntactic graphs of textual blocks of varying sizes. The
main results indicate the effectiveness of the proposed approach, which leverages a graph database server.
Even the use of basic indexing schemes, such as SPO, POS, and OSP, significantly optimizes subgraph search
and reduces the theoretically exponential complexity to a practically manageable level.

The results show a stable increase in algorithm execution time as the size of textual blocks grows,
consistent with the underlying mathematical complexity model. At the same time, repeated executions of the
algorithm are substantially faster due to server-level caching, with observed reductions in execution time of
up to 73% for small textual blocks.

It is observed that the algorithm’s complexity scales approximately as 𝑂𝑂(𝑛𝑛𝑚𝑚−1), as the highest degree
of equation (19), where 𝑛𝑛 is the size of the input syntactic graph and 𝑚𝑚 is the cardinality of the pattern graph.
This finding aligns with theoretical predictions and demonstrates an acceptable level of scalability for
practical applications in ontology construction from text.

Fig. 4 illustrates deviations of actual execution time from theoretical expectations when the size of
textual blocks exceeds 60 sentences. This behavior is attributed to server cache overflow, as evidenced by
the relative execution time reduction observed during repeated runs (Fig. 6). These deviations are not critical,
remaining within the bounds of polynomial complexity, but should be considered in practical
implementations of text-based ontology construction systems.

Based on the experimental data and analysis, it can be concluded that employing syntactic-semantic
transformations with formalized pattern search via SPARQL-based algorithms constitutes an effective
approach for the automatic derivation of ontological modeling rules from natural language texts. The results
confirm the feasibility of implementing such transformations within graph databases for textual data volumes
sufficient to carry contextual information.

A pattern search algorithm in graph representations of textual data for an ontology construction system 111

This opens prospects for applying the proposed approach to broader semantic analysis tasks,
knowledge integration, and natural language understanding, particularly in educational and medical domains
where accuracy and scalability of information processing are critical.

Thus, this work makes a significant contribution to the fields of natural language processing and
ontology engineering by proposing flexible, formalized, and efficient methods for transforming textual data
into semantic graphs, with mathematically guaranteed correctness and practical implementation using graph
database servers.

REFERENCES

Al-Ghezi, A., & Wiese, L. (2024). Analyzing workload trends for boosting triple stores performance. Elsevier Ltd.
doi:doi.org/10.1016/j.is.2024.102420

Ali, W., Saleem, M., Yao, B., Hogan, A., & Ngonga Ngomo, A.-C. (2021). A Survey of RDF Stores & SPARQL
Engines for Querying Knowledge Graphs. The VLDB Journal, 1-26. doi:doi.org/10.1007/s00778-021-
00711-3

Andersen, J. L., Davoodi, A., Fagerberg, R., Flamm, C., Fontana, W., Kolčák, J., . . . Nøjgaard, N. (2024, Apr 3).
Automated Inference of Graph Transformation Rules. doi:10.48550/arXiv.2404.02692

Chornyi, A., & Dosyn Dmytro. (2025). Development of a unified output format for text parsers in the ontology
construction system from text documents. Journal of Lviv Polytechnic National University "Information
Systems and Networks". doi:10.23939/sisn2025.17.170

Duval, D., Echahed, R., & Prost, F. (2020). An Algebraic Graph Transformation Approach for RDF and SPARQL.
Eleventh International Workshop on Graph Computation Models (GCM 2020) (pp. 55-70). EPTCS.
doi:10.4204/EPTCS.330.4

König, H., & Stünkel , P. (2020). Single Pushout Rewriting in Comprehensive Systems. Graph Transformation.
ICGT 2020. Lecture Notes in Computer Science(), vol 12150. Springer, (pp. 91-108).
doi:doi.org/10.1007/978-3-030-51372-6_6

Mennicke, S., Nagel, D., Kalo, J.-C., Aumann, N., & Balke, W.-T. (2017). Reconstructing Graph Pattern Matches
Using SPARQL. Lernen, Wissen, Daten, Analysen, LWDA 2017 - Conference Proceedings (pp. 152-164).
Rostock, Germany: CEUR-WS. Retrieved from https://ceur-ws.org/Vol-1917/paper24.pdf

Mežnar, S., Bevec, M., Lavrač, N., & Škrlj, B. (2022). Ontology Completion with Graph-Based Machine Learning:
A Comprehensive Evaluation. Machine Learning and Knowledge Extraction, 1107-1123.
doi:doi.org/10.3390/make4040056

Mousavi, H., Kerr, D., Iseli, M., & Zaniolo, C. (2014). Harvesting Domain Specific Ontologies from Text.
International Conference on Semantic Computing. Newport Beach, CA, USA. doi:10.1109/ICSC.2014.12

Pokorný, J., Valenta, M., & Troup, M. (2018). Indexing Patterns in Graph Databases. Proceedings of the 7th
International Conference on Data Science, Technology and Applications (DATA 2018) (pp. 313-321).
Science and Technology Publications, Lda. doi: 10.5220/0006826903130321

RDF 1.2 Schema. (2025, September). Retrieved from www.w3.org: https://www.w3.org/TR/rdf12-schema/
Salehpour, M., & Davis, J. G. (2021). A Comparative Analysis of Knowledge Graph Query Performance. Third

International Conference on Transdisciplinary AI (TransAI), (pp. 33-40).
doi:10.1109/TransAI51903.2021.00014

Söldner, R., & Plump, D. (2024, October 04). Formalising the double-pushout approach to graph transformation.
Logical Methods in Computer Science, 3:1–3:37. doi:10.46298/LMCS-20(4:3)2024

Stünkel, P., & König, H. (2021). Single pushout rewriting in comprehensive systems of graph-like structures.
Theoretical Computer Science, 23-43. doi:doi.org/10.1016/j.tcs.2021.07.002

112 A. Chornyi, A. Berko

АЛГОРИТМ ПОШУКУ ШАБЛОНІВ У ГРАФОВОМУ ПОДАННІ
ТЕКСТОВИХ ДАНИХ ДЛЯ СИСТЕМИ ПОБУДОВИ ОНТОЛОГІЇ

Андрій Чорний1, Андрій Берко2

1, 2 Національний університет “Львівська політехніка”,
кафедра інформаційних систем та мереж, Львів, Україна

1 E-mail: andrii.o.chornyi@lpnu.ua, ORCID: 0009-0007-4005-4088
2 E-mail: andrii.y.berko@lpnu.ua, ORCID: 0000-0001-6756-5661

© Чорний А., Берко А., 2025

У статті представлено розроблення та формалізацію алгоритму пошуку шаблонів у гра-
фових представленнях текстових даних як ключового компонента синтаксико-семантичних
трансформацій для побудови онтологій із текстових документів. Розглянуто проблему поєднання
опрацювання природної мови та логічного формалізму шляхом запропонування універсального
механізму на основі SPARQL для виконання правил трансформації на серверах графових баз
даних. Підхід використовує графові бази даних для представлення синтаксичних графів та засто-
совує формальні методи трансформації графів, включаючи метод Double Pushout (DPO), щоб
забезпечити математично обґрунтований та коректний пошук шаблонів і застосування правил.

У межах цього дослідження було розроблено та проаналізовано алгоритм для визначення
гомоморфних та ізоморфних збігів підграфів шаблонів у синтаксичних графах, використовуючи
представлення RDF та SPARQL-запити, доповнені алгоритмами генерації фільтрів для пошуку за
формою. Показано, що складність пошуку шаблонів може бути ефективно знижена завдяки стра-
тегіям індексації в графових базах даних, таким як SPO, POS та OSP, що зменшує експоненційну
складність до поліноміальної для практичних розмірів текстових блоків. Експериментальна
оцінка підтвердила масштабованість та ефективність запропонованого підходу, демонструючи
суттєве скорочення часу виконання при повторних запусках завдяки кешуванню на сервері.

Робота вносить гнучкі, формалізовані та ефективні методи для автоматичного побудови
онтологій з текстів природною мовою, забезпечуючи глибокий семантичний аналіз та причинно-
наслідкове мислення. Підхід підтримує розширюваність та динамічне введення правил без пере-
компіляції коду, що робить його придатним для реальних систем семантичних мереж та вилу-
чення знань. Отримані результати мають значення для обробки природної мови, інженерії онто-
логій та застосувань, що потребують інтерпретованості та масштабованості при обробці складних
текстових даних.

Ключові слова – побудова онтологій, синтаксико-семантична трансформація, SPARQL,
пошук шаблонів, ізоморфізм графів, обробка природної мови, формалізація правил.

	UDC 004.89
	A PATTERN SEARCH ALGORITHM IN GRAPH REPRESENTATIONS OF TEXTUAL DATA FOR AN ONTOLOGY CONSTRUCTION SYSTEM
	Andrii Chornyi1, Andrii Berko2
	Problem statement
	Analysis of Recent Studies and Publications
	Formulation of the Article’s Objective
	Main Results
	Conclusions
	REFERENCES
	АЛГОРИТМ ПОШУКУ ШАБЛОНІВ У ГРАФОВОМУ ПОДАННІ ТЕКСТОВИХ ДАНИХ ДЛЯ СИСТЕМИ ПОБУДОВИ ОНТОЛОГІЇ
	Андрій Чорний1, Андрій Берко2

