INFORMATION SYSTEMS AND NETWORKS

Issue 18, part 2, 2025

https://doi.org/10.23939/sisn2025.18.2.096

UDC 004.89

APATTERN SEARCHALGORITHM
IN GRAPH REPRESENTATIONS OF TEXTUAL DATA
FOR AN ONTOLOGY CONSTRUCTION SYSTEM

Andrii Chornyi', Andrii Berko?

1.2 Lviv Polytechnic National University,

Information Systems and Networks Department, Lviv, Ukraine,
! E-mail: andrii.o.chornyi@Ipnu.ua, ORCID: 0009-0007-4005-4088
2 E-mail: andrii.y.berko@Ipnu.ua, ORCID: 0000-0001-6756-5661

© Chornyi A., Berko A., 2025

The article presents the development and formalization of an algorithm for pattern matching in
graph representations of textual data as a core component of syntactic-semantic transformations for
ontology construction from text documents. The study aims to bridge the gap between natural language
processing and formal logic by introducing a universal SPARQL-based approach for executing transf-
ormation rules directly on graph database servers. The proposed method integrates RDF data repre-
sentation with formal graph transformation techniques, including Double Pushout (DPO), ensuring
correctness and mathematical rigor. Through the use of graph indexing schemes such as SPO, POS, and
OSP, the proposed approach transforms the computationally expensive subgraph isomorphism task from
exponential to practical polynomial complexity. The implementation achieves up to 73% runtime
reduction during repeated executions due to server-side caching. The research contributes a flexible,
formalized, and scalable mechanism for automatic ontology construction, facilitating deep semantic ana-
lysis and causal reasoning from textual sources. The algorithm’s extensibility allows dynamic rule
introduction without recompilation, making it suitable for applications in semantic web systems, kno-
wledge extraction, and Al-driven natural language understanding.

Within the scope of this research, an algorithm was developed and analyzed for identifying
homomorphic and isomorphic matches of pattern subgraphs within syntactic graphs, leveraging RDF
representations and SPARQL queries enhanced with filter generation algorithms for shape-based mat-
ching. The study demonstrates that the complexity of pattern search can be effectively mitigated through
graph database indexing strategies, such as SPO, POS, and OSP indexes, reducing exponential complexity
to polynomial levels for practical text block sizes. Experimental evaluation confirmed the scalability and
efficiency of the proposed approach, revealing substantial runtime reductions during repeated executions
as a result of server-side caching.

The work contributes flexible, formalized, and efficient methods for automatic ontology construction
from natural language texts, enabling deep semantic analysis and causal reasoning. The approach supports
extensibility and dynamic rule introduction without code recompilation, making it suitable for real-world
semantic web and knowledge extraction systems. The results have implications for NLP, ontology engineering,
and applications requiring interpretability and scalability in processing complex textual data.

Keywords - ontology construction, syntactic-semantic transformation, SPARQL, pattern mat-
ching, graph isomorphism, natural language processing, rule formalization.

A pattern search algorithm in graph representations of textual data for an ontology construction system 97

Problem statement

The search for a compromise solution in representing deductive rules for ontology construction from
text is a pressing issue situated at the intersection of natural language processing and logical formalism in
ontology engineering. The challenge lies in developing a set of rules that are both intuitively comprehensible
to humans and, at the same time, formally rigorous and accessible for automated computer processing.
Contemporary approaches demonstrate that successful ontology construction from text is feasible only
through the use of logical axioms expressed in a controlled language, which reduces the inherent ambiguity
of natural language while preserving sufficient expressiveness for knowledge modeling. Thus, the com-
promise is achieved by designing formal yet flexible constructs that can subsequently be translated into
description logic or related formalisms.

One promising direction involves the development of logical constructs that are independent of any
specific programming language or tool, thereby enhancing both the interoperability and the comprehend-
sibility of the rules for humans and machines alike.

The extension of the deductive approach to the task of natural language text recognition, with consideration
of causal reasoning, opens new opportunities in semantic analysis and machine learning. Rule-oriented constructs,
in which the left-hand side represents the cause and the right-hand side the effect, enable the direct formalization
of causal relations within ontologies. This, in turn, enhances the depth of modeling by allowing not only the
extraction of facts but also the interpretation of causal interactions in texts—an aspect critically important for
intelligent analysis and decision-making in complex domains. The formalization of deductive rules for ontology
construction from text holds the potential to transcend the boundaries of NLP, addressing diverse causality-related
tasks across fields ranging from medicine to the social sciences and engineering.

Analysis of Recent Studies and Publications

One of the earliest practical implementations of a rule-oriented approach to ontology construction from
text was proposed in the OntoHarvester system (Mousavi, Kerr, Iseli, & Zaniolo, 2014). This system is based on
deep NLP and employs the SemScape framework, which transforms text into structured graphs (TextGraphs). In
these graphs, the vertices represent candidate terms, while the edges correspond to grammatical relations.

The idea of employing graph databases for representing syntactic graphs with the aim of unifying data
from multiple text parsers was introduced in the work of (Chornyi & Dosyn Dmytro, 2025). This approach
is intended to improve the accuracy of subsequent ontology construction through rule-oriented trans-
formations into semantic graphs. Furthermore, using a graph database server with the Apache Jena Fuseki
Java library, the study demonstrates the possibility of optimizing transformation efficiency by means of query
result caching. The findings indicate that repeated execution of data retrieval queries from a syntactic graph
is significantly faster than the initial execution. This feature, combined with the formalization of syntactic-
semantic transformation rules within an ETL (Extract, Transform, Load) process — where Extract denotes
retrieval from the syntactic graph — opens new opportunities for performance optimization through the
clustering of queries by dataset. In this work, a practical implementation of syntactic-semantic transfor-
mation as an ETL process was developed at the level of a graph database server using the widely adopted
SPARQL query language. Such an implementation allows new rules to be introduced on the fly, since
executing new scripts does not require code compilation. Nevertheless, challenges remain with the classi-
fication and clustering of scripts, as this would necessitate the development of a custom SPARQL interpreter.
Consequently, as part of the continued development of the ontology construction system from text, the
formalization of transformation rules in a graph-based representation was proposed.

In addition, ETL is traditionally understood as a data integration workflow oriented toward batch
processing, in which data are typically transformed outside the target system prior to loading. ETL operates
in the context of data streams and practical data handling, with its transformations being less formalized and
primarily optimized for the efficient processing of large data volumes. Overall, ETL may constitute a chain
of multiple transformations involving different architectural layers.

98 A. Chornyi, A. Berko

The formalization of rules for syntactic—semantic transformations at the graph level necessitates the
adoption of a more atomic formalism, one that provides mathematically grounded operations with guarantees
of correctness. One such formalism is the Double-Pushout (DPO) approach. In particular, (Séldner & Plump,
2024) present a general formalization of the foundations of the DPO method for graph transformations. Their
work offers an in-depth and rigorous formalization of DPO graph transformation theory, accompanied by
original and detailed proofs of fundamental results. Of particular practical importance for graph-based
syntactic—semantic transformations is the validation of the Church—Rosser property, which ensures that
parallel and independent rule applications can be reordered while still yielding isomorphic results. To this
end, the concepts of parallel and sequential independence were introduced, with the proofs relying on the
decomposition and permutation of pushout diagrams.

Authors (Andersen, et al., 2024) present a method for the automatic inference of graph transformation
rules, which combines generative and dynamic approaches. The authors posit that the DPO framework serves
as the foundational basis for this method. The proposed approach is oriented toward reverse engineering:
known system transitions (i.e., graph dynamics) are provided as input, and the task is to construct a minimal
set of DPO rules capable of reproducing these transitions. Furthermore, the DPO formalism enables the
formalization and resolution of the model compression problem: initially, maximal rules corresponding to
each individual transition are reduced to a set of candidate subrules, from which a minimal subset is selected
that generates all transformation transitions. This approach is particularly valuable for creating graph
dynamic models that are both compact and accurate.

A graph transformation approach similar to DPO, namely the Pushout-Image (POIM) method, is
presented by (Duval, Echahed, & Prost, 2020). This approach provides a formal modeling of RDF and
SPARQL based on category theory and algebraic graph transformations. RDF graphs and SPARQL templates
are treated as objects of specific categories, with a clear distinction between the roles of variables and blank
nodes. POIM interprets CONSTRUCT queries as graph rewriting rules L—K<«R and executes them in two
steps: first, the input graph is merged with the template by substituting variables and creating new blank
nodes; second, all elements not included in the result are pruned. The authors demonstrate that the approach
reproduces the official SPARQL semantics for both CONSTRUCT and SELECT queries, with SELECT
queries implemented via translation into corresponding CONSTRUCT queries. Unlike classical methods
such as DPO or MPOC-PO, POIM is specifically oriented toward generating query results without retaining
extraneous data and can be generalized to other graph data models, with the potential for optimization
through efficient matching algorithms.

A somewhat simpler approach to graph transformations is the Single Pushout (SPO) method, which is
described in (Kdnig & Stunkel , 2020) as a categorical approach to graph transformations based on the use
of partial morphisms and a single pushout. The core idea is that element deletion is performed automatically
together with associated edges, which simplifies rule application and renders this approach technically less
restrictive compared to the Double Pushout (DPO) method. The key distinction from DPO lies in the absence
of a gluing condition and the need to compute a complement, allowing SPO to apply rules more rapidly,
albeit with less stringent control over the structural integrity of the graph.

In another study (Stiinkel & Konig, 2021), SPO is presented as a practically oriented tool for
transformations in systems of graph-like structures. The authors emphasize that, due to its simpler application
conditions, SPO is well-suited for experimental scenarios, particularly those permitting the automatic
removal of “dangling” elements. Unlike DPO, which focuses on rigorous analysis of properties and rule
conflicts, SPO provides greater flexibility and speed in syntactic-semantic transformation tasks, although
additional mechanisms are required to restore integrity in cases where semantics play a critical role.

In the work (Meznar, Bevec, Lavra¢, & Skrlj, 2022), SPO is discussed within the broader context of
graph-based methods applied to ontology learning and completion tasks. The authors highlight that flexible
graph transformations, such as SPO, can serve as a mechanism for preprocessing and restructuring
knowledge structures, which are subsequently utilized by machine learning algorithms. This facilitates the
creation of new connections between concepts and the refinement of semantic relationships, which is

A pattern search algorithm in graph representations of textual data for an ontology construction system 99

essential for ontology modeling. Unlike DPO, where strictness and conflict control are paramount, SPO
enables rapid and intuitive modifications, making it a practical tool for systems focused on integrating
syntactic and semantic levels of knowledge processing.

The first and characteristic step common to any approach to graph transformation (SPO, DPO, or
POIM) is the search for a subgraph in the source graph according to a given pattern. In the study (Mennicke,
Nagel, Kalo, Aumann, & Balke, 2017), the SPARQL query language — designed for working with RDF data
— is examined in relation to classical notions of pattern matching in graph theory. The authors demonstrate
that basic graph patterns (BGPs) combined with filters in SPARQL can reproduce results equivalent to
subgraph isomorphism, whereas the use of BGPs alone without filters corresponds to matches based on dual
simulation. They further analyze the limitations of dual simulation and show that the introduction of local
constraints on match size and the pruning of irrelevant elements makes it possible to formulate queries that
capture strong simulation, which is computationally far more efficient than isomorphism. This work thus
provides a novel perspective on the expressive power of SPARQL and outlines the potential of strong
simulation for optimizing query processing in large graph databases. A comparative table of the three
approaches discussed in the study is provided below.

Table 3
Approaches to Pattern Matching in Graphs
(Mennicke, Nagel, Kalo, Aumann, & Balke, 2017)
Approach Matching Match Correspondence | Computational Specific
Requirements Size in SPARQL Complexity Features
The match
structure must)
fully correspond | Exactlyas | . BG.P T The strictest
Subgraph to the pattern in the inequality filter NP-complete match, with no
Isomorphism (bijective pattern on a_I_I vqri_ables “extra” nodes
mapping of (bijectivity) or edges
nodes and edges)
Edge direction is
preserved both May return
forward and large matches,
. Dual_ backward; 'V'?y be BGP on_Iy Polynomial ?ncluding
Simulation o arbitrary (without filter) .
additional irrelevant
nodes/edges are elements
allowed
As in dual
simulation, but: Combination of More
(1) size is Locally BGPs + diameter controlled
Strong bounded by the bounded constraint (via Polynomial matching,
Simulation pattern diameter, by 0in and center suitable for
(2) only relevant | diameter] heck search
nodes and edges check) optimization
are retained

Assignificant role in the computational efficiency of each pattern-matching algorithm is played by the
technologies of storage, indexing, processing, and optimization of SPARQL queries in graph database
management systems.

In particular, the efficiency of storing RDF graphs using different indexing approaches for rapid
pattern-based triple retrieval is examined in the study (Ali, Saleem, Yao, Hogan, & Ngonga Ngomo, 2021).
The most common approach is the creation of six indexes for all permutations of triples: SPO, SOP, PSO,

100 A. Chornyi, A. Berko

POS, OSP, and OPS. These indexes enable efficient support for all possible query patterns, ensuring
O(log (n)) access time to data regardless of the position of variables or constants within a triple. Some
systems employ three key indexes (SPO, POS, OSP), which already cover all query types, while others
construct the full set of six to achieve higher performance. The article also discusses more advanced types
of indexes, such as entity-based, property-based, and path indexes, which are used to optimize star queries,
path queries, and complex structural searches in graphs.

As graph database management systems continue to evolve rapidly, research and development efforts
increasingly focus on novel indexing methods in addition to the standard ones. In particular, the work (Al-
Ghezi & Wiese, 2024) demonstrates that for the efficient operation of distributed triple stores, it is not only
the presence of basic indexes such as SPO, POS, and OSP that matters, but also the adaptation of their
configuration to the current workload. The dynamic index management approach implemented in the
UniAdapt system proposed by the authors improves SPARQL query performance while optimizing the use
of limited disk space and main memory.

The study (Salehpour & Davis, 2021) introduces another novel approach to RDF data indexing for the
optimization of SPARQL query execution, based on the concept of Extended Characteristic Sets (ECS). The
primary focus is on how this index enables efficient processing of complex queries involving numerous
object-subject and subject-subject joins, which typically pose challenges for traditional systems.

The ongoing trend of continuous development and optimization in graph database management
systems suggests the appropriateness of performing syntactic-semantic transformations directly at the
database level using the SPARQL language. Moreover, this approach provides flexibility in selecting a graph
database management system and identifying the optimal solution for improving the overall performance of
syntactic-semantic transformation algorithms.

Formulation of the Article’s Objective

The objective of this study is to develop and formalize an algorithm for pattern matching in graph
representations of textual data as a key stage of syntactic—semantic transformations. This approach will enable an
intuitive, human-understandable interpretation of transformation rules and provide a foundation for a universal
mechanism for their subsequent execution at the graph database server level using the SPARQL language.

Main Results

Regardless of the specific approach to syntactic-semantic transformation, each rule typically consists
of a left-hand side (LHS), which defines the structure to be matched in the syntactic graph, and a right-hand
side (RHS), which specifies the structure to be created in the semantic graph.

Transformation

LS R RHS

Fig. 1. General scheme of a syntactic—semantic transformation rule

In all cases, the initial stage of the transformation involves a common task — finding a pattern in the
source graph, in this instance, in the syntactic graph. The pattern is defined as the subgraph specified in the
left-hand side of the transformation rule. Furthermore, the algorithm for solving this task exhibits the highest
time complexity compared to the other stages of syntactic—semantic transformation.

A pattern search algorithm in graph representations of textual data for an ontology construction system 101

The main objective of the study at this stage is to represent the pattern of the target syntactic subgraph
in RDF format. To demonstrate the approach, a rule for creating person entities mentioned in the text in the
<First Name> — <Last Name> format is used (Chornyi & Dosyn Dmytro, 2025), specifically its left-hand
side, which can be described by the following condition:

If there exists a “compound” relation between nodes in the syntactic graph, and the subject and object
of this relation are, in turn, connected to the literal “PERSON” via a NamedEntity TagAnnotation relation.

@prefix nlp: <http://nlp.stanford.edu#> .

[1 nlp:NamedEntityTagAnnotation "PERSON" ;
nlp:compound [
nlp:NamedEntityTagAnnotation "PERSON"
1 -

The first challenge in the task of searching for graph patterns specified in RDF format is the
representation of abstract entities, in this case, nodes. In RDF, this is addressed through the concept of a
blank node. Thus, the pattern described above can be represented as follows.

The next challenge in addressing this task was the creation of a universal SPARQL script capable of
applying an RDF pattern with abstract (blank) nodes to a syntactic graph. To achieve this, the following
graph intersection logic was employed.

Let a pattern graph G, and a syntactic graph G be given, both consisting of triples.

t=(s,p,0)|t€EGp

! A A ! ! (1)
t'=("p,o") |t eq
Then, the comparison of triples from these two graphs can be expressed as follows.
p=0
(s,p,0) = (s',p',0") & { (s ="V Blank(s)) (2
(o = o' vV Blank(0))

Thus, the intersection of a pattern graph with a syntactic graph can be represented as (3).

GNGp={(s",p,0")€G|A(s,p,0) EGp: (p=p')A (s =5’ VBlank(s)) A)

(o = o' V Blank(0))}

In the form of a SPARQL script, such an intersection can be represented as a transformation into the
resulting graph D as illustrated in Code snippet 1, where:

<http://1ocalhost:3330/0opgraph/syngraph> is the syntactic graph,

<http://l1ocalhost:3330/o0pgraph/rulel/dpo/ 1> is the pattern graph,
<http://localhost:3330/opgraph/morphism/dpo/d> is the resulting graph.

A more complex task is the identification of abstract relations, since these are not predefined in RDF.
However, this can be addressed by representing the relation as a constant within a custom namespace, serving
as an artificial auxiliary entity, for example, provisionally as <crocus:abstractRelation>.

However, such a solution would significantly reduce the level of abstraction in the graph-based
representation of patterns, tying them to a specific implementation through a particular namespace. To avoid
this, the parent class of all predicates in the RDF namespace, namely <rdf:Property> (RDF 1.2 Schema,
2025), was used to represent abstract relations (predicates) in the patterns of the syntactic-semantic
transformation.

102 A. Chornyi, A. Berko

INSERT
{
GRAPH <http://localhost:3330/0opgraph/morphism/dpo/d>
{
?sd ?p ?od.
+
+
WHERE
GRAPH <http://localhost:3330/0opgraph/syngraph>
{
?sg ?p ?0g.-
BIND(?sg AS ?sd)
BIND(?0g AS ?o0d)
}
GRAPH <http://localhost:3330/opgraph/rulel/dpo/1>
{
?s ?p ?o.
BIND(IF(isBLANK(?s), ?sg), ?s) AS 7?sd)
BIND(IF(isBLANK(?0), ?0g), ?0) AS ?od)
}
by

Code snippet 1. Intersection of the graph G and the pattern G, with abstract nodes in SPARQL.

This formalism falls within the generally accepted concept according to which each triple contains a
predicate, and every predicate belongs to the class rdf:Property.

VsVpVo(Triple(s,p,0) = Property(p)) @
Property(p) = type(p,rdf: Property)
Accordingly, Code snippet 1 was transformed into the Code snippet 2.
Since this script compares each triple individually, it does not perform the task of subgraph pattern
matching but rather executes a “content-based” selection, instantiating the abstraction. In other words, it

searches for homomorphic matches of the pattern G, within the graph G.

Considering that the most computationally intensive operation in this script is the joining of triples
from both graphs, its complexity was evaluated as follows.

Let n,; denote the number of triples in the syntactic graph, and np the number of triples in the pattern
graph. Then, the complexity of triple matching for these graphs is 0(n;) and 0 (np), respectively.

Thus, the worst case corresponds to a naive join with a complexity of O(ng; X np).

In practice, the use of indexes such as SPO, POS, OSP, and others significantly reduces the extent of graph
traversal. Without indexes, the execution time grows exponentially, whereas with indexes it approaches near-
linear behavior even for large graphs (up to 100,000 nodes), as demonstrated in the study (Pokorny, Valenta, &
Troup, 2018). The complexity of this operation in a real-world setting is estimated to be (5).

O (min (ng,np) X log (max (ng, np))) ®)

Since in our case the pattern graph is always significantly smaller than the syntactic graph np « ng,
the actual (practical) complexity of this script can be expressed as (6).

0(np X log (ng)) (6)

Thus, the script presented in Code snippet 2 plays a crucial role in the graph pattern search algorithm.
First, it is universal for all types of RDF patterns and therefore does not require additional logic at the
application level of syntactic-semantic transformation. Second, it generates a graph for further processing

A pattern search algorithm in graph representations of textual data for an ontology construction system 103

that is smaller than the input syntactic graph, thereby reducing the computational cost of subsequent
operations. Third, at this stage, an important task is addressed — the instantiation of abstract nodes and
predicates, which in many cases constitute an integral part of graph patterns. Fourth, taking data indexing
into account, the algorithm exhibits relatively low complexity.

PREFIX rdf: nttp://www.w3.0rg/1999/02/22-rdf-syntax-ns#
INSERT
GRAPH <http://localhost:3330/opgraph/morphism/dpo/d>
{
?sd ?pd ?od.
}
+
WHERE
GRAPH <http://localhost:3330/opgraph/syngraph>
{
?sSg ?pg ?09g.
BIND(?sg AS ?sd)
BIND(?0g AS ?o0d)
}
GRAPH <http://localhost:3330/opgraph/rulel/dpo/1>
{
?s ?p ?o0.
BIND(IF(?p = rdf:Property, ?pg, ?p) AS ?pd)
BIND(IF(i#sBLANK(?s), ?sg), ?s) AS 7?sd)
BIND(IF(i1sBLANK(?0), ?0g), ?0) AS ?0d)
}
}
Code snippet 2. Intersection of the graph G and the pattern G, with abstract nodes and predicates in
SPARQL.
The result of the intersection G N Gp using the script from Code snippet 2 is a set of triples.
T; = {t € G| Match(t, Gp)} (7

That is, the set T,; contains all triples of the graph G that match at least one triple of the pattern graph
G p, but are not necessarily part of the subgraph D; corresponding to the pattern Gp.

The next challenge in this study was the search for isomorphic matches with the pattern graph G,
within the set T,;. In other words, it was necessary to employ the SPARQL language to reconstruct the
template in the form shown in Fig. 2, which is not explicitly evident in G N Gp.

As shown in Fig. 2, shaping the set of three triples requires the imposition of certain conditions, namely,
the equality of nodes for forming a star or a chain, as well as the equality of edges.

To address the task of searching for isomorphic matches with the pattern graph depicted in Fig. 2, a
SPARQL script (Code snippet 3) was developed. In the INSERT clause, it constructs a meta graph which
contains subgraphs representing the identified isomorphic correspondences to G,. The actual search for
isomorphisms is performed within the WHERE clause of the script. Isomorphism is achieved through the

use of the bijection R™P*"P « R™ and the application of the aforementioned conditions by means of
SPARQL filters (Mennicke, Nagel, Kalo, Aumann, & Balke, 2017).

http://www.w3.org/1999/02/22-rdf-syntax-ns

104 A. Chornyi, A. Berko

?s1 2p1 ?01

782

?p2

nlp:NamedEntityTagAnnotation nlp:NamedEntityTagAnnotation

702 703

Fig. 2. A pattern graph for person extraction from text

The bijection R™"P*"P «]R"Iz’, in this case, ensures the selection of a set of triples corresponding to
the size of the pattern graph at each stage. This is achieved through vectorization, where the vector represents
asetoftriplesT € T, of size |Gp|, with Gp being the pattern graph. Accordingly, considering that the set of

triples T forms a matrix with three columns (s, p, 0), the bijective function for this case takes the following
form.

]Rnpx3 PN R37’lp’ (8)
where np = |Gp|.
In turn, the application of filters to the vector R3" ensures the verification of conformity with the
pattern’s structure.
f:R3" > (true, false} 9)
The algorithmic complexity of the script presented in Code snippet 3 can be formally expressed as
follows.

where 0; —the complexity of INSERT clause, 0y, — the complexity of WHERE clause.
The complexity of the INSERT clause is always proportional to the amount of data, which in this case
is the product of the number of identified matches and the size of the pattern graph Gp.

0; = 0(knp), (11)

where k is the number of identified subgraphs D; corresponding to the pattern Gp, and np = |Gp|.

The complexity of the WHERE clause, in the worst-case scenario where database indexing is not
considered, is NP-complete with respect to the size of the pattern; that is, if the pattern size is treated as a
variable component. Since the set of patterns is finite, the set of permissible np = |Gp| is also finite.

|Gp| K 0 (12)

Therefore, it is reasonable to assess the algorithm’s complexity for each individual pattern G, and for
variable input data in the form of a graph G.
For convenience, we introduced the coefficient m as the cardinality of the pattern graph.

m =np = |Gp] (13)

A pattern search algorithm in graph representations of textual data for an ontology construction system 105

In this case, the size of the graph G can be represented by the variable n = n; . Accordingly, the naive
complexity of the WHERE clause can be expressed as (14).

Oy = 0(n™) = 0(nlGrh (14)

PREFIX : <http://crocus.science/dpo/rulel/1#>
INSERT

{
GRAPH ?dGraph
{
?sl ?pl 70l .
7?82 ?p2 ?02 .
?s3 ?p3 703 .

GRAPH <http://localhost:3330/opgraph/meta>
{
?dGraph :type :subgraph
+

}
WHERE

{
SELECT ?dGraph ?sl ?pl ?0l1 ?s2 ?p2 7?02 ?s3 ?p3 703
WHERE

{
GRAPH <http://localhost:3330/0opgraph/morphism/dpo/d>
{
?sl ?pl ?ol.
7?82 ?p2 ?02.
?s3 ?p3 ?03.

}
FILTER (?s3 = ?01)
FILTER (?s2 = ?s1)
FILTER (?p2 1= ?pl)
FILTER (?p3 1= ?pl)

BIND(IRI(CONCAT("http://1ocalhost:3330/opgraph/d-graph-"",
STRUUID())) AS ?dGraph)
+

}

Code snippet 3. Searching for isomorphic matches with the pattern G, using SPARQL.

Taking graph database indexing into account, specifically the use of SPO, POS, and OSP indexes, the
complexity degree decreases by at least one order (15).

0y = 0(n™1) (15)

Thus, the overall complexity of the script presented in Code snippet 3, for each pattern with
cardinality m, can be expressed as a polynomial of degree m — 1.

106 A. Chornyi, A. Berko

0=0n""1Y+0(km), (16)

where n is the size of the input graph, represented by the set T; generated by executing the script shown in
Code snippet 2; m is the cardinality of the pattern graph G relative to which the transformation is performed;
and k is the number of identified subgraphs D; corresponding to the pattern G .

Taking these substitutions into account, the overall complexity of the pattern search algorithm, which

consists of the sequential execution of the scripts presented in the Code snippet 2 and the Code snippet 3,
respectively, takes the following form.

0=0n""1) +0(km)+ 0(m x log(ng)) 17)

Let us consider the case where the input graph G consists solely of subgraphs corresponding to the
pattern Gp. Then, the number of identified subgraphs D; will be k = % which approximates the worst-case
scenario. In this case, the following statement (18) holds true.

0(km)~0(n) (18)
In this case, the overall complexity of the pattern search algorithm turns into equation (19).
0 =0m™1) +0(n) + 0(m xlog(ng)) (19)

Unlike the script presented in the Code snippet 2, which generates a homomorphic projection of the
pattern G, onto the graph G and is universal for any patterns and graphs, Code snippet 3 is specific to each

pattern Gp, necessitating the implementation of an algorithm for the automated generation of pattern search
scripts. To this end, a formalism based on SPARQL filter blocks was introduced, representing filtering
operators in pairwise form, as opposed to a set of logical conditions combined using *‘AND’ or ‘OR’ operators
(Mennicke, Nagel, Kalo, Aumann, & Balke, 2017). This representation provides better insight into
regularities and enables the algorithmic generation of a filter set based on the structure of the pattern graph.

In order to develop an algorithm for the automatic generation of SPARQL filters, which are intended
to perform ‘shape-based” matching with a pattern graph, the basic figures that constitute the overall structure
of an RDF graph were formalized (Fig. 3).

o=01=02=03 Pl P2
01=s2
Subject star Object star Chain/Path

Fig. 3. Basic structures of an RDF graph.

A pattern search algorithm in graph representations of textual data for an ontology construction system 107

Next, the mathematical model of this algorithm is presented. Let a pattern graph be given.
GP = (T' Sl Pr 0)' (20)

where T = {to,tl,tzj tn-1} is a set of triples with cardinality m = |Gp|, defining the number of triples t; =
(si,pi» 0;), such that s; € S (the set of subjects), p; € P (the set of predicates/relations), and o; € O (the set
of objects).

The task was to develop an algorithm that generates a conjunction of constraints in the form of
SPARQL filters (21)

®(Gp) = /\FILTER(-) 21)
where each filter represents either an equality (=) or inequality (#) relation between the variables
{?s1,7pi,7 0}

The condition for an isomorphic match between the resulting subgraph D; and the pattern graph G is
defined as the correspondence of all basic structures (Fig. 3) composing both D; and Gp. The filter generation

algorithm is implemented via cyclic pairwise comparison of variables within the sets S, P, 0 and cross-
comparison of elements in the sets S, 0. To optimize subsequent filter application, exclusion sets are created,

which include one of the indices from each pairwise comparison when the equality condition x; = x; holds,
since this equality eliminates the need to compare other elements with x; if a comparison with x; has already
been performed.

Thus, the creation of filters for verifying the correspondence of D; to all subject stars of G, (Fig. 3) is
implemented according to the following logic.

Vi, j(0 <i<j<m)ol:

(22)
[(si =5)) © si =2s) A ((s; =sj) = (j € Ey))]
Similarly, for filters corresponding to object stars (Fig. 3) is expressed as (23).
Vi j(0 <i<j<m)p?:
' (23)

[(0; = 0j)) & (0; =20)) A ((0; = 0) = (j € Ep))]

The generation of filters to verify the correspondence of D; to all chains in Gp (Fig. 3) is performed
using a cross-comparison logic between the elements of S, 0.

Vi j0 <i<j<m) ¢S

[(si =0;) © (?si =20)) A ((si = 0)) = ((i,)) € Esp))]

An integral part of the isomorphism of the basic graph structures (Fig. 3) is the correspondence of all
predicates within them, which is implemented as (25).

(24)

vi,j(0 < i <j<m) P

[(pi =p) © Cpi =2p) A((pi = ;) = (€ Ep))]

The indices of elements that should not participate in filtering are added to the exclusion sets.

(25)

E;<{0,..,m—1}, (26)

108 A. Chornyi, A. Berko
E, <{0,..,m—1},
E, c{0,..,m—1},
Eso S{(DN <j,i <m}
Thus, the resulting constraint function takes the form shown below.

o = [\ o)A\ oPn \olPn [\ o @)

i<j i<j i<j i<j
J&Eg JEEp J&E, (L)EEso

The implementation of this algorithm was carried out in Java. By integrating this method into the
algorithm for generating the selection vector R™ of the bijection R"P*"P R™ and applying it to our
pattern graph (Fig. 2), we obtained the SPARQL query shown in the Code snippet 4.

Evidently, the variable indices in the generated SPARQL query (Code snippet 4) depend on the order
of the triples in the pattern as read from the graph database. However, comparing Code snippet 4 and Code
snippet 3 in terms of filtering, it is clear that the automatically generated filter block is more comprehensive
and accounts for constraints that may not be immediately obvious to a human. This implementation ensures

the isomorphism of subgraphs D; © G with the pattern graph G, without human intervention.

SELECT ?s0 ?p0 ?00 ?sl1l ?pl ?0l1l ?s2 ?p2 7?02
WHERE
{
GRAPH <http://localhost:3330/opgraph/rulel/dpo/1>
{
?s0 ?p0 ?00 .
?sl ?pl ?ol .
?s2 ?p2 ?02 .
ks
FILTER(?s0O = 7?sl)
FILTER(?pO = ?pl)
FILTER(?00 != ?01)
FILTER(?s0O = ?s2)
FILTER(?p0 = ?p2)
FILTER(?00 = ?02)
FILTER(?s1l = ?s2)
FILTER(?sO = ?01)
3

Code snippet 4. SPARQL query for searching the vector R,

The development of an algorithm for the automatic search of morphisms to a pattern graph specified
in RDF format enabled the experimental evaluation of its runtime complexity. The algorithm was
implemented using the intelligent agent CROCUS (Chornyi & Dosyn Dmytro, 2025). The test data consisted
of sets of sentences, each containing a match to the pattern shown in Fig. 2. The number of textual blocks,
Nggnr, ranged from 1 to 100 sentences, with a step of 1 sentence for the range 1 — 20 and a step of 5 sentences
for the range 20 — 100. Additionally, for each block of sentences, the values of n — the cardinality of the triple

set T, generated in the first part of the algorithm (Code snippet 2) — and n; — the size of the syntactic graph
(number of triples) — were computed.

A pattern search algorithm in graph representations of textual data for an ontology construction system 109

During the study, the actual runtime T of the pattern search algorithm in the syntactic graph was
measured, along with the runtime upon repeated execution T, (to evaluate the impact of graph database
server caching algorithms). Additionally, the reduction in runtime upon repetition, AT /T, was calculated, as
well as the expected runtime complexity of the algorithm, O, based on the previously derived polynomial
complexity Oy = n™™1 + n + m X log (ng).

The results of the study are illustrated in Fig. 4, Fig. 5 and Fig. 6.

T, mc

6000

Or =n™ 1 +n+mxlog(ng)

5000

4000

3000

2000

1000

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 Nsent

Fig. 4. Calculated and experimental runtime complexity of the algorithm for searching subgraphs isomorphic
to a pattern of cardinality m=3 in the syntactic graph of a text block ranging from 1 to 20 sentences.

T, mc

160000
140000 T
120000
100000

80000

60000

40000 Or =n™"1 4+ n +m xlog (ng)

20000
20 25 30 35 40 45 50 55 60 65 70 75 80 85 80 85 100 Nsent

Fig. 5. Calculated and experimental runtime complexity of the algorithm for searching subgraphs isomorphic
to a pattern of cardinality m=3 in the syntactic graph of a text block ranging from 20 to 100 sentences.

110 A. Chornyi, A. Berko

AT/T
80%

60%
40%

20%

0%

1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 25 30 35 40 45 50 55 65 70 J5 80O 85 95,100 Nsent

-20%

-40%

Fig. 6. Relative runtime reduction of the algorithm for searching subgraphs isomorphic to a pattern of cardinality
m=3 in the syntactic graph of a text block ranging from 1 to 100 sentences upon repeated execution.

Conclusions

The experimental studies conducted in this work demonstrate the temporal complexity of a pattern
search algorithm (subgraph isomorphism) within syntactic graphs of textual blocks of varying sizes. The
main results indicate the effectiveness of the proposed approach, which leverages a graph database server.
Even the use of basic indexing schemes, such as SPO, POS, and OSP, significantly optimizes subgraph search
and reduces the theoretically exponential complexity to a practically manageable level.

The results show a stable increase in algorithm execution time as the size of textual blocks grows,
consistent with the underlying mathematical complexity model. At the same time, repeated executions of the
algorithm are substantially faster due to server-level caching, with observed reductions in execution time of
up to 73% for small textual blocks.

It is observed that the algorithm’s complexity scales approximately as 0(n™1), as the highest degree
of equation (19), where n is the size of the input syntactic graph and m is the cardinality of the pattern graph.
This finding aligns with theoretical predictions and demonstrates an acceptable level of scalability for
practical applications in ontology construction from text.

Fig. 4 illustrates deviations of actual execution time from theoretical expectations when the size of
textual blocks exceeds 60 sentences. This behavior is attributed to server cache overflow, as evidenced by
the relative execution time reduction observed during repeated runs (Fig. 6). These deviations are not critical,
remaining within the bounds of polynomial complexity, but should be considered in practical
implementations of text-based ontology construction systems.

Based on the experimental data and analysis, it can be concluded that employing syntactic-semantic
transformations with formalized pattern search via SPARQL-based algorithms constitutes an effective
approach for the automatic derivation of ontological modeling rules from natural language texts. The results
confirm the feasibility of implementing such transformations within graph databases for textual data volumes
sufficient to carry contextual information.

A pattern search algorithm in graph representations of textual data for an ontology construction system 111

This opens prospects for applying the proposed approach to broader semantic analysis tasks,
knowledge integration, and natural language understanding, particularly in educational and medical domains
where accuracy and scalability of information processing are critical.

Thus, this work makes a significant contribution to the fields of natural language processing and
ontology engineering by proposing flexible, formalized, and efficient methods for transforming textual data
into semantic graphs, with mathematically guaranteed correctness and practical implementation using graph
database servers.

REFERENCES

Al-Ghezi, A., & Wiese, L. (2024). Analyzing workload trends for boosting triple stores performance. Elsevier Ltd.
doi:doi.org/10.1016/j.i5.2024.102420

Ali, W., Saleem, M., Yao, B., Hogan, A., & Ngonga Ngomo, A.-C. (2021). A Survey of RDF Stores & SPARQL
Engines for Querying Knowledge Graphs. The VLDB Journal, 1-26. doi:doi.org/10.1007/s00778-021-
00711-3

Andersen, J. L., Davoodi, A., Fagerberg, R., Flamm, C., Fontana, W., Kol¢ék, J., . . . Nejgaard, N. (2024, Apr 3).
Automated Inference of Graph Transformation Rules. doi:10.48550/arXiv.2404.02692

Chornyi, A., & Dosyn Dmytro. (2025). Development of a unified output format for text parsers in the ontology
construction system from text documents. Journal of Lviv Polytechnic National University "Information
Systems and Networks". doi:10.23939/sisn2025.17.170

Duval, D., Echahed, R., & Prost, F. (2020). An Algebraic Graph Transformation Approach for RDF and SPARQL.
Eleventh International Workshop on Graph Computation Models (GCM 2020) (pp. 55-70). EPTCS.
doi:10.4204/EPTCS.330.4

Konig, H., & Stiinkel , P. (2020). Single Pushout Rewriting in Comprehensive Systems. Graph Transformation.
ICGT 2020. Lecture Notes in Computer Science(), vol 12150. Springer, (pp. 91-108).
doi:doi.org/10.1007/978-3-030-51372-6_6

Mennicke, S., Nagel, D., Kalo, J.-C., Aumann, N., & Balke, W.-T. (2017). Reconstructing Graph Pattern Matches
Using SPARQL. Lernen, Wissen, Daten, Analysen, LWDA 2017 - Conference Proceedings (pp. 152-164).
Rostock, Germany: CEUR-WS. Retrieved from https://ceur-ws.org/\Vol-1917/paper24.pdf

Meznar, S., Bevec, M., Lavra¢, N., & Skrlj, B. (2022). Ontology Completion with Graph-Based Machine Learning:
A Comprehensive Evaluation. Machine Learning and Knowledge Extraction, 1107-1123.
doi:doi.org/10.3390/make4040056

Mousavi, H., Kerr, D., Iseli, M., & Zaniolo, C. (2014). Harvesting Domain Specific Ontologies from Text.
International Conference on Semantic Computing. Newport Beach, CA, USA. doi:10.1109/ICSC.2014.12

Pokorny, J., Valenta, M., & Troup, M. (2018). Indexing Patterns in Graph Databases. Proceedings of the 7th
International Conference on Data Science, Technology and Applications (DATA 2018) (pp. 313-321).
Science and Technology Publications, Lda. doi: 10.5220/0006826903130321

RDF 1.2 Schema. (2025, September). Retrieved from www.w3.0rg: https://www.w3.org/TR/rdf12-schema/

Salehpour, M., & Davis, J. G. (2021). A Comparative Analysis of Knowledge Graph Query Performance. Third
International Conference on Transdisciplinary Al (TransAl), (pp. 33-40).
doi:10.1109/TransAl151903.2021.00014

Séldner, R., & Plump, D. (2024, October 04). Formalising the double-pushout approach to graph transformation.
Logical Methods in Computer Science, 3:1-3:37. doi:10.46298/LMCS-20(4:3)2024

Stunkel, P., & Konig, H. (2021). Single pushout rewriting in comprehensive systems of graph-like structures.
Theoretical Computer Science, 23-43. doi:doi.org/10.1016/j.tcs.2021.07.002

112

A. Chornyi, A. Berko

AJITOPUTM NOIYKY INABJIOHIB Y TPA®OBOMY NOJAHHI
TEKCTOBUX JAHUX JIJIA CACTEMHU IMMOBYJIOBUA OHTOJIOTTi

Amnppiii Yopuuiil, Auapiii Bepko?

1.2 HanjonanbHuii ynisepeuter “JIbBiBCchKa MOJITEXHIKA”,
kagenpa inpopmaniitaux cuctem Ta Mepex, JIbBiB, YkpaiHa
L E-mail: andrii.o.chornyi@Ipnu.ua, ORCID: 0009-0007-4005-4088
2 E-mail: andrii.y.berko@Ipnu.ua, ORCID: 0000-0001-6756-5661

© Yopruu A., bepro A., 2025

Y crarTi npeacrapiaeHo po3podiaeHHs Ta ¢opMalizalilo aJIropuTMy NHOIIyKy IalJIOHIB y rpa-
(oBux mnpeacTaBIEHHAX TEKCTOBHUX JAHUX SIK KJIIOYOBOT0 KOMIOHEHTA CHHTAKCHKO-CEMAHTHYHHX
Tpancdopmanuiii 1151 MO0Y10BH OHTOJIOTIH i3 TeKCTOBUX JOKYMEHTIB. Po3riissHyTo npod.ieMy moeIHaAHHSA
OnpanioBaHHs MPHPOAHOI MOBH Ta JIOTiYHOTro (hopMaTi3My LIJISIXOM 3aNPONOHYBAHHSI YHiBepCaJILHOTO
MexaHi3My Ha ocHOBi SPARQL nus1 BukoHaHHsl mpaBui TpaHcgopMmanii Ha cepBepax rpadgosux 0a3
aanux. Iligxix BukopucroBye rpadosi 6a3m JaHuX 1/ NpeACTaABIeHHS CHHTAKCHYHUX rpadis Ta 3acTo-
coBye ¢opmaiabHi MeToau TpaHcdopmanii rpagis, Braroyaroun Merox Double Pushout (DPO), mod
3a0e3neYuTH MaTeMaTHYHO OOIPYHTOBAHNI Ta KOPEKTHUI NMOIIYK MIAGJIOHIB i 3aCTOCYyBaHHS NPABHIIL.

Y Me:xax HbpOro gocJaiIKeHHs 0yJI0 po3po0JeH0 Ta MPOAHAJII30BAHO AJTOPUTM JJisi BU3HAYEHHS
romomMop¢HuUX Ta i3oMopdHux 30iriB miarpadgis madJ0HIB Y CHHTAKCMYHUX Irpad)ax, BUKOPUCTOBYIOYH
npeacrasjieHHsa RDF ta SPARQL-3anuTn, 10M0BHeHI aJropuTMaMu resepaunii GgiabTpis 1Jis momyky 3a
¢opmoro. ITokazaHo, 10 CKIATHICTH MOLIYKY MA0JOHIB MOKe O0yTH edeKTHBHO 3HIKEHA 3aBISIKH CTPa-
TerisiM iHaekcauii B rpagoBux 6azax ganux, Takum sk SPO, POS ta OSP, 1m0 3MeHIIIy€e eKCIOHeHIiiiHY
CKJIAJHICTD 10 TOJIHOMIAJBHOI /JUI NPaKTHYHUX Po3MipiB TekcToBUX 0JI0KiB. ExcnepmMentanbna
OLIHKA MiATBepAWJIA MACIUTA00BAHICTh Ta e()eKTUBHICTH 3aNPONOHOBAHOIO MiIXO0AY, AeMOHCTPYIOYH
CYTTEBE CKOPOYEHHS Yacy BUKOHAHHSI PH MOBTOPHHX 3aMyCKaX 3aB/AsIKH KeIIyBaHHIO HAa cepBepi.

PoGoTa BHOCHTL rHyuki, hopmanizoBaHi Ta eQeKTHBHI MeTOAU ISl ABTOMATHYHOr0 MOOyAOBH
OHTOJIOTii 3 TeKCTIB NPUPOAHOI0 MOBOI0, 320€3MeYy04H IVIM00KMI cCeMaHTUYHMI aHATI3 Ta IPUYUHHO-
HacjainkoBe muciaenHs. Iligxix miaTpumye po3mMpoBaHicTh Ta AMHAMIYHE BBe/IeHHS NMPaBuJ 0e3 mepe-
KOMIISALii Koay, 10 poOMTH i{0ro NMPpUAATHHM JIsl peajbHUX CHCTEM CeMAHTHYHHMX Mepe:X Ta BHIIY-
4yeHHs 3HaHb. OTpHUMAaHI pe3yJIbTaTH MAIOTh 3HAYEHHS 1JIsl 00pPOOKH NMPHPOJAHOI MOBH, iH:KeHepii OHTO-
JIOTii Ta 3aCTOCYBaHb, 10 NOTPEOYIOTH iIHTEPNPETOBAHOCTI Ta MacIITA00BaHOCTI MpH 00po0Li CKIATHUX
TeKCTOBMX JaHHX.

Kiro4oBi cjioBa — modynoBa OHTOJIOTIH, CHHTAKCHKO-ceMaHTH4YHA TpaHchopmanis, SPARQL,
MOIIYK ma0I0HiB, i30Mop@di3m rpagis, 06podka npupoanoi MmoBH, popMmasizauis mpaBuI.

	UDC 004.89
	A PATTERN SEARCH ALGORITHM IN GRAPH REPRESENTATIONS OF TEXTUAL DATA FOR AN ONTOLOGY CONSTRUCTION SYSTEM
	Andrii Chornyi1, Andrii Berko2
	Problem statement
	Analysis of Recent Studies and Publications
	Formulation of the Article’s Objective
	Main Results
	Conclusions
	REFERENCES
	АЛГОРИТМ ПОШУКУ ШАБЛОНІВ У ГРАФОВОМУ ПОДАННІ ТЕКСТОВИХ ДАНИХ ДЛЯ СИСТЕМИ ПОБУДОВИ ОНТОЛОГІЇ
	Андрій Чорний1, Андрій Берко2

