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У статті представлено експериментальне дослідження ефективності методів машинного 
навчання для класифікації електрокардіосигналів за ритмічними та морфологічними ознаками з 
використанням інформаційної технології на основі математичного апарату циклічних випадкових 
процесів. Розглянуто проблему автоматизованого виявлення передсердних аритмій, зокрема 
фібриляції та тріпотіння передсердь, які характеризуються комплексними змінами як у морфо-
логії зубців ЕКС, так і в часових інтервалах серцевих циклів.  

Для класифікації патологічних станів досліджено чотири алгоритми виявлення аномалій: 
OneClassSVM з радіально-базисною функцією, IsolationForest, Local Outlier Factor (LOF) та 
EllipticEnvelope. Проаналізовано вплив методів попередньої обробки даних (StandardScaler для 
стандартизації та PCA для зниження розмірності) на точність класифікації. Експериментальні 
результати показали, що застосування попередньої обробки критично важливе для класифікації 
морфологічних порушень, підвищуючи точність з 50-83 % до 100 % для фібриляції передсердь. 
Алгоритм LOF продемонстрував найбільш стабільні результати (83-100 %) для різних типів 
патологій. При класифікації ритмічних порушень методи IsolationForest, LOF та EllipticEnvelope 
показали однаково високу ефективність (89 %), при цьому попередня обробка не призвела до 
суттєвого покращення результатів.  

Ключові слова – моделювання електрокардіосигналів, інформаційна технологія, циклічний 
дискретний випадковий процес, амплітудно-часові характеристики, часова функція ритму, 
амплітудна варіабельність, класифікація сигналів, штучний інтелект (AI), система машинного 
навчання (MLS). 

 

Постановка проблеми 

Автоматизований аналіз електрокардіосигналів (ЕКС) залишається критично важливим завдан-
ням сучасної медичної діагностики, особливо в контексті виявлення передсердних аритмій, які часто 
мають субклінічний перебіг та можуть призводити до серйозних ускладнень. Незважаючи на значні 
досягнення в області машинного навчання для аналізу ЕКС, існує ряд невирішених проблем, які обме-
жують ефективність існуючих підходів. 
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Багато сучасних методів класифікації ЕКС зосереджені або на аналізі морфологічних характе-
ристик окремих комплексів, або на оцінці ритмічних параметрів, не забезпечуючи комплексного підходу 
до одночасного врахування обох типів ознак. Це призводить до неповної характеристики патологічних 
станів, оскільки такі аритмії як фібриляція та тріпотіння передсердь проявляються змінами як у морфо-
логії зубців ЕКС, так і в часових інтервалах між серцевими циклами. 

Таким чином, актуальною науковою проблемою є розроблення та валідація комплексного підходу 
до класифікації ЕКС, який би інтегрував аналіз як морфологічних, так і ритмічних ознак на основі 
математичного апарату циклічних випадкових процесів (ЦВП), з оптимальним вибором методів попе-
редньої обробки даних та алгоритмів машинного навчання для різних типів передсердних аритмій. 

 

Аналіз останніх досліджень та публікацій 

Машинне навчання (Machine learning – ML) революціонізувало аналіз електрокардіосигналів 
(ЕКС), забезпечивши автоматизовану інтерпретацію з підвищеною швидкістю, точністю та масшта-
бованістю. Моделі ML можуть вивчати закономірності безпосередньо з необроблених або попередньо 
оброблених ЕКС, що дозволяє їм виявляти такі особливості, які часто пропускаються при ручному 
аналізі. Ця зміна зменшує залежність від досвідчених клініцистів і розширює доступність, що особ-
ливо важливо в умовах обмеженої кардіологічної експертизи (Wasimuddin, 2021). 

Переваги методів ML у порівнянні з ручними підходами особливо очевидні з точки зору швид-
кості та послідовності. Алгоритми можуть швидко опрацьовувати великі обсяги даних ЕКС, що 
полегшує моніторинг майже в режимі реального часу та ранню діагностику. Більше того, моделі ML 
демонструють відтворюваність, мінімізуючи міжспостерігацьку варіативність, яка є типовою для 
людської інтерпретації. Сучасні тенденції відображають прогресивний перехід від традиційних 
методів опрацювання сигналів до передових методологій ML та глибинного навчання (Deep Learning 
– DL). Класичні методи зосереджуються на явній розробці ознак та класифікаторах на основі правил, 
тоді як підходи DL пропонують комплексні рішення, здатні до автоматичного вилучення ознак та 
ієрархічного навчання представлення на основі складних наборів даних (Kumar, 2023). Ці досягнення 
збагатили аналітичні можливості ЕКС, розширивши потенціал прогнозної діагностики, персоналі-
зованої медицини та інтеграції з носимими медичними пристроями (Gupta, 2023). 

У цьому огляді розглядаються методи машинного навчання, що застосовуються для клас-
ифікації ЕКС, та надається всебічний аналіз традиційних підходів, архітектур глибинного навчання 
та гібридних стратегій. Методологія огляду охоплює рецензовані публікації за період 2018–2025 ро-
ків, зосереджуючись на методах, що пройшли клінічну валідацію та мають опубліковані показники 
ефективності на стандартизованих наборах даних. Структура огляду починається з традиційних мето-
дів машинного навчання, продовжується підходами глибинного навчання та техніками ансамблю, а 
завершується оцінкою ефективності та майбутніми напрямками розвитку. 

Традиційні методи машинного навчання, що застосовуються до класифікації ЕКС 
Машини опорних векторів та їхні варіанти 
Машини опорних векторів (Support Vector Machines – SVM) широко застосовуються в класифікації 

ЕКС завдяки їхній міцній теоретичній основі та ефективності в опрацюванні високорозмірних даних. 
Варіанти, такі як SVM з оптимізацією стохастичного градієнтного спуску (SVM-SGD) та класифікація 
опорних векторів (SVM-SVC), розширюють класичну структуру SVM, покращуючи обчислювальну 
ефективність та підвищуючи продуктивність класифікації за допомогою використання ядра (Yildirim, 2024). 

Основні функції, включаючи лінійні, радіальні базисні функції (RBF) та поліноміальні ядра, 
дозволяють SVM проєктувати нелінійні дані ЕКС у вищі розмірні простори ознак, де класи стають 
роздільними. Ця здатність є особливо важливою для складної та нелінійної природи хвильових форм 
ЕКС. У кількох дослідженнях було застосовано варіанти моделей SVM для ефективного виявлення 
аритмії та інших серцево-судинних захворювань, використовуючи їх стійкість до перенавчання та здат-
ність балансувати точність і відтворюваність (Rath, 2022). Ядро RBF продемонструвало чудову ефек-
тивність у фіксуванні нелінійних патернів ЕКС, досягаючи точності до 96 % у завданнях виявлення 
аритмії. 



Методи машинного навчання для класифікації електрокардіосигналів…                   115 

SVM, інтегрована з вибором ознак та оптимізованими параметрами ядра, продемонструвала високу 
чутливість у розрізненні передчасних та фібриляційних ударів, що виявилося особливо корисним у 
виявленні фібриляції передсердь та діагностиці ішемії. Гібридні моделі, що включають SVM, ще більше 
підвищують ефективність, використовуючи переваги як методів ядра, так і ансамблевого навчання для 
роботи з незбалансованими наборами даних (Yue, 2021). Однак обчислювальна складність, що 
масштабується з O(n²) для навчання, створює проблеми для додатків, що працюють у режимі реального 
часу, що вимагає використання наближених методів ядра або ієрархічних архітектур (Agrawal, 2022). 

Дерева рішень та ансамблеві методи 
Дерева рішень є інтуїтивним та інтерпретованим підходом до машинного навчання, що моде-

лює рішення на основі критеріїв розділення для класифікації ЕКС на окремі серцеві стани. Однак 
окремі дерева часто страждають від надмірного пристосування та обмеженої генералізації. Ансамб-
леві методи, такі як випадкові ліси та дерева рішень з градієнтним підсиленням (Gradient Boosted 
Decision Trees – GBDT), вирішують ці проблеми шляхом побудови декількох дерев та агрегації їхніх 
прогнозів за допомогою голосування більшістю голосів або зваженого усереднення. 

Ансамблеві моделі на основі дерев набули популярності в завданнях класифікації ЕКС завдяки 
своїй високій точності та надійності, особливо при опрацюванні шумних і незбалансованих даних. Ada-
Boost, техніка ансамблевого підсилення, адаптивно фокусується на прикладах, які важко класифікувати, 
покращуючи розпізнавання меншості класів у класифікації аритмій із підвищенням чутливості на 13 % 
для рідкісних аритмій. Підходи баґінгу, які створюють різноманітні набори класифікаторів за допомогою 
випадкового відбору, ще більше підвищують надійність і зменшують дисперсію (Śmigiel, 2024). 

Порівняльний аналіз показує, що алгоритми градієнтного підсилення перевершують традиційні 
дерева рішень завдяки своєму механізму послідовного навчання, який ітеративно виправляє помилки. 
Ці моделі демонструють відмінні показники ефективності, такі як високі значення площі під кривою 
ROC (AUC) 0,92-0,97 та F1-бали, що перевищують 0,95, особливо в поєднанні з інженерією ознак та 
зменшенням розмірності. Підхід на основі ансамблю дерев підходить для використання в умовах 
обмежених ресурсів, забезпечуючи баланс між прогнозною здатністю та обчислювальними витр-
атами (Hassaballah, 2023). 

Моделі K-найближчих сусідів та Naive Bayes моделі  
Класифікатори K-найближчих сусідів (K-NN) і наївних байєсів забезпечують обчислювально 

ефективні методи класифікації ЕКС, спираючись відповідно на метрики відстані та припущення про 
ймовірнісну незалежність. Простий механізм K-NN передбачає ідентифікацію найближчих мічених 
екземплярів у просторі ознак для класифікації невідомих зразків, що робить його привабливим для 
досліджень на ранніх стадіях або досліджень здійсненності (Ullah, 2024). 

Моделі Naive Bayes припускають незалежність ознак і обчислюють апостеріорні ймовірності 
для класифікації, що робить їх обчислювально ефективними і особливо корисними для шумних або 
неповних даних ЕКС. Обидва методи використовуються для виявлення стадій сну та інших фізіо-
логічних станів на основі витягнутих ознак варіабельності серцевого ритму з одноканального ЕКС 
(Coronado-Reyes, 2025). Останні тести на наборі даних MIT-BIH показують, що K-NN досягає точ-
ності 86,7 % проти 81,3 % для Naive Bayes у класифікації аритмії п’яти класів. 

Обмеження виникають у високорозмірних наборах даних ЕКС, де обчислювальні витрати K-NN 
збільшуються, а метрики відстані стають менш дискримінаційними. Аналогічно, припущення про неза-
лежність Naive Bayes часто не справджується для корельованих ознак ЕКС, що призводить до неопти-
мальної ефективності класифікації. Ретельний вибір ознак і зменшення розмірності мають вирішальне 
значення для подолання цих проблем, але в цілому ці моделі, як правило, працюють гірше, ніж більш 
досконалі алгоритми, з розривом у точності 8−15 % порівняно з підходами DL (Abdul Razak, 2023). 
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Підходи DL в аналізі ЕКС 
Складні нейронні мережі для класифікації ЕКС 
Складні нейронні мережі (Convolutional Neural Networks – CNN) трансформували аналіз ЕКС, 

забезпечуючи автоматичне вилучення ознак через ієрархічні складні шари, усуваючи необхідність 
ручного інжинірингу ознак. Архітектури CNN були адаптовані як для одномірних неопрацьованих 
вхідних даних ЕКС, так і для двовимірних представлень, таких як спектрограми або зображення, 
трансформовані на основі FFT (Kumar M., 2022). 

Дослідження, в яких використовується FFT для перетворення ЕКС перед класифікацією CNN, 
демонструють поліпшення точності виявлення аритмії, причому моделі на основі CNN перевер-
шують традиційні класифікатори на 3−7 %. Це пояснюється здатністю CNN ефективно фіксувати 
локалізовані сигнали та морфологічні нюанси форм хвиль ЕКС. Типові одномірні архітектури CNN 
використовують 4−8 конволюційних шарів з розмірами ядра 3−7 зразків, досягаючи 98,5 % точності 
при класифікації аритмії MIT-BIH (Ullah, 2024). 

Рекурентні нейронні мережі LSTM, bi-LSTM та GRU 
Рекурентні нейронні мережі (Recurrent Neural Networks – RNN), особливо мережі з довгою 

короткочасною пам’яттю (LSTM) та їх двонаправлені варіанти (bi-LSTM), призначені для моделювання 
часових залежностей у послідовних даних, таких як часові ряди ЕКС. За рахунок збереження внутрішніх 
станів пам’яті ці мережі ефективно фіксують динамічну поведінку серцевих ритмів у часі. 

Bi-LSTM покращують контекстуальне розуміння шляхом опрацювання сигналів як у прямому, 
так і в зворотному часовому напрямку, що є особливо корисним для окреслення компонентів хви-
льової форми, таких як P-хвилі, комплекси QRS та T-хвилі. Цей метод продемонстрував високу 
чутливість (94,6 %) і специфічність (96,2 %) в автоматизованих завданнях сегментації та класифікації 
ЕКС, підвищуючи надійність виявлення аритмії в порівнянні з однонаправленими моделями (чут-
ливість 89,3 %) (Yildirim, 2024). 

Gated Recurrent Units (GRU), спрощений варіант LSTM, також забезпечують конкуренто-
спроможну продуктивність із зменшеною обчислювальною складністю приблизно на 30 %. Ці моделі 
успішно фіксують тонкі часові зміни, необхідні для діагностики аномалій інтервалу QT та інших 
серцевих дисфункцій, досягаючи точності 96,4 % і дозволяючи розгортання на мобільних пристроях 
завдяки своїй обчислювальній ефективності (Nurmaini, 2021). 

Гібридні та вдосконалені моделі DL 
Останні дослідження пропонують гібридні архітектури DL, що поєднують шари CNN та RNN, 

щоб скористатися перевагами вилучення просторових ознак CNN та моделювання часових послі-
довностей RNN. Такі інтегративні рамки дозволяють навчатися як на основі локальних морфоло-
гічних ознак, так і на основі довгострокових залежностей у даних ЕКС, що призводить до поліпшення 
надійності класифікації з точністю, що досягає 99,4 % на багатокласових наборах даних про аритмію 
(Janbhasha, 2023). 

Для підвищення стійкості моделі було запроваджено об’єднання декількох мереж DL з порів-
нянними шарами, що дозволяє зменшити проблеми, пов’язані з тривалим часом навчання та залеж-
ністю від ручного вибору ознак. Оцінка багатокласових наборів даних про аритмію показує, що ці 
гібридні підходи перевершують традиційні методи за чутливістю (99,1 %), специфічністю (99,5 %) та 
обчислювальною ефективністю при належному оптимізуванні (Janbhasha, 2023). 

У роботі Duong, L.T. (2023) досліджені альтернативні передові архітектури, такі як графічні 
нейронні мережі (GNN), що використовують графічні структури представлення ЕКС. GNN виявляють 
себе у вилученні реляційної інформації з даних ЕКС з декількома відведеннями і показали 
багатообіцяючі результати, перевершивши базові моделі на 12 % у завданнях локалізації інфаркту 
міокарда, потенційно надаючи більш інтерпретовані та клінічно значущі прогнози. 
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Підходи до ансамблевого та гібридного машинного навчання 
Ансамблеві методи класифікації ЕКС 
Ансамблеве навчання поєднує декілька окремих класифікаторів для досягнення вищої загальної 

ефективності. Такі методи, як усереднення, баґінг та стекінг, використовують різноманітність та взаємо-
доповнювальні переваги складових моделей, підвищуючи надійність, особливо у випадку незбалансо-
ваних наборів даних ЕКС, де рідкісні класи аритмії вимагають ретельної ідентифікації. 

Схеми голосування більшістю аґрегують прогнози для зменшення дисперсії та упередженості, 
забезпечуючи більш стабільні остаточні рішення. Наприклад, було показано, що поєднання AdaBoost 
з логістичною регресією та машинами опорних векторів дає ансамблеві класифікатори з підвищеною 
точністю (98,7 %) та F1-оцінками (0,962), що перевершують окремі моделі на публічних наборах 
даних ЕКС (Yildirim, 2024). Ці ансамблі є цінними в клінічних контекстах, де помилкові негативні 
результати можуть мати серйозні наслідки, при цьому частота помилкових негативних результатів 
зменшується на 18 % порівняно з окремими класифікаторами (Rath, 2022).  

Поєднання експертних знань та ML 
Інтеграція експертних клінічних знань з ML підвищує точність класифікації та інтерпрето-

ваність. Вибір експертних ознак на основі правил, заснований на фізіологічному розумінні, доповнює 
виявлення ознак ML на основі даних, забезпечуючи баланс між клінічною релевантністю та прогно-
стичною здатністю. 

Приклади порівняння моделей, навчених на основі ознак, обраних експертами, та ознак, обра-
них машиною, демонструють поліпшення на 15−22 % при інтеграції обох підходів, особливо для 
виявлення рідкісних захворювань. Такі гібридні моделі використовують переваги людської експер-
тизи в даній галузі, що допомагає зменшити вплив шумних або нерелевантних ознак, тоді як алгорит-
ми ML фіксують складні, неочевидні закономірності (Koubaa, 2024). Синергія між людським та 
машинним інтелектом сприяє клінічному застосуванню, надаючи моделі, які тісно відповідають вста-
новленим діагностичним критеріям, одночасно використовуючи досягнення в галузі обчислювальної 
техніки (Reethunandh, 2023). 

Гібридні моделі: інтеграція ML і DL 
Гібридні фреймворки, що інтегрують класичний ML з підходами глибинного навчання, 

поєднують переваги обох. Традиційний ML може бути використаний для надійного вибору ознак або 
зменшення розмірності, щоб подавати компактні представлення в класифікатори DL, оптимізуючи 
використання ресурсів і зберігаючи точність вище 97 %. 

Такі архітектури виявляються ефективними в системах моніторингу в реальному часі та носимих 
пристроях, які вимагають ефективних обчислень без втрати точності. Реалізації демонструють, що гіб-
ридні моделі пропонують вигідний компроміс між показниками продуктивності та обчислювальною 
складністю, при цьому час інференції скорочується на 40−60 % порівняно з чистими підходами DL, збе-
рігаючи при цьому порівнянну точність (Śmigiel, 2024). Апаратна реалізація та валідаційні дослідження 
підкреслюють доцільність таких рішень, що дозволяють здійснювати безперервний моніторинг серцевої 
діяльності з енергоспоживанням нижче 10 мВт (Wasimuddin, 2020). 

Загальні показники оцінки в класифікації ЕКС ML 
Оцінка ефективності моделей класифікації ЕКС зазвичай включає такі показники, як точність, 

прецизійність, відтворюваність (чутливість), специфічність, F1-показник та площа під кривою ROC 
(AUC). Ці показники надають багатогранний погляд на поведінку класифікатора, враховуючи рівень 
справжніх позитивних результатів та вартість помилкових виявлень (Yildirim, 2024). Матриця 
плутанини є особливо інформативною в багатокласовій класифікації, висвітлюючи сильні та слабкі 
сторони моделі в різних класах і полегшуючи розуміння тенденцій помилкової класифікації, особливо 
в незбалансованих наборах даних, де сама по собі точність може вводити в оману (Philip, 2023). 
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Врахування незбалансованих даних є надзвичайно важливим при виборі метрик, що сприяє 
використанню збалансованих показників, таких як F1, для уникнення завищених оцінок ефектив-
ності. При клінічному застосуванні чутливість часто має пріоритет над специфічністю для станів, що 
загрожують життю, причому цільові порогові значення зазвичай встановлюються вище 95 % для 
таких станів, як фібриляція шлуночків (Hassaballah, 2023). 

Обчислювальні обмеження становлять значну проблему для моніторингу ЕКС у реальному часі 
в носимих пристроях та пристроях IoT. Простіші класифікатори, такі як дерева рішень та випадкові 
ліси, забезпечують швидший час виведення висновків (2−5 мс), тоді як глибинні нейронні мережі 
вимагають більше обчислювальних ресурсів, але забезпечують вищу точність із часом виведення 
висновків 15−35 мс (Śmigiel, 2024). 

Апаратні реалізації архітектур CNN підтвердили свою практичну здійсненність у портативних 
пристроях, коли складність мережі відповідним чином зменшується за допомогою квантування та 
обрізки. Компроміси між складністю та точністю є важливими для оптимізації швидкості реагування 
системи та енергоспоживання, при цьому квантовані моделі досягають 97 % від початкової точності, 
зменшуючи розмір моделі на 75 % (Wasimuddin, 2021). Підходи, що використовують двонаправлені 
мережі LSTM, також забезпечують баланс між продуктивністю та обчислювальним слідом, що 
робить їх привабливими для аналізу ЕКС на пристрої з часом висновків менше 20 мс (Nurmaini, 2021). 

Обґрунтування актуальності дослідження 
Незважаючи на високу точність глибинних нейронних мереж (96−99 % згідно з літературою), 

існують певні обмеження їх застосування в клінічній практиці, потреба у великих навчальних 
вибірках, висока обчислювальна складність, низька інтерпретованість рішень, неприйнятна для 
медичних застосувань. Тому актуальність даної роботи полягає в тому, що досліджується вплив 
попереднього опрацювання (StandardScaler + PCA) на ефективність алгоритмів виявлення аномалій 
для класифікації ЕКС; запропонований підхід дозволяє працювати з обмеженими навчальними 
вибірками (лише нормальні дані або один тип патології), що відповідає реаліям клінічної практики; 
інтегровано з математичним апаратом ЦВП для одночасного аналізу морфологічних та ритмічних 
ознак, чого не забезпечують існуючі методи. 

 

Формулювання цілі статті 

Для забезпечення всебічного дослідження ЕКС, що охоплює аналіз як структурних характеристик 
форми, так і часових параметрів серцевого ритму, було створено інформаційну технологію (ІТ) (Sverstiuk, 
2025). В основі ІТ лежить математичний апарат циклічних випадкових процесів (ЦВП) (Lytvynenko, 
2017). Ціллю даної роботи є експериментальне дослідження впливу методів попереднього опрацювання 
даних на ефективність алгоритмів виявлення аномалій при класифікації ЕКС за морфологічними та 
ритмічними ознаками, отриманими на основі математичного апарату ЦВП, та перевірка роботи блоку 
класифікації ритмічних ознак (БКРО) та блоку класифікації морфологічних ознак (БКМО) з викорис-
танням методів машинного навчання (нейронні мережі, SVM). 

Обґрунтування вибору методів класифікації 
У контексті розробленої ІТ на основі математичного апарату ЦВП, для блоків класифікації 

БКРО та БКМО було обрано алгоритми виявлення аномалій (anomaly detection) замість класичних 
підходів багатокласової класифікації або глибинних нейронних мереж. Таке рішення обґрунтовано 
наступними міркуваннями: 

1) у задачі клінічної класифікації ЕКС часто виникає ситуація, коли навчальні дані доступні 
лише для нормального стану або одного конкретного типу патології, тоді як різноманітність патоло-
гічних станів є надзвичайно широкою. Алгоритми виявлення аномалій природно вирішують таку за-
дачу “один клас проти решти” (one-class classification), навчаючись моделювати характеристики нор-
мального стану без необхідності мати вичерпну вибірку всіх можливих патологій; 
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2) глибинні нейронні мережі (CNN, LSTM, bi-LSTM), згідно з аналізом літератури, демонст-
рують високу точність (96−99 %) у задачах класифікації ЕКС, проте вони вимагають великих обсягів 
збалансованих навчальних даних (тисячі прикладів для кожного класу), мають високу обчислювальну 
складність та енергоспоживання; 

3) обрані методи (OneClassSVM, IsolationForest, LOF, EllipticEnvelope) забезпечують  високу 
інтерпретованість рішень, що критично важливо для медичних застосувань; можливість навчання на 
обмежених вибірках; швидкий час виведення висновків (2−5 мс), що дозволяє реалізувати моніторинг 
в режимі реального часу; природну інтеграцію з математичним апаратом ЦВП, де аналіз розкидів 
амплітудних значень та тривалостей сегментів безпосередньо відповідає логіці виявлення аномалій. 

Дане дослідження є першим етапом верифікації запропонованої ІТ, де перевіряється принци-
пова можливість класифікації за ритмічними та морфологічними ознаками. На наступному етапі 
планується проведення розширеного порівняльного експерименту з включенням архітектур CNN, 
LSTM та гібридних моделей на тих самих даних для об’єктивної оцінки переваг кожного підходу в 
контексті розробленої ІТ. 

Виклад основного матеріалу 
З метою оцінки практичної результативності запропонованої ІТ (рис. 1) виконано експе-

риментальні випробування з використанням електрокардіографічних записів хворих, у яких виявлено 
аритмічні стани. 
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Рис. 1. Структурна схема ІТ аналізу ЕКС (Sverstiuk, 2025).  
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Для дослідження відібрано два типи передсердних аритмій з чітко вираженими змінами біоелект-
ричної активності міокарда: 1) фібриляція передсердь (ФП) – проявляється неорганізованою біоелект-
ричною активністю передсердного міокарда, зникненням зубців P на електрокардіограмі та варіабельною 
тривалістю міжшлуночкових комплексів; 2) тріпотіння передсердь (ТП) – характеризується ритмічною 
високочастотною активацією передсердь з появою специфічних F-хвиль пилкоподібної конфігурації. 

Розроблена ІТ складається з наступних функціональних блоків: 
• БПО – блок попереднього опрацювання (здійснює фільтрацію та нормалізацію вхідного 

сигналу); 
• БС – блок сегментації (виділяє окремі цикли ЕКС); 
• БФФР – блок формування функції ритму (визначає часові параметри серцевого ритму); 
• БФЦС – блок формування циклічного сигналу (перетворює ЕКС у циклічну структуру); 
• БСО – блок статистичного опрацювання (обчислює статистичні характеристики); 
• БФТСС – блок формування тривалостей сегментної структури (визначає тривалості сегментів 

ЕКС); 
• БФРТСС – блок формування розкидів тривалостей сегментної структури (аналізує варіа-

бельність часових інтервалів); 
• БФРАЗ – блок формування розкидів амплітудних значень (визначає варіабельність амплітуд); 
• БСОТСС – блок статистичного опрацювання тривалостей сегментної структури (статис-

тичний аналіз часових параметрів); 
• БСОРАЗ – блок статистичного опрацювання розкидів амплітудних значень (статистичний 

аналіз амплітудних параметрів); 
• БМТСС – блок моделювання тривалостей сегментної структури (генерує модельні часові 

характеристики); 
• БМРАЗ – блок моделювання розкидів амплітудних значень (генерує модельні амплітудні 

характеристики); 
• БКРО – блок класифікації ритмічних ознак (класифікує патології за ритмічними порушеннями); 
• БКМО – блок класифікації морфологічних ознак (класифікує патології за морфологічними 

змінами). 
Для навчання класифікаторів використовувались дані, подані на рис. 2−3. Дані для навчання 

були згенеровані на основі статистичних характеристик математичного сподівання та дисперсії з 
діагнозами фібриляції та тріпотіння передсердь (порушення морфологічного характеру  та 
порушення ритму). Валідація змодельованих даних проводилась шляхом порівняння спектральних 
характеристик з реальними записами (коефіцієнт кореляції >0,85) та експертної оцінки кардіологом 
на предмет збереження діагностичних ознак. 

 

      
а)                                                                       б) 

Рис. 2. Дані для навчання класифікаторів 
 (патології що проявляються у порушенні морфології):а) ФП; б) ТП 
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а)                                                                       б) 

Рис. 3. Дані для навчання класифікаторів  
(патології що проявляються у порушенні ритмі):а) ФП; б) ТП 

Тестові реалізації розкидів амплітудних значень та тривалостей сегментної структури ЕКС для 
верифікації класифікаторів представлені на рис. 4−5. 

 

  
а)                                                                       б) 

Рис. 4. Розкиди амплітудних значень 
 (для перевірки класифікаторів:а) ФП; б) ТП 

  
а)                                                                       б) 

Рис. 5. Тривалості сегментної структури ЕКС 
 (для перевірки класифікаторів): а) ФП; б) ТП 
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Для класифікації патологій використовували, як попереднє опрацювання вхідних даних, так і 
навчались класифікатори без застосування попереднього опрацювання, зокрема, такі структурні 
схеми зображені на рис. 6. 
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а)                                                                       б) 

Рис. 6. Структурна схема опрацювання сигналу:а) при патології, що проявляється у порушенні морфології;  
б) при патології, що проявляється у порушенні ритму 

Стандартизація набору даних є загальною вимогою для багатьох оцінювачів машинного навчання. 
Вони можуть поводитися погано, якщо окремі ознаки не виглядають більш-менш як стандартні 
нормально розподілені дані (наприклад, гаусівські з 0 середнім значенням та одиничною дисперсією).  

Наприклад, багато елементів, що використовуються в цільовій функції алгоритму навчання 
(такі як ядро RBF методів опорних векторів або регуляризатори L1 та L2 лінійних моделей), 
припускають, що всі ознаки зосереджені навколо 0 та мають дисперсію одного порядку. Якщо ознака 
має дисперсію, яка на порядок більша за інші, вона може домінувати в цільовій функції та зробити 
оцінювач нездатним правильно навчатися на основі інших ознак, як очікувалося. Тому з цією метою 
ми використовували StandardScaler. 

Ми також застосовували Principal component analysis (PCA) – метод зниження розмірності 
даних, який використовується для спрощення аналізу та візуалізації, зберігаючи при цьому найбільш 
важливу інформацію. PCA перетворює вихідні змінні в новий набір незалежних компонентів 
(головних компонент), які відсортовані за важливістю (дисперсією), не корелюють між собою, 
пояснюють максимальну варіативність у даних. 

Серед вибраних для дослідження класифікаторів слід назвати наступні: 
OneClassSVM (RBF) – це алгоритм виявлення аномалій (outlier detection), який використовує 

метод опорних векторів (SVM) з радіально-базисною функцією (RBF kernel). Модель навчається 
тільки на “нормальних” даних (один клас). Вона будує межу (гіперплощину) навколо нормальних 
точок, а нові точки, що потрапляють за межу, вважаються аномаліями. 

Isolation Forest – це алгоритм виявлення аномалій, який базується на ідеї ізоляції аномальних 
точок замість моделювання нормальних даних. Аномальні точки легше ізолювати (відокремити) від 
нормальних, бо вони рідкісні та сильно відрізняються. 

Алгоритм будує випадкові дерева (random trees), які розбивають дані: 
− чим коротший шлях до ізоляції точки – тим більше ймовірність, що це аномалія; 
− нормальні точки зазвичай потребують більшої кількості розділень. 
LOF (Local Outlier Factor) – це алгоритм для виявлення аномалій, який порівнює густину даних 

у локальному оточенні кожної точки. Для кожної точки обчислюється густина сусідів (k-nearest 
neighbors). Аномальні точки зазвичай мають нижчу локальну густину, ніж сусіди. 

Цей метод має переваги: 
− виявляє локальні аномалії, які інші алгоритми можуть пропустити; 
− добре працює з нелінійними даними; 
− природно підходить для задач, де важлива густина. 
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EllipticEnvelope – це алгоритм для виявлення аномалій, який базується на статистичному під-
ході. Він припускає, що нормальні дані мають багатовимірний нормальний розподіл (Gaussian 
distribution) і будує еліптичну межу, яка охоплює більшість нормальних точок. 

Обчислює середнє значення (mean) та коваріаційну матрицю (covariance matrix) для даних. Формує 
еліпсоїд у багатовимірному просторі, який описує “нормальні” точки. Точки, що потрапляють за межі 
еліпсоїда, вважаються аномаліями. Простий і швидкий для даних, які приблизно мають нормальний роз-
поділ. Добре працює для багатовимірних даних, якщо припущення про Gaussian розподіл справджується. 

Отримані результати подані в табл. 1−4. Зокрема в табл. 1 застосування класифікаторів без 
попереднього опрацювання вхідних даних. 

 
Таблиця 1 

Фрагменти отриманих результатів застосування класифікаторів (без попереднього 
опрацювання) для патології, що проявляється у порушенні морфології (ФП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 
Попередня 

оцінка 
(n=6) 

OneClassSVM_RBF 1 −1 1 1 −1 −1 50 % 
IsolationForest 1 −1 1 1 −1 −1 50 % 
LOF_novelty 1 1 1 1 1 −1 83 % 
EllipticEnvelope − − − − − − − 

 
де: «1» – класифікатор коректно визначив приналежність ЕКС до навченого класу, «−1» – некоректно 
визначив, «−» – не визначив взагалі. 
 

Таблиця 2 
Фрагменти отриманих результатів застосування класифікаторів (з попереднім 
опрацюванням) для патології, що проявляється у порушенні морфології (ФП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 
Попередня 

оцінка 
(n=6) 

OneClassSVM_RBF 1 1 1 1 1 1 100 % 
IsolationForest 1 1 1 1 1 1 100 % 
LOF_novelty 1 1 1 1 1 1 100 % 
EllipticEnvelope 1 1 1 1 1 1 100 % 

 
Як бачимо з отриманих результатів застосування попереднього опрацювання дає кращі результати 

класифікації. 
Таблиця 3 

Фрагменти отриманих результатів застосування класифікаторів (без попереднього 
опрацювання) для патології, що проявляється у порушенні морфології (ТП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 ЕКС 7 
Попередня 

оцінка 
(n=7) 

OneClassSVM_RBF −1 1 1 1 −1 1 1 71 % 
IsolationForest −1 1 1 1 1 −1 1 71 % 
LOF_novelty 1 1 1 1 −1 1 1 86 % 
EllipticEnvelope 1 1 1 1 1 1 1 100 % 
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Таблиця 4 
Фрагменти отриманих результатів застосування класифікаторів (з попереднім 
опрацюванням) для патології, що проявляється у порушенні морфології (ТП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 ЕКС 7 
Попередня 

оцінка 
(n=7) 

OneClassSVM_RBF 1 1 1 1 1 1 1 100 % 
IsolationForest 1 1 1 1 1 1 1 100 % 
LOF_novelty 1 1 1 1 1 1 1 100 % 
EllipticEnvelope −1 −1 −1 −1 1 1 −1 28 % 

 
Якщо порівнювати отримані результати, то слід відмітити, що серед обраних класифікаторів 

найкраще справляється LOF_novelty. Саме він в більшості випадків при різних патологіях дає кращі 
результати і оцінка роботи класифікатора в межах від 83 до 100 %. Саме тому його можна засто-
совувати в аналізі розкидів амплітудних значень для класифікації патологій. У перспективі необхідно 
буде провести експерименти з аналізом інших видів патологій, які проявляються у порушенні мор-
фології. 

Тепер розглянемо класифікацію патологій, які проявляються у порушенні ритму. Отримані 
результати подані в табл. 5−8. Зокрема в таблиці 5 застосування класифікаторів без попереднього 
опрацювання вхідних даних для випадку патології, що проявляється у порушенні ритму. 

 
Таблиця 5 

Фрагменти отриманих результатів застосування класифікаторів (без попереднього 
опрацювання) для патології, що проявляється у порушенні ритму (ФП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 
Попередня 

оцінка 
(n=6) 

OneClassSVM_RBF 1 1 −1 −1 1 1 71 % 
IsolationForest 1 1 1 −1 1 1 86 % 
LOF_novelty 1 1 1 −1 1 1 86 % 
EllipticEnvelope 1 1 1 −1 1 1 86 % 

 
Таблиця 6 

Фрагменти отриманих результатів застосування класифікаторів (з попереднім  
опрацюванням) для патології, що проявляється у порушенні ритму (ФП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 
Попередня 

оцінка 
(n=6) 

OneClassSVM_RBF 1 1 1 −1 1 1 86 % 
IsolationForest 1 1 1 −1 1 1 86 % 
LOF_novelty 1 1 1 −1 1 1 86 % 
EllipticEnvelope 1 1 1 −1 1 1 86 % 

 
У випадку визначення приналежності циклу до відповідного класу (ЕКС 4) застосовані методи 

класифікації не вирішили поставлену задачу, це пов’язано перш за все з аномальністю сигналу 
(наявністю артефактів).  
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Таблиця 7 
Фрагменти отриманих результатів застосування класифікаторів (без попереднього 

опрацювання) для патології, що проявляється у порушенні ритму (ТП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 
Попередня 

оцінка 
(n=6) 

OneClassSVM_RBF 1 1 1 1 1 −1 89 % 
IsolationForest 1 1 1 1 1 −1 89 % 
LOF_novelty 1 1 1 1 1 −1 89 % 
EllipticEnvelope 1 1 1 1 1 −1 89 % 

 
Таблиця 8 

Фрагменти отриманих результатів застосування класифікаторів (з попереднім 
опрацюванням) для патології, що проявляється у порушенні ритму (ТП) 

Класифікатори ЕКС 1 ЕКС 2 ЕКС 3 ЕКС 4 ЕКС 5 ЕКС 6 
Попередня 

оцінка 
(n=6) 

OneClassSVM_RBF −1 1 1 1 1 −1 78 % 
IsolationForest 1 1 1 1 1 −1 89 % 
LOF_novelty 1 1 1 1 1 −1 89 % 
EllipticEnvelope 1 1 1 1 1 −1 89 % 

 
У випадку класифікації для сигналів з патологією, що проявляється у порушенні ритму, кра-

щими себе показали IsolationForest, LOF_novelty, EllipticEnvelope з однаковою ефективністю на рівні 
89 %. У випадку опрацювання ЕКС 6 також всі застосовані методи не справились із завданням. У 
подальших дослідженнях необхідно застосувати даний підхід до аналізу сигналів, які містять інші 
типи патологій, що проявляються у порушенні ритму, з метою визначення, який із обраних класи-
фікаторів буде коректно справлятись з поставленим завданням у порівнянні з іншими. 

 

Висновки 

У роботі проведено експериментальне дослідження ефективності методів машинного навчання 
для класифікації ЕКС за ритмічними та морфологічними ознаками в рамках розробленої ІТ на основі 
математичного апарату ЦВП. Встановлено критичну важливість попереднього опрацювання даних 
для класифікації морфологічних порушень. Застосування комбінації StandardScaler та PCA підви-
щило точність класифікації фібриляції передсердь з 50−83 % до 100 % для всіх досліджених класи-
фікаторів. Це підтверджує гіпотезу про необхідність нормалізації та зниження розмірності даних при 
аналізі амплітудних характеристик ЕКС. Слід зазначити, що представлені результати отримані на 
обмеженій тестовій вибірці (6−7 ЕКС для кожного типу патології), що не дозволяє робити остаточні 
висновки про статистичну достовірність. Наведені відсотки точності (50−100 %) слід розглядати як 
попередні оцінки, що демонструють принципову працездатність підходу. 

Виявлено, що алгоритм LOF (Local Outlier Factor) з налаштуванням novelty демонструє най-
більш стабільні результати для різних типів патологій. При класифікації морфологічних порушень 
без попереднього опрацювання LOF досягав точності 83−86 %, що перевищує показники інших 
методів. Це свідчить про ефективність підходу на основі локальної густини для виявлення аномалій 
в ЕКС. 
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Для класифікації ритмічних порушень методи IsolationForest, LOF_novelty та EllipticEnvelope 
показали однаково високу ефективність (89 %) при аналізі тріпотіння передсердь. Водночас, попе-
реднє опрацювання даних не призвела до суттєвого покращення результатів, а в деяких випадках 
навіть погіршила їх, що вказує на специфіку часових характеристик ЕКС, які можуть втрачати інфор-
мативність при трансформаціях. 

Порівняння отриманих результатів з даними публікацій щодо застосування глибинних 
нейронних мереж показує конкурентоспроможність запропонованого підходу. Згідно з оглядом 
літератури, архітектури CNN досягають точності 98,5 % на наборі даних MIT-BIH для класифікації 
аритмій, двонаправлені LSTM забезпечують чутливість 94,6 % та специфічність 96,2 %, а гібридні 
CNN-RNN моделі демонструють точність до 99,4 % на багатокласових наборах даних. Отримані в 
нашому дослідженні результати (89−100 % залежно від типу патології та методу) знаходяться в тому 
ж діапазоні ефективності, але досягаються при суттєво менших обчислювальних витратах та кращій 
інтерпретованості результатів. Водночас, для остаточних висновків щодо переваг того чи іншого 
підходу необхідне проведення прямого порівняльного експерименту на ідентичних наборах даних з 
урахуванням специфіки задачі класифікації в контексті розробленої ІТ на основі ЦВП. 

Перспективи подальших досліджень включають: 
• проведення прямого порівняльного експерименту з архітектурами CNN, LSTM/bi-LSTM та 

гібридними CNN-RNN моделями на тих самих наборах даних ЕКС для об’єктивної оцінки 
переваг кожного підходу з точки зору точності, обчислювальної складності та інтер-
претованості;  

• розширення спектру аналізованих патологій, включаючи шлуночкові аритмії, блокади про-
відності та ішемічні зміни;  

• дослідження гібридних архітектур, що поєднують методи виявлення аномалій з елемен-
тами глибинного навчання для автоматичного вилучення ознак;  

• розроблення адаптивних алгоритмів автоматичного вибору методів опрацювання та класи-
фікації залежно від типу порушення та характеристик сигналу;  

• для статистично достовірної оцінки необхідне тестування на вибірці не менше 100−200 
ЕКС для кожного класу патології з розрахунком довірчих інтервалів та проведенням крос-
валідації. 

• дослідження можливості інтеграції запропонованого підходу з носимими медичними при-
строями для безперервного моніторингу серцевої діяльності в реальному часі. 
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The article presents an experimental study of the effectiveness of machine learning methods for 
classifying electrocardiographic signals by rhythmic and morphological features using information tech-
nology based on the mathematical apparatus of cyclic random processes. The problem of automated 
detection of atrial arrhythmias is considered, particularly atrial fibrillation and atrial flutter, which are 
characterized by complex changes in both ECG wave morphology and cardiac cycle time intervals. 

Four anomaly detection algorithms were investigated for classifying pathological conditions: 
OneClassSVM with radial basis function, IsolationForest, Local Outlier Factor (LOF), and Elliptic-
Envelope. The impact of data preprocessing methods (StandardScaler for standardization and PCA for 
dimensionality reduction) on classification accuracy was analyzed. Experimental results showed that 
preprocessing is critically important for morphological disorder classification, increasing accuracy from 
50-83 % to 100 % for atrial fibrillation. The LOF algorithm demonstrated the most stable results (83-100 
%) for different types of pathologies. For rhythm disorder classification, the IsolationForest, LOF, and 
EllipticEnvelope methods showed equally high efficiency (89 %), while preprocessing did not lead to 
significant improvement in results. 

Keywords - electrocardiographic signal modeling, information technology, cyclic discrete random 
process, amplitude-temporal characteristics, temporal rhythm function, amplitude variability, signal 
classification, artificial intelligence (AI), machine learning system (MLS). 
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