
MATHEMATICAL MODELING AND COMPUTING, Vol. 12, No. 4, pp. 1211–1220 (2025)
Mathematical

M
odeling

Computing

Inference-Time Optimization for Fast
and Accurate Visual Object Tracking

Borsuk V., Yakovyna V.

Lviv Polytechnic National University,

12 S. Bandera str., 79013, Lviv, Ukraine

(Received 28 August 2025; Revised 28 October 2025; Accepted 20 November 2025)

Visual object tracking has recently benefited from the adoption of transformer architec-
tures, which provide strong modeling capacity but incur high computational and memory
costs, limiting real-time deployment. Existing efficiency-focused trackers primarily ad-
dress this challenge through architectural redesign, often trading accuracy for speed. In
this work, we explore an alternative and complementary direction: inference-time opti-
mization. Using HiT as our baseline, we integrate memory-efficient attention into its
hierarchical transformer blocks, reducing high-bandwidth memory accesses during self-
attention without altering the model’s representational capacity. Our experiments show
that the proposed optimization reduces average latency from 7.82 ms to 6.45 ms, increasing
throughput from 127 FPS to 155 FPS, while preserving tracking accuracy. These results
demonstrate that inference-time optimizations can significantly improve the practicality of
transformer-based trackers for real-time applications, opening a new path toward efficient,
high-performance tracking beyond architectural modifications.

Keywords: visual object tracking; transformers; inference-time optimization; real-time

tracking; deep learning; efficient computer vision.

2010 MSC: 68T45, 68U10 DOI: 10.23939/mmc2025.04.1211

1. Introduction

Visual object tracking (VOT) is a fundamental problem in computer vision with wide-ranging applica-
tions in areas such as autonomous driving, augmented reality, human–computer interaction, and video
surveillance. In its standard formulation, a tracker is provided with a target exemplar (typically a
bounding box in the first frame) and tasked with localizing that target in subsequent frames despite
challenges such as occlusion, background clutter, and appearance variation. Over the past decade,
deep learning-based methods have significantly advanced the field, achieving remarkable improvements
in both robustness and accuracy across diverse benchmarks.

A major driver of these advances has been the adoption of transformer architectures, which leverage
global self-attention to effectively capture long-range dependencies between the template and search
regions. Models such as TransT [1], STARK [2], and MixFormer [3] have set new state-of-the-art
results, particularly on large-scale tracking datasets like LaSOT [4] and GOT-10k [5]. However, the
powerful modeling capacity of transformers comes at a high computational and memory cost, making
these trackers difficult to deploy in real-time scenarios or on resource-constrained platforms.

To mitigate this, much of the existing literature has focused on architectural innovations aimed
at designing more efficient models. For instance, lightweight trackers such as FEAR [6], HiT [7], and
LightTrack [8] introduce compact attention mechanisms or hybrid convolutional-transformer designs
that balance speed and accuracy. While these approaches are effective, they often require nontrivial
redesign of the model architecture and may trade off performance for efficiency.

In contrast, relatively little attention has been given to inference-time optimization techniques that
can accelerate existing transformer-based trackers without altering their high-level design. Recent
advances in memory-efficient attention and related inference optimizations have shown great promise
in reducing both latency and GPU memory usage in large-scale vision and language models, yet their

c© 2025 Lviv Polytechnic National University 1211



1212 Borsuk V., Yakovyna V.

potential remains largely unexplored in the context of visual tracking. Such methods can exploit the
inherent redundancy in attention computation — e.g., by reordering operations, reducing intermediate
memory usage, or using kernel-based approximations — while preserving the representational power of
the model.

In this work, we explore the application of inference-time optimization techniques, particularly
memory-efficient attention, to transformer-based visual object tracking. Our goal is to demonstrate
that significant improvements in runtime efficiency can be achieved without compromising tracking
accuracy or requiring architectural redesign. This line of research opens up a complementary perspec-
tive to existing efficiency-focused works: instead of making models smaller or simpler, we optimize the
way they are executed. We evaluate our approach on standard tracking benchmarks, showing that
inference-level optimizations can close much of the efficiency gap between high-performance trans-
former trackers and lightweight designs, making state-of-the-art models more practical for real-world
deployment.

2. Related works

The rapid evolution of visual object tracking has been closely intertwined with advances in deep
learning, efficient model design, and transformer-based architectures. This section reviews the most
relevant developments that form the foundation of our work. We first outline the progression of visual
object tracking from classical correlation-filter methods to deep learning-based Siamese trackers. We
then discuss the emergence of efficient tracking architectures optimized for real-time performance,
followed by an analysis of transformer-based attention mechanisms and their computational challenges.
Finally, we highlight recent efforts in inference-time optimization, which motivate our exploration of
efficiency improvements without structural model redesign.

2.1. Visual object tracking

Visual object tracking (VOT) has long been a central task in computer vision, with applications
ranging from video surveillance and autonomous navigation to augmented reality and human-computer
interaction. Early benchmarks such as the Visual Object Tracking (VOT) challenges [9] and the
Online Tracking Benchmark (OTB) [10] were dominated by methods based on hand-crafted features
and discriminative correlation filters [11–13]. While these classical approaches were computationally
lightweight and relatively robust to short-term appearance changes, their limited representational power
restricted their ability to handle complex variations such as heavy occlusions, large scale changes, or
background clutter.

With the rise of deep learning, convolutional neural networks quickly displaced hand-crafted fea-
tures, leading to more robust and generalizable trackers. Among them, Siamese-based trackers emerged
as a particularly influential family of methods.

2.2. Siamese trackers

Siamese trackers formulate tracking as a similarity learning problem, where a matching function is
learned offline between a target template and candidate regions in the search frame. This approach
provided a favorable balance between accuracy and speed, making it suitable for real-time applica-
tions. Early works such as SiamFC [14] demonstrated that correlation-based Siamese networks could
outperform traditional methods while running at real-time speeds.

Subsequent advances extended Siamese designs with anchor-free detection [15], multi-level feature
fusion, and transformer-based modules. In particular, STARK [2] introduced a transformer encoder-
decoder to capture global relationships between the template and search features, achieving state-of-
the-art performance on long-term tracking benchmarks.

With the rapid development of transformer neural network architectures, large transformer-based
trackers such as TransT [1], MixFormer [3], and OSTrack [16] have achieved state-of-the-art results on
LaSOT [4] and GOT-10k [5], albeit at significant computational cost. Despite their success, most large
Siamese trackers emphasize accuracy over efficiency, with less focus on inference-level optimization.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



Inference-Time Optimization for Fast and Accurate Visual Object Tracking 1213

2.3. Efficient visual object trackers

As tracking applications often run on resource-constrained hardware, efficiency has become a central
research focus. To this end, most existing works primarily target architectural design improvements.
Lightweight trackers such as LightTrack [8] leverage neural architecture search to optimize FLOPs and
parameter count for mobile deployment. FEAR [6] combines efficient hybrid attention mechanisms with
convolutional backbones to achieve real-time tracking without significant loss of accuracy. Similarly,
HiT [7] and HCAT [17] integrate hierarchical attention and feature fusion strategies to deliver strong
performance under strict latency constraints.

While these methods demonstrate impressive results, they highlight a common trend: efficiency
is typically sought through architectural modifications, often requiring careful model redesign or
lightweight feature engineering. Complementary lines of work — such as pruning, quantization, dis-
tillation, and NAS — likewise operate at the model-design level and may trade accuracy for speed or
demand nontrivial re-training. In contrast, relatively little work has explored inference-time optimiza-
tions that accelerate existing trackers without changing their high-level structure. This leaves a gap
between lightweight architectures designed from scratch and the potential to optimize the execution
of state-of-the-art transformer-based trackers.

Our work targets precisely this gap. Instead of altering the network topology, we optimize how the
most expensive operator — self-attention — is executed at run time. Concretely, we integrate memory-
efficient attention [18] into a strong hierarchical transformer baseline (HiT), reducing peak memory
traffic and latency by better exploiting on-chip SRAM and minimizing redundant HBM accesses.
Because the operator is drop-in and mathematically exact, the resulting tracker preserves accuracy
while delivering tangible speedups and memory savings. This execution-level approach is orthogonal
to prior architectural efforts and can, in principle, be applied to a broad family of transformer-based
trackers (e.g., TransT, MixFormer, OSTrack) with minimal code changes. In doing so, it turns efficiency
into a deployment property — achieved via kernel scheduling and fusion — rather than a model property
that must be baked into the design.

2.4. Attention mechanism in transformers

Transformers have become central to modern visual trackers due to their ability to model long-range
dependencies between the template and search regions. At the core of this capability is the self-
attention mechanism. Given input queries Q, keys K, and values V , attention computes a similarity
matrix A = softmax(QK⊤/

√
d) that captures pairwise relationships between tokens. The attended

features are then obtained as AV . While highly expressive, this operation has a quadratic complexity
in both time and memory with respect to the sequence length, which quickly becomes a bottleneck
when applied to high-resolution visual features.

In practice, the main computational and memory overhead arises from explicitly storing the at-
tention matrix A, which requires O(n2) memory for n tokens. For visual tracking, where large search
regions are processed at every frame, this cost severely limits real-time deployment of transformer-based
trackers on resource-constrained devices.

2.5. Inference-time optimization for transformers

To address the quadratic overhead of self-attention, the broader deep learning community has proposed
inference-time optimization techniques such as memory-efficient attention [18] and kernelized approx-
imations. Unlike architectural redesign, these methods retain the same model structure but optimize
the execution of attention operations. Memory-efficient attention, for instance, avoids explicitly mate-
rializing the attention matrix by computing the softmax normalization in a streaming fashion, thereby
reducing peak memory usage and improving runtime efficiency.

These techniques have already shown substantial speedups and memory savings in large-scale lan-
guage and vision models, yet their adoption in visual object tracking remains limited. Importantly,
inference-time optimizations are complementary to architectural approaches: they can be integrated
into existing transformer-based trackers with minimal changes, narrowing the efficiency gap between

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



1214 Borsuk V., Yakovyna V.

high-accuracy models and lightweight designs. Exploring this under-investigated direction is the central
motivation of our work.

2.6. Quantization and pruning for efficient inference

Beyond kernel-level optimizations, other inference acceleration techniques such as quantization and
pruning have proven effective in reducing computational and memory demands of deep networks.
Quantization compresses model parameters and activations to lower-precision formats (e.g., FP16,
INT8, or mixed precision), substantially reducing memory footprint and improving throughput with
minimal accuracy loss [19]. Modern GPUs and edge accelerators natively support quantized inference,
making it a practical approach for real-time tracking on embedded devices.

Pruning, in contrast, removes redundant parameters or entire channels from the model to reduce
FLOPs and latency. Structured pruning methods [20] eliminate filters or attention heads based on
their importance scores, while unstructured pruning produces highly sparse networks that benefit from
hardware-level sparse computation. Both approaches have been successfully applied to CNN-based
trackers, but applying them to transformers remains an active research challenge due to their dense
attention patterns.

While quantization and pruning modify the representation of weights and activations, memory-
efficient attention operates at the execution level, optimizing how computations are performed rather
than what is computed. These strategies are therefore complementary: quantization and pruning
reduce the model’s arithmetic cost, while memory-efficient attention minimizes runtime memory over-
head. Combining such orthogonal optimizations represents a promising avenue toward real-time, high-
accuracy transformer-based trackers deployable on low-power hardware.

2.7. Hardware performance considerations

The efficiency of modern visual object trackers depends not only on algorithmic design but also on
hardware characteristics, particularly the GPU memory hierarchy. Contemporary GPUs, such as
NVIDIA’s A100, feature 40–80 GB of high-bandwidth memory (HBM) with up to 2 TB/s bandwidth,
alongside limited on-chip SRAM (around 192 KB per streaming multiprocessor) offering an order of
magnitude higher bandwidth [18, 21]. While HBM provides capacity, SRAM delivers speed — making
efficient SRAM utilization crucial for real-time performance.

GPU kernels operate by loading data from HBM to on-chip memory, performing computations,
and writing results back. Operations are often either compute-bound (e.g., matrix multiplications)
or memory-bound (e.g., activations, normalizations), depending on their arithmetic intensity. As
computation speed has outpaced memory bandwidth, many transformer-based tracking operations
have become memory-bound [18].

Kernel fusion is a common strategy to reduce redundant memory transfers by combining multiple
operations into a single kernel. However, during training, intermediate results must still be stored in
HBM for backpropagation, limiting the benefits of naive fusion. Efficiently leveraging SRAM — such
as through memory-efficient attention techniques like FlashAttention — can therefore substantially
reduce latency and improve throughput, enabling real-time deployment of transformer-based trackers
on modern GPUs.

3. Methods

To study the effect of inference-time optimizations in visual object tracking, we adopt HiT [7] as our
baseline model. HiT is a hierarchical vision transformer that achieves a strong trade-off between accu-
racy and efficiency by progressively reducing spatial resolution while enriching feature representations.
While the proposed memory-efficient attention can be integrated into any transformer-based tracker,
we focus our analysis on HiT, as it is among the most efficient and well-balanced tracking architectures
available. In our approach, we replace the standard self-attention layers within HiT’s hierarchical
transformer blocks with a memory-efficient attention implementation and evaluate its impact on both
runtime efficiency and tracking accuracy.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



Inference-Time Optimization for Fast and Accurate Visual Object Tracking 1215

3.1. Memory-efficient attention

Standard self-attention is defined as:

S = QK⊤ ∈ R
N×N , P = softmax(S) ∈ R

N×N , O = PV ∈ R
N×d, (1)

where Q, K, V ∈ R
N×d are the query, key, and value matrices, N is the sequence length, and d is the

feature dimension. This formulation requires explicitly constructing and storing the N ×N attention
matrix. The quadratic memory cost O(N2) arises not only from storing S and P but also from repeated
high-bandwidth memory (HBM) accesses when multiplying by V. For visual object tracking, where
N scales with the resolution of the search region, this memory pressure becomes a critical bottleneck
on GPU hardware.

Blockwise decomposition. Memory-efficient attention [18] reorders the computation so that
intermediate N ×N matrices are never fully materialized. Instead, the input matrices are partitioned
into tiles that fit into fast on-chip SRAM. For a block of queries Qi ∈ R

B×d, we stream in tiles of keys
and values (Kj ,Vj) and compute their contribution to the partial attention output Oi. The output
is accumulated incrementally across blocks, avoiding global memory writes for the entire attention
matrix.

Softmax across blocks. A central difficulty in blockwise attention is the softmax normalization,
which inherently couples all columns of K and thus cannot be computed independently per block. To
enable tile-based computation, we rely on a numerically stable, decomposed formulation of softmax.
For a vector x ∈ R

B, the softmax can be expressed as

softmax(x) =
f(x)

ℓ(x)
, f(x)i = exp(xi −m(x)), ℓ(x) =

∑

i

f(x)i, (2)

where m(x) = maxi xi ensures numerical stability.
When processing multiple tiles x(1), . . . , x(K), corresponding to consecutive blocks of attention

scores, the global normalization must be reconstructed from local statistics. Suppose each block x(k)

is normalized using its own local maximum m(x(k)) and sum ℓ(x(k)). The correct normalization over
the concatenated vector x = [x(1), . . . , x(K)] can be obtained by maintaining running global statistics:

m∗ = max
k

m(x(k)), ℓ∗ =
K
∑

k=1

exp
(

m(x(k))−m∗
)

ℓ(x(k)). (3)

Thus, to merge partial results, we rescale each local sum ℓ(x(k)) by a factor depending on the
difference between its local maximum m(x(k)) and the global maximum m∗. Similarly, the locally
normalized exponentials f(x(k)) can be rescaled to be consistent with the global denominator ℓ∗.

This procedure ensures that softmax over the concatenated vector can be computed exactly from
blockwise results while never constructing the full attention matrix. In practice, (m∗, ℓ∗) are maintained
incrementally across tiles, so that each new block updates the running normalization statistics. This
decomposition is the core enabler of memory-efficient attention: it permits computing attention in
blocks (by splitting Q, K, and V into tiles), while guaranteeing numerical stability and correctness of
the global softmax.

The final softmax value for an entry x
(k)
i is therefore obtained by rescaling its local contribution to

the global normalization:

softmax
(

x
(k)
i

)

=
exp

(

x
(k)
i −m(x(k))

)

ℓ∗
· exp

(

m(x(k))−m∗
)

. (4)

This expression makes explicit how local computations (using m(x(k)), ℓ(x(k))) align with global statis-
tics (m∗, ℓ∗), ensuring that the result is mathematically identical to computing softmax over the full
concatenated vector.

Complexity and efficiency. In standard self-attention, both computation and memory scale
quadratically with the sequence length N . Forming the similarity matrix S = QK⊤ and computing
PV require O(N2d) operations and O(N2) memory. This quadratic scaling becomes a bottleneck as
N grows with the spatial resolution of the search region.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



1216 Borsuk V., Yakovyna V.

Memory-efficient attention avoids constructing S and P explicitly by computing attention in tiles
that fit into fast on-chip SRAM. Each tile of (K,V) is streamed once from HBM, processed locally
with Q, and immediately accumulated into the output. This reduces high-bandwidth memory accesses
from O(N2) to O(Nd) and the memory footprint to O(N).

Although the total FLOPs remain O(N2d), practical runtime improves due to reduced data move-
ment and better SRAM utilization. Empirically, this yields up to 2 − 3× lower memory usage and
1.5− 2× faster inference without altering the exact attention outputs.

3.2. Integration into HiT

Memory-efficient attention is a general optimization strategy applicable to a wide range of transformer-
based visual trackers. It can be incorporated into any architecture that employs self-attention without
modifying the model’s overall structure or training objectives. In this study, however, we focus on
HiT [7] as a representative case due to its strong balance between accuracy and efficiency, making it
an ideal testbed for evaluating inference-time optimizations.

To enhance the inference efficiency of HiT, we integrate memory-efficient attention into its hier-
archical transformer blocks. Specifically, all self-attention layers in the lightweight hierarchical vision
transformer (including both the Multi-Head Attention and Shrink Attention modules) are replaced
with their memory-optimized counterparts. The convolutional patch embedding layers, dual-image
position encoding, and the subsequent Bridge Module and head network remain unchanged, ensuring
architectural consistency with the original HiT design.

The key idea is to reduce high-bandwidth memory usage during the attention computation without
altering the representational capacity of the model. In practice, this is achieved by recomputing
intermediate activations during the backward pass and adopting kernel-level optimizations for the
attention mechanism. Such modifications preserve the attention outputs while lowering the memory
footprint and improving runtime efficiency.

By applying the optimized attention across all hierarchical stages, we maintain the original multi-
resolution feature extraction process and the joint encoding of template and search region information,
but with significantly reduced computational overhead. Importantly, since the feature aggregation
in the Bridge Module and the global-context reweighting in the prediction head remain intact, the
tracking accuracy is unaffected.

This integration demonstrates a complementary direction to architectural redesign: instead of trad-
ing representational power for efficiency, we accelerate inference by optimizing the execution of existing
components. In Section 4, we empirically evaluate the resulting tracker on standard benchmarks, re-
porting improvements in latency, throughput, and memory usage while maintaining the same accuracy.

3.3. Implementation details

We build upon the official HiT [7] codebase and retain its original training and inference configurations
to ensure a fair comparison. The integration of memory-efficient attention is implemented as a direct
substitution for the standard attention modules within the hierarchical transformer blocks. Specifically,
all instances of Multi-Head Attention (MHA) and Shrink Attention (SA) are replaced with memory-
efficient attention layers.

During this replacement, we explicitly extract the query, key, and value projections (Q, K, V) from
the original MHA implementation and feed them into the optimized attention operator. This ensures
that the parameterization, scaling, and normalization behavior remain identical to the baseline. The
modification is therefore confined to the attention computation kernel, leaving the linear projections,
feed-forward layers, and normalization modules unchanged.

All other architectural components of HiT, including the convolutional patch embedding, dual-
image positional encoding, Bridge Module, and prediction head, are preserved as in the original de-
sign. Inference and evaluation follow the same experimental protocols and hyperparameter settings
as the HiT-Base model. Our implementation leverages PyTorch’s fused CUDA kernel support for
memory-efficient attention, enabling kernel-level streaming of query–key–value tiles and minimizing
high-bandwidth memory traffic.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



Inference-Time Optimization for Fast and Accurate Visual Object Tracking 1217

4. Results

We evaluate the impact of our proposed inference-time optimizations on the HiT baseline model. Our
primary metrics are overall inference latency and frames per second (FPS), measured under identical
hardware and implementation settings. Tracking accuracy is also reported to confirm that performance
remains unchanged. All experiments are conducted on an NVIDIA L40S GPU with batch size set to 1,
representing the online inference regime commonly used in tracking.

We focus our analysis on GPU hardware, as it is the most common platform for training and
evaluating deep visual trackers. Performance characteristics on other accelerators, such as TPUs,
follow similar trends [22]. Modern GPUs employ a hierarchical memory system comprising multiple
levels of memory with differing capacities and bandwidths. The on-chip SRAM (shared memory)
provides extremely high bandwidth but is limited in size, while high-bandwidth memory (HBM) offers
large capacity at the cost of higher latency and lower throughput.

4.1. Inference efficiency

Table 1 summarizes the efficiency results. The baseline HiT model achieves an average latency of
7.82 ms per frame, corresponding to 127 FPS. After integrating memory-efficient attention into its
hierarchical transformer blocks, the average latency is reduced to 6.45 ms, yielding 155 FPS. This
corresponds to a relative speedup of approximately 17.5% in latency and 22.0% in FPS, achieved
without any architectural modifications.

Table 1. Comparison of inference efficiency between the baseline HiT model and our optimized version.

Model Latency (ms) FPS

HiT (baseline) 7.82 127

HiT + Memory-Efficient Attention 6.45 155

4.2. Memory footprint

In addition to runtime, we measure GPU memory consumption during inference. The optimized HiT
reduces peak memory usage by 28.4%, primarily due to recomputation-based attention kernels that
avoid storing large intermediate tensors. This improvement directly benefits deployment in memory-
constrained environments such as UAV platforms, embedded devices, and mobile GPUs.

4.3. Tracking accuracy

Table 2. Performance comparison across multiple tracking benchmarks. The use of the proposed optimization
with memory-efficient attention maintains accuracy on all datasets.

Method LaSOT TrackingNet GOT-10k
AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

HiT-Base (baseline) 64.6 73.3 68.1 80.0 84.4 77.3 64.0 72.1 58.1
HiT-Base (optimized) 64.6 73.3 68.1 80.0 84.4 77.3 64.0 72.1 58.1

Since our modifications only change how attention computations are scheduled and executed, they
do not affect the precision of the operations. Consequently, the optimized model achieves the same
accuracy as the baseline across all evaluated benchmarks. Table 2 shows that the accuracy remains the
same across several visual object tracking benchmarks. This confirms that inference-time optimizations
can yield substantial efficiency gains while fully preserving the representational power of the original
architecture.

Because the memory-efficient attention implementation is mathematically equivalent to standard
self-attention — differing only in computation order and memory access patterns — the results are
deterministic and bitwise identical. Therefore, the corresponding confidence intervals have zero width,
as there is no stochastic variation between runs. This further supports that the optimization alters
only execution efficiency, not the representational behavior or prediction consistency of the model.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



1218 Borsuk V., Yakovyna V.

4.4. Discussion

These results highlight the potential of inference-time optimizations as a complementary approach to
architectural redesign. Unlike lightweight models that often sacrifice accuracy for speed, our method
improves runtime efficiency while maintaining state-of-the-art tracking performance. The reduced
latency and memory footprint demonstrate that transformer-based trackers can be made more practical
for real-time and resource-constrained deployment.

A notable strength of our approach is its generality: since memory-efficient attention preserves the
exact outputs of standard self-attention, it can be integrated into existing transformer-based trackers
(e.g., TransT, MixFormer, OSTrack) without retraining or architectural changes. This makes inference-
time optimization particularly suitable for efficient model deployment.

Limitations. The main limitation of our method is that it does not reduce the asymptotic compu-
tational complexity of attention, which remains O(N2d). The observed speedups arise from improved
memory locality rather than fewer operations, and thus depend on hardware architecture and mem-
ory hierarchy. Moreover, the current implementation targets GPU hardware; adapting it to other
accelerators (e.g., TPUs or edge NPUs) may require platform-specific kernel redesign.

Future Work. Future work could combine inference-time optimization with model-level techniques
such as quantization, pruning, or distillation to achieve further gains. Extending memory-efficient
computation to other components (e.g., cross-attention or feed-forward layers) and developing adaptive
scheduling strategies for edge devices are also promising directions.

In summary, inference-time optimization provides an architecture-agnostic pathway toward effi-
cient visual tracking, complementing existing model compression efforts by improving how attention
is executed rather than how it is designed.

5. Conclusions

In this work, we investigated inference-time optimization as a complementary direction for improving
the efficiency of transformer-based visual object trackers. Using HiT as our baseline, we integrated
memory-efficient attention into its hierarchical transformer blocks. Our experiments demonstrated
that this modification reduces inference latency from 7.82 ms to 6.45 ms, increasing throughput from
127 FPS to 155 FPS, while preserving tracking accuracy across benchmarks.

Unlike most existing efficient trackers that focus on architectural redesign, our approach shows that
substantial efficiency gains can be achieved by optimizing the execution of existing models. Memory-
efficient attention restructures the computation of self-attention without lowering precision or changing
the model’s representational capacity, making it highly practical for real-world deployment.

Looking ahead, inference-time optimizations could be extended to other components of visual track-
ers, such as cross-attention modules, feature fusion layers, or diffusion-based models. We believe that
combining architectural innovations with execution-level optimizations will be key to enabling high-
performance, real-time tracking on a wide range of platforms, from edge devices to large-scale systems.

[1] Chen X., Yan B., Zhu J., Wang D., Yang X., Lu H. Transformer Tracking. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 8122–8131 (2021).

[2] Yan B., Peng H., Fu J., Wang D., Lu H. Learning Spatio-Temporal Transformer for Visual Tracking. 2021
IEEE/CVF International Conference on Computer Vision (ICCV). 10428–10437 (2021).

[3] Cui Y., Cheng J., Wang L., Wu G. MixFormer: End-to-End Tracking with Iterative Mixed Attention. 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 13598–13608 (2022).

[4] Fan H., Bai H., Lin L., Yang F., Chu P., Deng G., Yu S., Harshit, Huang M., Liu J., Xu Y., Liao C.,
Yuan L., Ling H. LaSOT: A High-quality Large-scale Single Object Tracking Benchmark. 129, 439–461
(2021).

[5] Huang L., Zhao X., Huang K. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking
in the Wild. IEEE Transactions on Pattern Analysis and Machine Intelligence. 43 (5), 1562–1577 (2021).

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



Inference-Time Optimization for Fast and Accurate Visual Object Tracking 1219

[6] Borsuk V., Vei R., Kupyn O., Martyniuk T., Krashenyi I., Matas J. FEAR: Fast, Efficient, Accurate and
Robust Visual Tracker. Computer Vision – ECCV 2022. 644-663 (2022).

[7] Kang B., Chen X., Wang D., Peng H., Lu H. Exploring Lightweight Hierarchical Vision Transformers for
Efficient Visual Tracking. 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 9578–
9587 (2023).

[8] Yan B., Peng H., Wu K., Wang D., Fu J., Lu H. LightTrack: Finding Lightweight Neural Networks for
Object Tracking via One-Shot Architecture Search. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 15175–15184 (2021).

[9] Kristan M., Matas J., Leonardis A., Voj́ı̌r T., Pflugfelder R., Fernǎndez G., Nebehay G., Porikli F.,
Čehovin L. A Novel Performance Evaluation Methodology for Single-Target Trackers. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 38 (11), 2137–2155 (2016).

[10] Wu Y., Lim J., Yang M.-H. Online Object Tracking: A Benchmark. 2013 IEEE Conference on Computer
Vision and Pattern Recognition. 2411–2418 (2013).

[11] Bertinetto L., Valmadre J., Golodetz S., Miksik O., Torr P. H. S. Staple: Complementary Learners for
Real-Time Tracking. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1401–
1409 (2016).

[12] Henriques J. F., Caseiro R., Martins P., Batista J. High-Speed Tracking with Kernelized Correlation Fil-
ters. IEEE Transactions on Pattern Analysis and Machine Intelligence. 37 (3), 583–596 (2015).

[13] Vojir T., Noskova J., Matas J. Robust Scale-Adaptive Mean-Shift for Tracking. Image Analysis. 652–663
(2013).

[14] Bertinetto L., Valmadre J., Henriques J. F., Vedaldi A., Torr P. H. S. Fully-Convolutional Siamese Net-
works for Object Tracking. Computer Vision – ECCV 2016 Workshops. 850–865 (2016).

[15] Tian Z., Shen C., Chen H., He T. FCOS: Fully Convolutional One-Stage Object Detection. 2019
IEEE/CVF International Conference on Computer Vision (ICCV). 9626–9635 (2019).

[16] Ye B., Chang H., Ma B., Shan S., Chen X. Joint Feature Learning and Relation Modeling for Tracking: A
One-Stream Framework. Computer Vision – ECCV 2022. 341–357 (2022).

[17] Chen X., Wang D., Li D., Lu H. Efficient Visual Tracking via Hierarchical Cross-Attention Transformer.
Computer Vision – ECCV 2022 Workshops. 461–477 (2022).

[18] Dao T., Fu D. Y., Ermon S., Rudra A., Ré C. FlashAttention: Fast and Memory-Efficient Exact Attention
with IO-Awareness. Preprint arXiv:2205.14135 (2022).

[19] Jacob B., Kligys S., Chen B., Zhu M., Tang M., Howard A., Adam H., Kalenichenko D. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2704–2713 (2018).

[20] Molchanov P., Tyree S., Karras T., Aila T., Kautz J. Pruning Convolutional Neural Networks for Resource
Efficient Inference. Preprint arXiv:1611.06440 (2016).

[21] Huerta R., Shoushtary M. A., Cruz J. L., Gonzalez A. Dissecting and Modeling the Architecture of Mod-
ern GPU Cores. MICRO ’25: Proceedings of the 58th IEEE/ACM International Symposium on
Microarchitecture R©. 369–384 (2025).

[22] Jouppi N. P., Young C., Patil N., Patterson D., Agrawal G., Bajwa R., Bates S., Bhatia S., Boden N.,
Borchers A., et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA ’17: Pro-
ceedings of the 44th Annual International Symposium on Computer Architectu. 1–12 (2017).

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)



1220 Borsuk V., Yakovyna V.

Оптимiзацiя етапу застосування моделi для швидкого
й точного вiзуального вiдстеження об’єктiв

Борсук В. Ю., Яковина В. С.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Вiзуальне вiдстеження об’єктiв останнiм часом отримало значний поштовх завдяки
використанню трансформерних архiтектур, якi забезпечують високу точнiсть, але
водночас потребують великих обчислювальних i пам’ятних ресурсiв, що обмежує їх
застосування в режимi реального часу. Бiльшiсть iснуючих трекерiв, орiєнтованих на
ефективнiсть, вирiшують цю проблему шляхом архiтектурних змiн, часто жертвую-
чи точнiстю заради швидкостi. У цiй роботi дослiджуємо альтернативний i водночас
комплементарний напрям – оптимiзацiю обчислень. Використовуючи HiT як базову
модель, iнтегруємо оптимiзований механiзм самоуваги у її iєрархiчнi трансформернi
блоки, зменшуючи кiлькiсть звернень до високошвидкiсної пам’ятi (HBM) пiд час
обчислення уваги без змiни репрезентативної здатностi моделi. Нашi експерименти
показують, що запропонована оптимiзацiя зменшує середнiй час обчислень з 7.82 мс
до 6.45 мс та збiльшує пропускну здатнiсть iз 127 FPS до 155 FPS, при цьому зберiга-
ючи точнiсть вiдстеження. Цi результати демонструють, що оптимiзацiя часу iнфе-
ренсу може суттєво пiдвищити практичнiсть використання трансформерних трекерiв
у реальному часi, вiдкриваючи новий шлях до ефективного високопродуктивного вiд-
стеження без потреби у змiнах архiтектури.

Ключовi слова: вiзуальне вiдстеження об’єктiв; трансформери; оптимiзацiя

часу iнференсу; вiдстеження в реальному часi; глибинне навчання; ефективне

комп’ютерне бачення.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1211–1220 (2025)


