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To produce more accurate recommendations, Context-Aware Recommender Systems
(CARS) incorporate contextual elements during user interactions. However, a major chal-
lenge lies in the need for additional contextual data, which can hinder the performance of
collaborative filtering techniques. In this research, we introduce an innovative approach
for detecting contextual information in real time by integrating Long Short-Term Memory
(LSTM) recurrent neural networks with Context-Aware Matrix Factorization (CAMF).
This strategy is designed to dynamically adjust to changes in contextual conditions by
modeling user relationships and their temporal evolution, ultimately aiming to boost rec-
ommendation accuracy. The effectiveness of the proposed method is evaluated using two
standard performance metrics: Mean Absolute Error (MAE), NDCG (Normalized Dis-
counted Cumulative Gain), MSE (Mean Squared Error) and Root Mean Square Error
(RMSE).
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1. Introduction

Recommender Systems (RS) have become indispensable in assisting users to sift through vast volumes
of data and reduce the impact of information overload in the age of big data [1]. These systems
generate personalized suggestions across various domains, such as e-commerce and digital media, by
analyzing users’ historical interactions. Yet, taking into account the situational context in which a
recommendation is made is essential when users face numerous options. Context-Aware Recommender
Systems (CARS) build upon conventional techniques by incorporating contextual variables; however,
many existing models treat context as static, despite the dynamic nature of user preferences [2]. There
remain significant challenges, especially in accurately capturing shifts in user behavior and adapting
to evolving contextual factors. Our research directly tackles these issues. In this work, we introduce
a hybrid recommendation model that merges the capabilities of Long Short-Term Memory (LSTM)
networks with Context-Aware Matrix Factorization (CAMF). This integration is designed to address
the shortcomings of existing methods by combining LSTM’s strength in modeling sequential data with
CAMF’s ability to process contextual inputs. Through this synergy, the proposed approach aims
to deliver more precise and contextually relevant recommendations. The remainder of the paper is
organized as follows:

1. reviews related research;
2. outlines our proposed model and methodology;
3. presents the experimental setup and results;
4. concludes with insights and prospects for future research.
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2. Related works

This section presents an overview of several Context-Aware Recommender Systems (CARS) introduced
in the literature, selected according to the focus of each study and its scholarly impact, measured by ci-
tation count. The objective is to identify potential areas for enhancement. To structure the discussion,
the section is divided into three distinct subsections. Section 2.1 deals with context-aware recommen-
dation systems, while section 2.2 researches into use of long-term memory (LSTM) in recommender
systems. Section 2.3 briefly describes and explores temporal dynamics in recommender systems.

2.1. Context-aware recommender systems (CARS)

The notion of context is inherently multifaceted and can vary significantly depending on the specific
domain of application. Initially, this study defined context as encompassing physical locations, groups
of individuals, nearby objects, and the temporal evolution of these elements [3]. Broadly speaking,
context includes any additional information that can improve the precision of recommendations, and
there is a general consensus that incorporating contextual elements enhances the personalization of
recommender systems [4].

Context-Aware Recommender Systems (CARS) represent an advancement in recommendation tech-
nologies by integrating such contextual data to boost system performance [5]. A substantial body of
research has been devoted to methods for embedding context – such as user activity, temporal aspects,
spatial location, or even environmental conditions like weather – into recommendation algorithms [6].
By aligning recommendations with the user’s situational conditions, CARS can deliver more relevant
and adaptive suggestions [7–9].

CARS

Contextual
post-filtering

Contextual
modeling

Contextual
pre-filtering

Fig. 1. Context-aware
recommendation systems.

For instance, Rosni Lumbantoruan et al. [10] introduced a
model known as TopC-CAMF, developed in response to the
increasing demand for personalized recommendation mecha-
nisms. Unlike conventional approaches that depend on pre-
defined contexts like time or place, TopC-CAMF derives indi-
vidualized contextual cues from user-generated textual reviews.
Leveraging matrix factorization techniques, the system identi-
fies the most influential contextual factors for each user based

on their review content, which in turn informs more accurate and user-specific recommendations. Sim-
ilarly, Krishan Kant Yadav et al. [11] proposed a hybrid system that combines matrix factorization
with neural networks to enhance both the accuracy and breadth of recommendations. Their model
was tested across several datasets, with evaluation metrics such as RMSE indicating improved per-
formance. The potential applications of this approach span various sectors, including online retail,
social platforms, and digital entertainment. CARS expand on conventional recommender systems by
incorporating dimensions like time, location, device, or user environment, transitioning from a tradi-
tional two-dimensional model (User – Item) to a multidimensional framework (User-Item-Context) [12].
Formally, the utility function in CARS can be represented as follows:

R : U × I × C → Rating, (1)

where U denotes the set of users, I the set of items, and C the set of contextual variables [13]. Ado-
mavicius et al. [6] categorized context integration strategies into three main paradigms: pre-filtering,
post-filtering, and contextual modeling, as depicted in Figure 1:

— Context-Based Pre-Filtering: In this strategy, contextual information is applied at the early stage
of the recommendation process to filter data before it reaches the core algorithm. Within content-
based recommendation systems, this typically involves generating multiple context-dependent pro-
files for both users and items. During recommendation generation, the system selects the most
appropriate feature vector corresponding to the detected context. In collaborative filtering sys-
tems, pre-filtering consists of adapting the rating predictions by associating them with specific
contextual dimensions [14].
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— Context-Based Post-Filtering: This approach incorporates contextual information after the initial
recommendation list has been generated. The main objective is to refine or reorder the output by
selecting or prioritizing rating predictions based on the current context, thus enhancing the overall
relevance of the recommendations [15].

— Contextual Modeling: In this paradigm, context is directly integrated into the core recommendation
computation. For content-based systems, contextual variables influence the similarity calculations
between users and items, thereby adapting recommendations to the user’s situation. In collabora-
tive filtering systems, heuristic-based methods are often employed in memory-based models, while
advanced model-based approaches leverage techniques such as tensor factorization and context-
enriched matrix factorization to capture context effects during training [15]. Among the most
recognized models in this area is Context-Aware Matrix Factorization (CAMF), which extends tra-
ditional collaborative filtering by incorporating contextual dimensions to improve recommendation
relevance. CAMF applies matrix and tensor factorization methods to decompose the user – item in-
teraction matrix into latent features, while simultaneously modeling context as an additional input
layer. Different versions of CAMF exist to represent diverse contextual influences. For instance,
CAMF-C assigns a global weight to each context value independently of items, using separate
parameters for each context factor. Alternatively, CAMF-CI links each context – item pair with
specific parameters, enabling the model to capture how context affects the relevance of individual
items [10]. The CAMF framework is particularly suited to multi-context scenarios, as it analyzes,
extracts, and integrates contextual data to dynamically tailor recommendations. As a result, it
produces more accurate and situationally appropriate predictions, offering significant advantages
over traditional context-free models.

2.2. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a specialized architecture within the family of Recurrent Neural
Networks (RNNs), designed to effectively learn from and model sequential data that exhibit long-term
dependencies. In the domain of recommender systems, LSTMs are particularly valuable for identifying
temporal trends and behavioral patterns in user-item interactions, ultimately enabling more accurate
and individualized recommendations. This deep learning model has demonstrated strong performance
across a range of applications, including various text classification tasks [16]. The network takes as
input a sequence of elements

X = (x1, x2, . . . , xn)

and outputs a corresponding sequence
Y = (y1, y2, . . . , ym)

with each output computed based on internal activations generated by the model’s architecture [17].
A defining feature of LSTM networks is the presence of memory blocks within their hidden recur-
rent layers. These blocks include memory cells that maintain the network’s internal state over time
through self-recurrent connections, as well as gating mechanisms-multiplicative units that control how
information is stored, updated, and retrieved [18]. In its foundational form, each memory block is
equipped with two key gates: the input gate, which governs the extent to which incoming data affects
the memory cell, and the output gate, which determines how much of the ‘cell’s content influences the
network’s output at each time step.

Imran Ahmed et al. [19] introduced a recommendation framework that leverages a heterogeneous
information network to establish relationships among patients, medical conditions, and pharmaceu-
tical products. The system involves a multi-stage pipeline including data extraction, preprocessing,
sentiment analysis, and classification using an LSTM model. See the architecture in Figure 2. User-
generated content, drug feedback, and various contextual features are incorporated into the model to
predict individual user responses. The integration of diverse data sources enhances the precision of
context-aware recommendations. Moreover, the system utilizes shared insights and evaluations from
individuals with similar medical conditions, employing feature engineering techniques to extract critical
attributes.
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Fig. 2. LSTM memory blocks.

Chuanchuan Zhao et al. [20] proposed a novel recommendation method that combines deep bidi-
rectional LSTM networks with a self-attention mechanism. This approach addresses challenges related
to item representation, weight adjustment, and dual-directional preference modeling, ultimately cap-
turing users’ preferences more effectively. In another contribution, N. S. Kirutika et al. [21] developed
a recommendation system tailored to social media environments using a hybrid LSTM-SVM classifier.
This system was designed to differentiate between authentic and misleading information about the
COVID-19 pandemic. Real-time Twitter data is collected, preprocessed, and transformed into binary
feature vectors. The hybrid model, trained and evaluated using separate datasets, demonstrates su-
perior performance over conventional methods across multiple metrics, including accuracy, sensitivity,
and specificity.

Jie Wang et al. [22] presented a contextual citation recommendation system built on an end-to-
end memory network framework. The model incorporates bidirectional short- and long-term memory
(Bi-LSTM) layers to learn semantic representations of both article content and citation contexts. Ad-
ditionally, it integrates author profiles and citation linkages into vectorized embeddings, and calculates
contextual relevance using a multi-layer memory mechanism. Lastly, Wafa Shafqat et al. [2] proposed
two deep learning-based models to enhance tourism recommendation systems. The first employs a
context-enriched hierarchical architecture built on LSTM networks to forecast short-term tourist be-
havior. It utilizes environmental and situational variables, such as climate, weather conditions, and
local risk levels, to provide personalized travel suggestions. The second model focuses on long-term
travel preferences, integrating contextual inputs like user reviews, location ratings, geographic distance,
and popularity scores to improve recommendation accuracy.

2.3. Review of recommendation system

Table 1 presents a detailed comparative analysis of a wide range of recommendation methodologies,
along with the datasets employed for their validation and the performance metrics used in their evalu-
ation. The methods span from conventional collaborative filtering models to more sophisticated deep
learning-based techniques, such as LSTM. The datasets referenced are drawn from varied domains,
including film, music, tourism, and e-commerce, reflecting the adaptability of these methods across
applications. Evaluation measures include standard indicators like Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE), as well as more nuanced metrics such as Normalized Discounted
Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR). In some instances, domain-specific
metrics are applied, including sensitivity, specificity, and Cohen’s kappa for classification accuracy, as
well as training and validation loss for assessing deep learning model performance. This table offers a
synthesized overview of contemporary approaches in recommendation systems research.
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Table 1. Review of recommendation systems.

Ref. Method Dataset Evaluation

[23] PW-CAMF STSTravel, InCarMusic MAE, RMSE
[10] TopC-CAMF Beauty, Office, InCarMusic RMSE, MAE, MSE, NDCG
[11] MF-NN MovieLens, Hindi Movie, Book

Cross
MAE, RMSE, Coverage

[15] CBMF DePaulMovie, LDOS-CoMoDa, In-
CarMusic, Travel-STS

MAE, RMSE

[19] LSTM Dataset from www.Drugs.com Training and validation loss
[20] Bi-LSTM MovieLens dataset Recall, MAP, MRR, NDCG
[17] LSTM-SVM Classifier Twitter Dataset Sensitivity, Specificity, Precision,

Kappa

3. Proposed methodology

The proposed method integrates two powerful techniques to enhance the performance of context-aware
recommendation systems: Long Short-Term Memory (LSTM) networks and Collaborative Aspect Ma-
trix Factorization (CAMF). LSTM networks are a type of recurrent neural network (RNN) that are
particularly effective at capturing and modeling temporal dynamics in data. They are designed to
remember information for long periods, making them suitable for sequence prediction tasks. In this
context, the LSTM model processes a sequence of data points over time to understand how user prefer-
ences evolve. CAMF is a matrix factorization technique that incorporates contextual information into
the recommendation process. It models the interactions between users and items while considering
additional contextual factors, such as user demographics or situational context.

DATA
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Fig. 3. The implementation steps of the hybrid approach.

The LSTM model is employed to capture temporal patterns in the data. It processes a sequence
of input data points over time to generate an output that reflects the temporal characteristics of user
behavior. This output from the LSTM represents the captured temporal features at each time step,
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which helps in understanding how user preferences change over time. CAMF leverages contextual
features to improve the accuracy of recommendations. These features can include various types of in-
formation, such as metadata about the items, tags, genres, or user-specific information. By considering
these contextual factors, CAMF provides more relevant recommendations that align better with the
user’s current context.

The integration of LSTM and CAMF is achieved by merging their respective outputs. The combined
output Leverages the strengths of both approaches: LSTM ability to capture temporal patterns and
CAMF ability to handle contextual interactions. This combined output is then used for the final
prediction, providing a more Accurate and context-aware recommendation.

The hybrid model, which integrates the LSTM and CAMF outputs, is used to make the final rec-
ommendation. This approach improves the recommendation systems overall performance by capturing
both temporal and contextual relationships in the data. By utilizing both LSTM and CAMF, the sys-
tem can provide recommendations that are not only based on historical user behavior but also tailored
to the current context, leading to more relevant and personalized recommendations. The LSTM-CAMF
approach is based on temporal hybridism in user-product interaction using LSTM and CAMF collab-
orative matrix factorization. A description of the implementation steps is shown in Figure 3. Initially,
the phase of collecting, cleaning, encoding and normalizing interactions, and then dividing the data
into validation, training and test sets, is known as data preparation. Then, thanks to the recurrent
layers, the LSTM model takes into account the passage of time, and in the CAMF model, the user-
product matrix is factorized to learn latent representations. In the final phase, the two models are
linked in a dense layer that merges temporal and collaboration information. These approaches are used
to improve the performance of recommendations using both sequential and collaborative relationships.

4. Experimental evaluation

This section assesses the performance of our interactive recommendation approach through comprehen-
sive experimentation using two publicly available real-world datasets. These experiments are designed
to rigorously evaluate the system’s ability to deliver accurate and context-aware recommendations.

4.1. Dataset

This sub-section describes the datasets analyzed. The datasets analyzed include InCarMusic and De-
PaulMovie. InCarMusic Dataset This dataset examines music preferences within in-car environments,
documenting user preferences and behaviors associated with music selection and listening habits during

Table 2. Description of dataset.

InCarMusic DePaulMovie STSTravel
Users 42 97 249
Items 139 79 325
Context 8 3 14
Rating 4 012 5 043 2 534
scale 1–5 1–5 1–5

automobile travel. There are 26 distinct con-
texts, including driving style, landscape, state
of mind, sleep, traffic conditions, and weather
and climate. The DePaulMovie Dataset com-
prises training and testing subsets focused on
movie recommendations. User preferences,
movie ratings, and contextual information that
influence movie choices are included. The De

Paul Movie Dataset is a collection of films that includes: A total of 5 043 ratings categorized as fol-
lows: 1 448 ratings presented without specific context. 3 595 contextual ratings (see Table 2).

4.2. Accuracy evaluation metrics

To evaluate the predictive accuracy of the implemented algorithms, we employed standard perfor-
mance metrics widely used in recommendation system research. The primary metrics selected were
the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE), both of which quantify
the deviation between predicted ratings and actual user feedback.

Mean Absolute Error (MAE). The MAE measures the average size of the prediction errors,
regardless of their direction. It is calculated as the average of the absolute differences between the
predicted and actual valuations. Lower MAE values indicate better agreement between the predicted
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and actual valuations, suggesting better performance of the model in terms of prediction accuracy,

MAE =
1

n

n
∑

i=1

|yi − ŷi| .

Root Mean Squared Error (RMSE). The RMSE gives the square root of the average of the
squared differences between the predicted and actual classifications, penalizing large errors significantly.
Lower RMSE values indicate better performance, meaning that the model predictions are closer to the
actual classifications,

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2.

NDCG (Normalized Discounted Cumulative Gain). NDCG evaluates the ranking quality
of recommendations by considering the position of relevant items. Highly relevant items ranked higher
contribute more to the score. The score is normalized between 0 and 1,

DCG@k =
k

∑

i=1

2reli − 1

log2(i+ 1)
,

NDCG@k =
DCG@k

IDCG@k
.

MSE (Mean Squared Error.) MSE measures the average of the squared differences between
the predicted values and the actual values. It penalizes larger errors more severely than smaller ones,

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2

4.3. Evaluation methodology

We compare the LSTM-CAMF method with three state-of-the-art reference systems: TopC-CAMF [15]
and PW-CAMF and CBMF. In this paper, we apply cross-validation five times and carefully adjust
each reference systems.

We present experimental results for three recommendation models: based on two common evalua-
tion metrics – mean absolute error (MAE) and root mean square error (RMSE). The evaluation was
conducted on the INCARMUSIC dataset. The results are summarised in Table 3 below.

Table 3. Evaluation of LSTM-CAMF, TopC-CAMF, and PW-CAMF models
based on MAE and RMSE (IncarMusic).

Metric LSTM-CAMF TopC-CAMF CBMF PW-CAMF
MAE 0.43 0.5074 1.2901 0.869
RMSE 0.61 0.6440 1.5207 1.092

Two additional performance measures are used to present the evaluation results for the LSTM-
CAMF and TopC-CAMF models: Mean Square Error (MSE) and Normal Discounted Cumulative
Gain (NDCG). These metrics provide an insight into the accuracy and the quality of the ranking of
the recommendations produced by the models. The evaluation is performed on the INCARMUSIC
dataset. The results are summarised in Table 4.

Table 4. Evaluation of LSTM-CAMF, TopC-CAMF
models based on MSE and NDCG (INCARMUSIC).

Metric LSTM-CAMF TopC-CAMF
MSE 0.35 0.5074
NDCG 0.757 0.7216

In this section, we report the results of evalu-
ating the LSTM-CAMF, PW-CAMF, and CBMF
models based on the mean absolute error (MAE)
and root mean square error (RMSE). These met-
rics provide an assessment of the prediction accu-
racy and the ability of the model to minimize the
errors in the recommendations. The evaluation is performed on the STS Travel dataset. The results
are summarized in Table 5.
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Table 5. Evaluation of LSTM-CAMF, PW-CAMF,
CBMF models based on MAE and RMSE (STS Travel).

Table 6. Evaluation of LSTM-CAMF,
CBMF models based on MAE and RMSE.

Metric LSTM-CAMF PW-CAMF CBMF
MAE 0.650 0.740 0.9284
RMSE 0.880 0.927 1.1126

Metric LSTM-CAMF CBMF
MAE 0.580 0.6591
RMSE 0.850 0.9186

The results of the evaluation of the LSTM-CAMF and CBMF models on the basis of mean ab-
solute error (MAE) and root mean square error (RMSE). These measures assess the accuracy of the
predicted classifications and the overall performance of the model. The evaluation is performed on the
DePaulMovie dataset. The results are summarized in Table 6.

4.4. Experimental results and discussion

This section presents the experimental results of four different models, LSTM-CAMF, TopC-CAMF,
PW-CAMF and CBMF, evaluated by different performance measures such as MAE, RMSE, MSE and
NDCG on different datasets, INCARMUSIC, STS Travel and DePaulMovie. The results show that
the performance of each model is comparable in terms of prediction accuracy and classification quality.
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Fig. 7. Evaluation of LSTM-CAMF, CBMF
models based on MAE and RMSE.

Across all datasets and evaluation metrics, LSTM-CAMF consistently outperforms the other models,
exhibiting higher prediction accuracy and classification quality. In terms of MAE and RMSE, LSTM-
CAMF performs the lowest in each case, indicating that it is the most accurate model in terms of
minimizing prediction errors and handling large errors. LSTM-CAMF shows exceptional performance
in the INCARMUSIC in Figures 4 and 5 and STS Travel datasets Figures 6 and 7, leading in both MAE
(0.43 and 0.650) and RMSE (0.61 and 0.880). It significantly outperforms PW-CAMF and CBMF,
which have higher error rates, with CBMF consistently performing worst in both metrics. LSTM-
CAMF also excels in classification quality, as evidenced by its higher NDCG score (0.757) compared
to TopC-CAMF (0.7216) on the INCARMUSIC dataset. This highlights the ability of LSTM-CAMF
to classify relevant items more efficiently, leading to more useful recommendations. When comparing
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LSTM-CAMF with CBMF on the DePaulMovie dataset, LSTM-CAMF again outperforms CBMF
in both MAE (0.580 versus 0.6591) and RMSE (0.850 versus 0.9186), indicating that it is better at
providing accurate recommendations and handling prediction errors. In summary, LSTM-CAMF shows
excellent performance in all datasets and metrics evaluated. It consistently provides better prediction
accuracy, error minimization and ranking quality compared to other models such as TopC-CAMF, PW-
CAMF and CBMF. These results show that the combination of LSTM and CAMF structure for storing
complex models of data is efficient, making LSTM-CAMF an effective choice for recommendation
systems. Its performance can be further improved by optimizing and testing it on new datasets.

5. Conclusion and future directions

In this study, our hybrid CAMF-LSTM model demonstrated promising results in predicting user ratings
for music items, outperforming the CBMF method in several key performance metrics. Specifically,
our model achieved an MAE of 0.43 and an RMSE of 0.61 for the INCARMUSIC dataset, outper-
forming CBMF, which had an MAE of 1.29 and an RMSE of 1.5207. Furthermore, our model showed
superior performance on the DePaulMovie dataset, where it again surpassed CBMF in both MAE
(0.580 vs. 0.6591) and RMSE (0.850 vs. 0.9186). These results highlight the effectiveness of integrat-
ing the LSTM architecture with the CAMF framework, demonstrating improved prediction accuracy
compared to traditional methods. The performance analysis of LSTM-CAMF across various datasets
consistently revealed its ability to minimize prediction errors (as indicated by its lower MAE and
RMSE) and enhance ranking quality (with higher NDCG values compared to TopC-CAMF and PW-
CAMF). In particular, LSTM-CAMF showed its superiority in handling large prediction errors, making
it a robust model for recommendation systems. However, while the results are promising, there is still
potential for further improvement in the model’s performance. Several avenues for future work can
be explored to refine and enhance the model: Hyperparameter Optimization: Further hyperparameter
tuning and optimization could be conducted to explore the hyperparameter space more thoroughly.
Finding the optimal combination of parameters may lead to a more accurate model that better gener-
alizes to unseen data. Incorporating Additional Contextual Data: Another direction for improvement
is to incorporate more contextual information that could enhance the model’s understanding of user
preferences. By integrating external data sources, such as user demographics, behavior patterns, or
temporal factors, the model can make more informed predictions and improve recommendation qual-
ity. Exploring Advanced Deep Learning Architectures: Moving forward, experimenting with more
advanced deep learning models, such as Large Language Models (LLMs) or Transformers, could help
capture more complex relationships between users, items, and contextual data. These architectures
have shown great success in various domains, including natural language processing and recommender
systems, and could further improve the robustness and accuracy of the CAMF-LSTM model. Cross-
Domain Recommendations: Exploring cross-domain recommendation techniques could be another area
for future research. By applying the model to different datasets and domains, it may be possible to
enhance the model’s generalizability and adaptability to various contexts, such as movies, books, or
even e-commerce platforms. Hybrid Approaches: Combining LSTM with other types of models, such
as collaborative filtering, content-based filtering, or reinforcement learning, could lead to a more com-
prehensive solution that leverages the strengths of each approach. Hybrid models are known to perform
better in capturing the diverse aspects of recommendation tasks. By pursuing these directions, it is
possible to enhance the performance of the CAMF-LSTM model and develop more accurate, efficient,
and context-aware recommendation systems. This will contribute to building more personalized and
effective recommendation engines across various domains, ultimately improving user satisfaction and
engagement.
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Дослiдження LSTM-CAMF: новий пiдхiд
до контекстно-залежної колаборативної фiльтрацiї
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Для створення точнiших рекомендацiй контекстно-залежнi рекомендацiйнi системи
(CARS) включають контекстнi елементи пiд час взаємодiї з користувачами. Однак,
основна проблема полягає в потребi додаткових контекстних даних, що може переш-
коджати роботi методiв колаборативної фiльтрацiї. У цьому дослiдженнi подано iнно-
вацiйний пiдхiд до виявлення контекстної iнформацiї в режимi реального часу шля-
хом iнтеграцiї рекурентних нейронних мереж з довгостроковою пам’яттю (LSTM) з
контекстно-залежною матричною факторизацiєю (CAMF). Ця стратегiя розроблена
для динамiчного пристосування до змiн у контекстуальних умовах шляхом моделю-
вання вiдносин мiж користувачами та їхньої часової еволюцiї, зрештою, з метою пi-
двищення точностi рекомендацiй. Ефективнiсть запропонованого методу оцiнюється
за допомогою двох стандартних показникiв ефективностi: середня абсолютна помилка
(MAE), NDCG (нормований дисконтований кумулятивний прирiст), MSE (середньо-
квадратична помилка) та середньоквадратична помилка (RMSE).

Ключовi слова: CAMF; LSTM, RMSE; MAE; CARS.
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