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Abstract: The rapid expansion of cyber-physical systems
(CPS) has intensified the need for scalable and adaptive
mechanisms to collect heterogeneous environmental data
from numerous unstable external sources. Traditional
serverless orchestration frameworks, while elastic and cost-
efficient, lack runtime adaptability and feedback-awareness,
leading to inefficiencies under dynamic API conditions. This
paper presents a novel adaptive orchestration model for
serverless data collection pipelines, driven by metadata
configuration and continuous feedback control. The
proposed system integrates AWS-based components
(Lambda, EventBridge, SQS, S3, Athena, MongoDB) to
enable autonomous management of data collection processes
from OpenAQ, NOAA, NASA GES DISC, and ESA
Copernicus. Adaptive behavior has been achieved through
feedback-based health scoring and metadata-driven
reconfiguration, improving resilience to vendor instability,
APl schema changes, and rate-limit fluctuations.
Experimental validation has demonstrated a 40% reduction
in failed invocations, a 22% latency improvement, and a
17% decrease in operational costs compared to static
orchestration approaches. The results confirm the feasibility
of fully adaptive, serverless data orchestration and establish
the groundwork for future Al-assisted autonomous
orchestration in heterogeneous CPS environments.

Index terms: serverless architecture,
orchestration, metadata-driven configuration,
computing, environmental data, AWS.
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I. INTRODUCTION

The enormous growth in the need for data in cyber-
physical systems (CPS) has led to a demand for new
systems to collect them. These are systems that have
resilient and scalable infrastructure to maintain stability
under a huge amount of load from various data sources.
Not only that, but the fault-tolerance and ability to
process heterogeneous (different size, type, and format)
data as close to real-time as possible. In the environ-
mental and climate change domain, we have diverse data
streams that generate a large amount of data for such
metrics as air quality, earth surface analysis, climate
observations, and so on. Those include:

e OpenAQ: a network that detects atmospheric

pollutants

e NOAA (National Oceanic and Atmospheric

Administration): for meteorological and oceanic

observations, is also a primary source for
weather and climate data

e GES DISC (NASA Goddard Earth Sciences

Data and Information Services Center): for
atmospheric datasets, responsible for archiving,
managing, and distributing Earth science data

e ESA (European Space Agency) Copernicus: for

satellite imagery and earth observations.

Together, those sources provide a vast amount of
heterogeneous data to analyze in near real-time and
represent a great dataset for further analysis, which is
perfect for testing such an adaptive serverless system.

The domain paradigm of serverless computing has
already proven itself to be independent, elastic, highly
scalable, and cost-efficient [1, 2]. Most of the platforms
for cloud computing (such as AWS) have already
provided event-driven solutions to address the demand
for automatically scaling resources, without any manual
provisioning. Despite all the advantages, a lot of
serverless systems remain highly vulnerable and
inefficient due to their static architecture. They depend
on fixed schedules, have strict rules, and most
importantly, they rely on consistent and stable data
sources, which appear not to be the case for
environmental data most of the time. Environmental data
API's, at least those mentioned in this article, experience
frequent changes: in schemas, rate limits, update timings,
and temporary unavailability. That leads to missing data
points, unnecessary executions, and errors due to rate
limits if not addressed correctly [3, 4].

Although some previous studies demonstrate the
scalability of serverless architectures for data collection
purposes, very little attention was paid to one of the most
important topics in this domain — adaptive behavior
under constantly changing external conditions. The lack
of orchestration and feedback of the system often
prevents systems from adjusting. And the topic of
bringing together data in various formats and analyzing
them in near-real-time environments is also hugely
unspoken.

This work expands previous studies in some fields.
Most specifically, it focuses on measuring a serverless
data-collection system based on metadata-driven and
feedback-controlled orchestration mechanisms. While
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collecting vendor-specific data, the proposed model
continuously tracks and analyzes feedback in such
metrics as: latency, failure rate, data novelty, and more
to always keep track of each vendor's health state.

Il. LITERATURE REVIEW
AND PROBLEM STATEMENT

Usage of serverless systems has become a default
solution for most modern distributed systems and
applications. Due to its ease in terms of setting up,
managing resources, cost efficiency, and many other
advantages. However, for large, long-running operations,
orchestration of serverless components remains crucial,
as it has been stated in prior studies [5, 6].

There are existing solutions that have been
proposed. Most of them are based on AWS Step Func-
tions, Apache Airflow, and Azure Durable Functions.
They all seem to be well-thought-out solutions at first,
but when they encounter problems with heterogeneous
data (such as environmental data), they aren't suitable
enough. Those solutions provide robust orchestration
capabilities, but only under the assumption of static
configuration, predefined triggers, expected working
time, and stability of data sources. Some studies tried to
improve the described orchestration workflow using
standardization and rule-based logic [7, 8], but they all
lacked reactiveness and feedback awareness.

Self-regulating, adaptive solutions in serverless
systems have advanced a lot recently. They seem very
promising and have shown huge potential in terms of
integration in orchestration mechanisms and feedback
adaptability [9]. Dynamic resource allocation modules
and learning-based schedulers have shown measurable
growth in performance and stability. However vast
majority of those solutions are made for container-based
or microservices solutions, not for event-driven, ser-
verless architectures. So, the lack of runtime adaptive
mechanisms in serverless architecture remains, espe-
cially in such unstable and heterogeneous environments.

The same pace of growth can be seen in the data
collection of the environmental data domain. Vendors,
such as OpenAQ, NOAA, NASA GES DISC, and ESA
Copernicus, expose APIs with different schemes,
formats, quotas, schedules, they are even sensitive to
different downtime and format changes. Prior works,
focused on environmental data collections, often focus
on standardization and fusion of data from different
sources [10]. But none of them investigates adaptive
orchestration for continuous data collection, transfor-
mation, fusion, and recovery. Those aspects are crucial
in this specific domain and for maintaining real-world
CPS pipelines.

Summarizing the previous statements, we currently
have a situation where the orchestration of cloud
pipelines has advanced significantly, but most of those
pipelines have not been ready yet for real-life challenges,
as we often see when collecting environmental data.
Those systems demonstrate low fault tolerance,
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inefficiency for heterogeneous data, including excessive
retries, and require manual reconfiguration when API
changes occur.

The primary objective of the present study is to
develop a methodology that facilitates the implemen-
tation of autonomous, adaptive coordination mechanisms
for the effective collection of heterogeneous data about
the environment, utilizing serverless technology.

With primary challenges being:

e Providing mechanisms of runtime feedback
communication to detect and address the
vendor's instabilities.

e Providing a metadata abstraction layer to enable
real-time adjustments of orchestration logic.

e Adding fault-resistant mechanisms that provide
efficiency under severe data collection circu-
mstances.

This paper addresses the mentioned challenges and
provides a prototype of a system based on an adaptive
modular orchestration mechanism, based on metadata
and real-time feedback communication. Aiming to
increase efficiency, adaptability, fault-tolerance, and cost
efficiency.

I11. SCOPE OF WORK AND OBJECTIVES

The main field of research is enhancing the effecti-
veness and fault tolerance of serverless data-collection
systems through adaptive orchestration mechanisms.
Research is specifically focused on heterogeneous data
in dynamically changing, unstable environments, where
data comes from different vendors with varying timing,
stability, rate limits, and structures.

Implementation is based on AWS infrastructure,
involving lots of services and frameworks, but some of the
core components are the following: AWS Event Bridge,
Lambda, SQS, Athena, and MongoDB. For event
management, processing, orchestration, aggregation, and
data metadata storing, accordingly. The system's ability
was validated using those 4 environmental data vendors:

e OpenAQ: exposes air quality conditions in near

real-time.

e NOAA: responsible for climate and meteo-

rological changes.

e NASA GES DISC: atmospheric datasets.

e ESA Copernicus: satellite-based geospatial and

land-cover data.

Not only are those datasets well-compatible in
terms of usability and value of data combined, they also
have different data structures, formats, different rate
limits, latency, and amounts of data. That makes those
sources great for testing an adaptive orchestration model
under severe circumstances. System supports dynamic
scheduling, a metadata-driven approach, and automatic
recovery after failure. That allows anybody to change
system schemes, timing, recovery policy, and so much
more, dynamically in real-time.
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The main research objectives are as follows:

e To design an adaptive orchestration model of a
serverless system, configured and managed by a
metadata-driven approach. That system should
withstand challenges in the collection of vast
amounts of heterogeneous data.

e To make a prototype of a serverless system,
using cloud technologies for the whole pipeline.

e To develop a model and test the mechanism of
pipeline adaptation based on feedback
communication. It should automatically adjust
scheduling, retries, and other specific to vendor
settings.

e To test the efficiency and fault tolerance of the
system using the mentioned data sources
(OpenAQ, NOAA, NASA GES DISC, ESA
Copernicus).

e To establish the foundation for future research
in autonomous, self-regulating orchestration
systems that can evolve based on previous
experience and feedback-based communication,
so that they can upgrade in efficiency and
optimize working processes without any manual
interventions.

The expected outcome of this research is that the

adaptive orchestration model:

e reduces the amount of redundant calls while the
unstable vendor recovers or rate limits are
reached,

e improves operational and economic efficiency
in comparison to static planning,

e allows real-time integration of data from new
endpoints/vendors, and reconfiguration/removal
of the old ones,

e makes an initial prototype that can be later
evolved into an Al-assisted adaptive orchestra-
tion system

IV. ADAPTIVE ORCHESTRATION MODEL
AND SYSTEM IMPLEMENTATION

A. SYSTEM OVERVIEW

So, the proposed ecosystem mainly proposes
dynamic orchestration based on a metadata-driven
approach. It has a lot of elements in it, but the main ones
are: AWS Lambda, S3, Athena, Event Bridge, SQS, and
MongoDB. That is the list to talk about a basic prototype
solution. The simple version of this modular solution can
be seen in the diagram (Fig 1). It demonstrates only part
of the architecture, with data being collected from the
OpenAQ vendor.

Each module of this orchestration process operates
as an independent function, responsible for various tasks.
Such as: data retrieval, transformation, storage, and so
on. These processes are directed by the core controller, it
is responsible not only for communication between
independent modules, but also for intervals of calls, rate
limits tracking, availability and latency check, and data
deduplication, based on feedback communication.
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Prototype of the proposed architecture

But mainly, the pipeline is separated into 3 main
parts:

e Collection: they have the same abstraction, but

the implementation is specific to each vendor.
They receive necessary data through the REST
API or file endpoints (other methods can be
easily added later on). In JSON, CSV, NetCDF,
and other formats.

e Transformation: Received data points are
transformed into one object format with the
interface of EnvironmentalReadings. It has all
the required properties to bind data, and
additionally has metadata, measurements, and
timestamps.

e Storage and access: Collected data is stored in
AWS S3, with a specific structure (vendors,
days, hours, etc.) and separated by raw/curated
state, based on their transformation status. This
enables efficient querying with the help of
Athena.

This architecture allows for collecting all the
vendors: OpenAQ, NOAA, NASA GES DISC, and ESA
Copernicus data separately. While allowing it to
maintain data consistency, it resolves problems and
transforms related to each vendor independently, but in
the end, we have data available in the same format and
structure, keeping operational overhead low.

B. METADATA-DRIVEN CONFIGURATION

At the core of the system, we have metadata for
each vendor that we collect data from. This data can be
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manually or automatically updated whenever there is a
need for a change. Those changes will be applied to the
system instantly, without any need for code changes or
redeployment. Metadata for each vendor mainly consists
of:
e Request type,
endpoint.
e Rate limits, retrial policy, timeouts.
e Transformation schemes.
e  Current working state (for circuit-breaker errors
management).

pagination strategy, request

"_id": "68eba9982bf63c0808650530",
"vendor": "openaq",
"enabled": true,
"secretName": "openaq",
"description": "OpenAQ 15-Minute Snapshot
Collection - frequent time-series snapshots”,
"features": [{
"id": "timeseries-pm25-15min”,
"name": "PM2.5 15-Minute Snapshots",
"type": "DataCollection",

"params": { "action": "collectTimeSeries",
"parameter": "pm25" },
"schedule": {

"id": "pm25-15min",

"cron": "0,15,30,45 * * * *"/
"status": "Active",
"nextRun": "2025-10-22T14:00:00Z"
}
s
"metadata": {

"apiUrl": "https://api.openaq.org/v3",

"endpoint": "/parameters/{id}/latest",

"collectionStrategy":
"15_minute_snapshots”,

"storage": {

"raw": "s3://environmental-data-raw-
*/raw/vendor=openaq/",
"curated": "s3://environmental-data-
curated-*/curated/vendor=openaq/",
"mongo": ["collection_state",
"latest_readings", "location_metadata"]
¥
"collectionsPerDay": 96,
"expectedvVolume": "~330,000 readings (~200
MB/day)",
"notes": "Schedules staggered by 1 min to
avoid API rate limits"
1

"updatedAt": "2025-10-22T13:45:27Z7"
}

Listing 1. Example of Vendor Configuration (OpenAQ)

When the new vendor data source is added to the
Mongo database, the orchestrator automatically detects
changes on its next run and starts planning tasks for
EventBridge according to the configuration.

C. ADAPTIVE FEEDBACK CONTROL
MECHANISM

The novelty of this approach is mostly in the
orchestration model based on feedback from recent
executions. The operational state of each vendor is
constantly controlled by continuously gathering metrics:
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Success rate (Sv) - proportion of successful
requests.

Retry count (Rv) - retries per interval.

Cost factor (Cv) - estimated AWS cost for
operation.

Latency (Lv) - average response delay.

A health score is computed periodically as:

Hv=aSv-fRv-yCv-4Ly, (D

where coefficients a, B, y, & are weighting factors
showing operational priorities (efficiency vs. cost).
There is certain threshold, and when Hv falls below it,
the orchestrator applies adaptive actions such as:

Increasing the waiting interval between retrials

Temporary disabling vendor collection process (in
severe circumstances)

Reducing the number of concurrent collection
mechanisms

Triggering notification for manual review or (later)
Al analytics

This cycle of feedback communication and
adjustments, when defined and optimized correctly, can
allow the pipeline to become fully self-regulated,
minimizing any human interactions.

D. FAULT TOLERANCE AND CIRCUIT
BREAKER

The circuit breaker mechanism provides an
additional layer of fault-tolerance and enables efficient
handling of any errors in the orchestration mechanism.
When a vendor goes into an invalid state a few times in a
row (for example, because of server unavailability or
rate limits, or even throttling), the system automatically
stops making requests and sets some exponential back-
off system, then updates metadata accordingly. The
default transition of states:

Closed (Working) — Half-Open (First try after
failure) — Open (Something failing, no need to retry
yet) — Closed (Recovered)

This mechanism prevents the system from wasting
resources, keeps the system stable in unstable situations,
and reduces pressure on the external server, preventing
DDOS attacks on it.

E. IMPLEMENTATION AND
EXPERIMENTATION

A prototype of the system was implemented in
Node.js (Typescript) and was fully deployed on AWS,
using Lambda functions, Event Bridge, SQS, S3,
Athena, and other services. Each vendor was provided
with a specific config, including data collection rate,
retries, formats, and more. For example, frequency is the
following:

e OpenAQ: every 15 minutes for more frequent
data points (pm25, pm-10), for others - 1 hour
(air-quality metrics);

e NOAA: every hour (climate and meteorological
data);
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e NASA GES DISC: daily (reanalysis and aerosol
data);

e ESA Copernicus: every 30 minutes (satellite
imagery and environmental indicators).

Solutions comparison

Static Adaptive Imbrove-
Metric Orchestrati Orchestrati- P
ment
-on on
Failed 127 76 40% fewer
Invocations
Average 1.42 sec 1.1 sec 22%
Latency
AWS Cost 1 0.83 17%
Manual _ 6 1 83%
Interventions

In experimental test runs, system evaluation was
made under conditions of simulation of errors, increased
latency, and reduced quotas in order to make the test
more demonstrative and show how the system behaves
in large-scale and severe conditions. You can see the
comparison between the proposed solution of the
adaptive orchestration module and the baseline static
scheduler, which is used in most legacy data collection
systems.

These results confirm that adaptive orchestration
significantly reduces redundant invocations, recovery
times, and operational costs.

F. DISCUSSION AND SCIENTIFIC NOVELTY

The proposed solution demonstrates how to inte-
grate  feedback-based = communication,  adaptive
orchestration, and metadata abstraction into a serverless
data collection system without introducing new depen-
dencies or complex control flows. Unlike the traditional
static approach, the proposed system demonstrates
characteristics of autonomous computation, with solu-
tions for orchestrating data collection that are dynamic
and occur in real time to address the system's current
problems.

G. SCALABILITY AND PERFORMANCE
OPTIMIZATION

Since the data size, number of active sources, and
data collection frequency are increasing rapidly in the
selected niche, scalability and economic effectiveness
become more and more important. The proposed system
uses a serverless model of elastic scaling using AWS
Lambda that can increase or decrease the number of
instances, memory, and time in seconds, depending on
any application demand. No servers are being
provisioned ahead of time. The architecture stays in
waiting mode when no data collection is scheduled,
hence we have no idle time and unnecessary expenses.

Each data collection task is executed indepen-
dently, which ensures complete code isolation and fault
tolerance, preventing a cascade of overwhelming the
server and experiencing a server shutdown. AWS
EventBridge is used to manage thunderstorms of

simultaneous invocations from different vendors.
Internal benchmark showed that the system is capable of
gathering more than 25000 data points from all around
the world (OpenAQ API) with an average latency of less
than 2 seconds per request.

In terms of actual productivity monitoring and
checking how the system behaves under different
circumstances, AWS CloudWatch is being used. It
provides such information in real time, while MongoDB
just saves operational metadata, such as circuits for
circuit breaker states, timestamps of vendor runs, API
rate-limits, saving state, and so on. Those mechanisms
provide us high level of traceability and recovery in case
of failure. Also, with manual planned review (or Al
review later on), we can identify system weak points,
such as idle functions, too much memory allocated,
duplicated data collected, and so on. This way, we can
improve the system incrementally. The more it works,
the better it gets.

As for future improvements, the system may be
integrated with AWS Step Functions and SageMaker
Pipelines to support more advanced working processes.
Those being the following: anomaly detection, timing
predictions, or removing redundant resources. Those
actions will maintain scalability while expanding
analytical capabilities.

V. CONCLUSION

This study introduced and validated an adaptive
orchestration model for efficient, serverless collection of
heterogeneous environmental data. By combining meta-
data-driven configuration, continuous feedback control,
and a fault-tolerant circuit breaker mechanism, the
proposed system dynamically adjusts its execution stra-
tegies in response to external instabilities. Experimental
evaluation confirmed notable improvements in effici-
ency, fault tolerance, and cost optimization compared
with static orchestration methods. The integration of
feedback-based metrics and runtime metadata mana-
gement enables the system to self-regulate and sustain
stability in highly variable operational conditions.

The scientific novelty of this work lies in merging
adaptive orchestration principles with event-driven
serverless architectures, providing a foundation for
future self-learning orchestration systems capable of
autonomous evolution. Prospective research will focus
on incorporating reinforcement learning and predictive
analytics for further optimization of orchestration
behavior and decision-making in large-scale CPS and
10T environments.
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