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Abstract: The rapid expansion of cyber-physical systems 

(CPS) has intensified the need for scalable and adaptive 

mechanisms to collect heterogeneous environmental data 

from numerous unstable external sources. Traditional 

serverless orchestration frameworks, while elastic and cost-

efficient, lack runtime adaptability and feedback-awareness, 

leading to inefficiencies under dynamic API conditions. This 

paper presents a novel adaptive orchestration model for 

serverless data collection pipelines, driven by metadata 

configuration and continuous feedback control. The 

proposed system integrates AWS-based components 

(Lambda, EventBridge, SQS, S3, Athena, MongoDB) to 

enable autonomous management of data collection processes 

from OpenAQ, NOAA, NASA GES DISC, and ESA 

Copernicus. Adaptive behavior has been achieved through 

feedback-based health scoring and metadata-driven 

reconfiguration, improving resilience to vendor instability, 

API schema changes, and rate-limit fluctuations. 

Experimental validation has demonstrated a 40% reduction 

in failed invocations, a 22% latency improvement, and a 

17% decrease in operational costs compared to static 

orchestration approaches. The results confirm the feasibility 

of fully adaptive, serverless data orchestration and establish 

the groundwork for future AI-assisted autonomous 

orchestration in heterogeneous CPS environments. 

Index terms: serverless architecture, adaptive 

orchestration, metadata-driven configuration, cloud 

computing, environmental data, AWS. 

I. INTRODUCTION 

The enormous growth in the need for data in cyber-

physical systems (CPS) has led to a demand for new 

systems to collect them. These are systems that have 

resilient and scalable infrastructure to maintain stability 

under a huge amount of load from various data sources. 

Not only that, but the fault-tolerance and ability to 

process heterogeneous (different size, type, and format) 

data as close to real-time as possible. In the environ-

mental and climate change domain, we have diverse data 

streams that generate a large amount of data for such 

metrics as air quality, earth surface analysis, climate 

observations, and so on. Those include: 

 OpenAQ: a network that detects atmospheric 

pollutants 

 NOAA (National Oceanic and Atmospheric 

Administration): for meteorological and oceanic 

observations, is also a primary source for 

weather and climate data 

 GES DISC (NASA Goddard Earth Sciences 

Data and Information Services Center): for 

atmospheric datasets, responsible for archiving, 

managing, and distributing Earth science data 

 ESA (European Space Agency) Copernicus: for 

satellite imagery and earth observations.  

Together, those sources provide a vast amount of 

heterogeneous data to analyze in near real-time and 

represent a great dataset for further analysis, which is 

perfect for testing such an adaptive serverless system. 

The domain paradigm of serverless computing has 

already proven itself to be independent, elastic, highly 

scalable, and cost-efficient [1, 2]. Most of the platforms 

for cloud computing (such as AWS) have already 

provided event-driven solutions to address the demand 

for automatically scaling resources, without any manual 

provisioning. Despite all the advantages, a lot of 

serverless systems remain highly vulnerable and 

inefficient due to their static architecture. They depend 

on fixed schedules, have strict rules, and most 

importantly, they rely on consistent and stable data 

sources, which appear not to be the case for 

environmental data most of the time. Environmental data 

API's, at least those mentioned in this article, experience 

frequent changes: in schemas, rate limits, update timings, 

and temporary unavailability. That leads to missing data 

points, unnecessary executions, and errors due to rate 

limits if not addressed correctly [3, 4]. 

Although some previous studies demonstrate the 

scalability of serverless architectures for data collection 

purposes, very little attention was paid to one of the most 

important topics in this domain – adaptive behavior 

under constantly changing external conditions. The lack 

of orchestration and feedback of the system often 

prevents systems from adjusting. And the topic of 

bringing together data in various formats and analyzing 

them in near-real-time environments is also hugely 

unspoken. 

This work expands previous studies in some fields. 

Most specifically, it focuses on measuring a serverless 

data-collection system based on metadata-driven and 

feedback-controlled orchestration mechanisms. While 
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collecting vendor-specific data, the proposed model 

continuously tracks and analyzes feedback in such 

metrics as: latency, failure rate, data novelty, and more 

to always keep track of each vendor's health state. 

II. LITERATURE REVIEW  

AND PROBLEM STATEMENT 

Usage of serverless systems has become a default 

solution for most modern distributed systems and 

applications. Due to its ease in terms of setting up, 

managing resources, cost efficiency, and many other 

advantages. However, for large, long-running operations, 

orchestration of serverless components remains crucial, 

as it has been stated in prior studies [5, 6]. 

There are existing solutions that have been 

proposed. Most of them are based on AWS Step Func-

tions, Apache Airflow, and Azure Durable Functions. 

They all seem to be well-thought-out solutions at first, 

but when they encounter problems with heterogeneous 

data (such as environmental data), they aren't suitable 

enough. Those solutions provide robust orchestration 

capabilities, but only under the assumption of static 

configuration, predefined triggers, expected working 

time, and stability of data sources. Some studies tried to 

improve the described orchestration workflow using 

standardization and rule-based logic [7, 8], but they all 

lacked reactiveness and feedback awareness. 

Self-regulating, adaptive solutions in serverless 

systems have advanced a lot recently. They seem very 

promising and have shown huge potential in terms of 

integration in orchestration mechanisms and feedback 

adaptability [9]. Dynamic resource allocation modules 

and learning-based schedulers have shown measurable 

growth in performance and stability. However vast 

majority of those solutions are made for container-based 

or microservices solutions, not for event-driven, ser-

verless architectures. So, the lack of runtime adaptive 

mechanisms in serverless architecture remains, espe-

cially in such unstable and heterogeneous environments. 

The same pace of growth can be seen in the data 

collection of the environmental data domain. Vendors, 

such as OpenAQ, NOAA, NASA GES DISC, and ESA 

Copernicus, expose APIs with different schemes, 

formats, quotas, schedules, they are even sensitive to 

different downtime and format changes. Prior works, 

focused on environmental data collections, often focus 

on standardization and fusion of data from different 

sources [10]. But none of them investigates adaptive 

orchestration for continuous data collection, transfor-

mation, fusion, and recovery. Those aspects are crucial 

in this specific domain and for maintaining real-world 

CPS pipelines. 

Summarizing the previous statements, we currently 

have a situation where the orchestration of cloud 

pipelines has advanced significantly, but most of those 

pipelines have not been ready yet for real-life challenges, 

as we often see when collecting environmental data. 

Those systems demonstrate low fault tolerance, 

inefficiency for heterogeneous data, including excessive 

retries, and require manual reconfiguration when API 

changes occur.  

The primary objective of the present study is to 

develop a methodology that facilitates the implemen-

tation of autonomous, adaptive coordination mechanisms 

for the effective collection of heterogeneous data about 

the environment, utilizing serverless technology. 

With primary challenges being: 

 Providing mechanisms of runtime feedback 

communication to detect and address the 

vendor's instabilities. 

 Providing a metadata abstraction layer to enable 

real-time adjustments of orchestration logic. 

 Adding fault-resistant mechanisms that provide 

efficiency under severe data collection circu-

mstances. 

This paper addresses the mentioned challenges and 

provides a prototype of a system based on an adaptive 

modular orchestration mechanism, based on metadata 

and real-time feedback communication. Aiming to 

increase efficiency, adaptability, fault-tolerance, and cost 

efficiency. 

III. SCOPE OF WORK AND OBJECTIVES  

The main field of research is enhancing the effecti-

veness and fault tolerance of serverless data-collection 

systems through adaptive orchestration mechanisms. 

Research is specifically focused on heterogeneous data 

in dynamically changing, unstable environments, where 

data comes from different vendors with varying timing, 

stability, rate limits, and structures. 

Implementation is based on AWS infrastructure, 

involving lots of services and frameworks, but some of the 

core components are the following: AWS Event Bridge, 

Lambda, SQS, Athena, and MongoDB. For event 

management, processing, orchestration, aggregation, and 

data metadata storing, accordingly. The system's ability 

was validated using those 4 environmental data vendors: 

 OpenAQ: exposes air quality conditions in near 

real-time. 

 NOAA: responsible for climate and meteo-

rological changes. 

 NASA GES DISC: atmospheric datasets. 

 ESA Copernicus: satellite-based geospatial and 

land-cover data. 

Not only are those datasets well-compatible in 

terms of usability and value of data combined, they also 

have different data structures, formats, different rate 

limits, latency, and amounts of data. That makes those 

sources great for testing an adaptive orchestration model 

under severe circumstances. System supports dynamic 

scheduling, a metadata-driven approach, and automatic 

recovery after failure. That allows anybody to change 

system schemes, timing, recovery policy, and so much 

more, dynamically in real-time. 
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The main research objectives are as follows: 

 To design an adaptive orchestration model of a 

serverless system, configured and managed by a 

metadata-driven approach. That system should 

withstand challenges in the collection of vast 

amounts of heterogeneous data. 

 To make a prototype of a serverless system, 

using cloud technologies for the whole pipeline. 

 To develop a model and test the mechanism of 

pipeline adaptation based on feedback 

communication. It should automatically adjust 

scheduling, retries, and other specific to vendor 

settings. 

 To test the efficiency and fault tolerance of the 

system using the mentioned data sources 

(OpenAQ, NOAA, NASA GES DISC, ESA 

Copernicus). 

 To establish the foundation for future research 

in autonomous, self-regulating orchestration 

systems that can evolve based on previous 

experience and feedback-based communication, 

so that they can upgrade in efficiency and 

optimize working processes without any manual 

interventions. 

The expected outcome of this research is that the 

adaptive orchestration model: 

 reduces the amount of redundant calls while the 

unstable vendor recovers or rate limits are 

reached, 

 improves operational and economic efficiency 

in comparison to static planning, 

 allows real-time integration of data from new 

endpoints/vendors, and reconfiguration/removal 

of the old ones, 

 makes an initial prototype that can be later 

evolved into an AI-assisted adaptive orchestra-

tion system 

IV. ADAPTIVE ORCHESTRATION MODEL  

AND SYSTEM IMPLEMENTATION 

A. SYSTEM OVERVIEW 

So, the proposed ecosystem mainly proposes 

dynamic orchestration based on a metadata-driven 

approach. It has a lot of elements in it, but the main ones 

are: AWS Lambda, S3, Athena, Event Bridge, SQS, and 

MongoDB. That is the list to talk about a basic prototype 

solution. The simple version of this modular solution can 

be seen in the diagram (Fig 1).  It demonstrates only part 

of the architecture, with data being collected from the 

OpenAQ vendor. 

Each module of this orchestration process operates 

as an independent function, responsible for various tasks. 

Such as: data retrieval, transformation, storage, and so 

on. These processes are directed by the core controller, it 

is responsible not only for communication between 

independent modules, but also for intervals of calls, rate 

limits tracking, availability and latency check, and data 

deduplication, based on feedback communication. 

 

Prototype of the proposed architecture 

But mainly, the pipeline is separated into 3 main 

parts: 

 Collection: they have the same abstraction, but 

the implementation is specific to each vendor. 

They receive necessary data through the REST 

API or file endpoints (other methods can be 

easily added later on). In JSON, CSV, NetCDF, 

and other formats.  

 Transformation: Received data points are 

transformed into one object format with the 

interface of EnvironmentalReadings. It has all 

the required properties to bind data, and 

additionally has metadata, measurements, and 

timestamps. 

 Storage and access: Collected data is stored in 

AWS S3, with a specific structure (vendors, 

days, hours, etc.) and separated by raw/curated 

state, based on their transformation status. This 

enables efficient querying with the help of 

Athena. 

This architecture allows for collecting all the 

vendors: OpenAQ, NOAA, NASA GES DISC, and ESA 

Copernicus data separately. While allowing it to 

maintain data consistency, it resolves problems and 

transforms related to each vendor independently, but in 

the end, we have data available in the same format and 

structure, keeping operational overhead low. 

B. METADATA-DRIVEN CONFIGURATION 

At the core of the system, we have metadata for 

each vendor that we collect data from. This data can be 
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manually or automatically updated whenever there is a 

need for a change. Those changes will be applied to the 

system instantly, without any need for code changes or 

redeployment. Metadata for each vendor mainly consists 

of: 

 Request type, pagination strategy, request 

endpoint. 

 Rate limits, retrial policy, timeouts. 

 Transformation schemes. 

 Current working state (for circuit-breaker errors 

management). 
 
{ 
  "_id": "68eba9982bf63c0808650530", 
  "vendor": "openaq", 
  "enabled": true, 
  "secretName": "openaq", 
  "description": "OpenAQ 15-Minute Snapshot 

Collection - frequent time-series snapshots", 
  "features": [{ 
    "id": "timeseries-pm25-15min", 
    "name": "PM2.5 15-Minute Snapshots", 
    "type": "DataCollection", 
    "params": { "action": "collectTimeSeries", 

"parameter": "pm25" }, 
    "schedule": { 
      "id": "pm25-15min", 
      "cron": "0,15,30,45 * * * *", 
      "status": "Active", 
      "nextRun": "2025-10-22T14:00:00Z" 
    } 
  }], 
  "metadata": { 
    "apiUrl": "https://api.openaq.org/v3", 
    "endpoint": "/parameters/{id}/latest", 
    "collectionStrategy": 

"15_minute_snapshots", 
    "storage": { 
      "raw": "s3://environmental-data-raw-

*/raw/vendor=openaq/", 
      "curated": "s3://environmental-data-

curated-*/curated/vendor=openaq/", 
      "mongo": ["collection_state", 

"latest_readings", "location_metadata"] 
    }, 
    "collectionsPerDay": 96, 
    "expectedVolume": "~330,000 readings (~200 

MB/day)", 
    "notes": "Schedules staggered by 1 min to 

avoid API rate limits" 
  }, 
  "updatedAt": "2025-10-22T13:45:27Z" 
} 

Listing 1. Example of Vendor Configuration (OpenAQ) 

When the new vendor data source is added to the 

Mongo database, the orchestrator automatically detects 

changes on its next run and starts planning tasks for 

EventBridge according to the configuration. 

C. ADAPTIVE FEEDBACK CONTROL 

MECHANISM 

The novelty of this approach is mostly in the 

orchestration model based on feedback from recent 

executions. The operational state of each vendor is 

constantly controlled by continuously gathering metrics:  

Success rate ( ) - proportion of successful 

requests.  

Retry count ( ) - retries per interval. 

Cost factor ( ) - estimated AWS cost for 

operation. 

Latency ( ) - average response delay.  

A health score is computed periodically as:  

 =  -  -  – ,                   (1) 

where coefficients , , ,  are weighting factors 

showing operational priorities (efficiency vs. cost). 

There is certain threshold, and when  falls below it, 

the orchestrator applies adaptive actions such as: 

Increasing the waiting interval between retrials 

Temporary disabling vendor collection process (in 

severe circumstances) 

Reducing the number of concurrent collection 

mechanisms 

Triggering notification for manual review or (later) 

AI analytics 

This cycle of feedback communication and 

adjustments, when defined and optimized correctly, can 

allow the pipeline to become fully self-regulated, 

minimizing any human interactions. 

D. FAULT TOLERANCE AND CIRCUIT 

BREAKER 

The circuit breaker mechanism provides an 

additional layer of fault-tolerance and enables efficient 

handling of any errors in the orchestration mechanism. 

When a vendor goes into an invalid state a few times in a 

row (for example, because of server unavailability or 

rate limits, or even throttling), the system automatically 

stops making requests and sets some exponential back-

off system, then updates metadata accordingly. The 

default transition of states: 

Closed (Working)  Half-Open (First try after 

failure)  Open (Something failing, no need to retry 

yet)  Closed (Recovered) 

This mechanism prevents the system from wasting 

resources, keeps the system stable in unstable situations, 

and reduces pressure on the external server, preventing 

DDOS attacks on it. 

E. IMPLEMENTATION AND 

EXPERIMENTATION 

A prototype of the system was implemented in 

Node.js (Typescript) and was fully deployed on AWS, 

using Lambda functions, Event Bridge, SQS, S3, 

Athena, and other services. Each vendor was provided 

with a specific config, including data collection rate, 

retries, formats, and more. For example, frequency is the 

following: 

 OpenAQ: every 15 minutes for more frequent 

data points (pm25, pm-10), for others - 1 hour 

(air-quality metrics); 

 NOAA: every hour (climate and meteorological 

data); 
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 NASA GES DISC: daily (reanalysis and aerosol 

data); 

 ESA Copernicus: every 30 minutes (satellite 

imagery and environmental indicators). 

Solutions comparison 

Metric 

Static 

Orchestrati

-on 

Adaptive 

Orchestrati-

on 

Improve-

ment 

Failed 

Invocations 
127 76 40% fewer 

Average 

Latency 
1.42 sec 1.1 sec 22% 

AWS Cost 1 0.83 17% 

Manual 

Interventions 
6 1 83% 

In experimental test runs, system evaluation was 

made under conditions of simulation of errors, increased 

latency, and reduced quotas in order to make the test 

more demonstrative and show how the system behaves 

in large-scale and severe conditions. You can see the 

comparison between the proposed solution of the 

adaptive orchestration module and the baseline static 

scheduler, which is used in most legacy data collection 

systems. 

These results confirm that adaptive orchestration 

significantly reduces redundant invocations, recovery 

times, and operational costs. 

F. DISCUSSION AND SCIENTIFIC NOVELTY 

The proposed solution demonstrates how to inte-

grate feedback-based communication, adaptive 

orchestration, and metadata abstraction into a serverless 

data collection system without introducing new depen-

dencies or complex control flows. Unlike the traditional 

static approach, the proposed system demonstrates 

characteristics of autonomous computation, with solu-

tions for orchestrating data collection that are dynamic 

and occur in real time to address the system's current 

problems. 

G. SCALABILITY AND PERFORMANCE 

OPTIMIZATION 

Since the data size, number of active sources, and 

data collection frequency are increasing rapidly in the 

selected niche, scalability and economic effectiveness 

become more and more important. The proposed system 

uses a serverless model of elastic scaling using AWS 

Lambda that can increase or decrease the number of 

instances, memory, and time in seconds, depending on 

any application demand. No servers are being 

provisioned ahead of time. The architecture stays in 

waiting mode when no data collection is scheduled, 

hence we have no idle time and unnecessary expenses. 

Each data collection task is executed indepen-

dently, which ensures complete code isolation and fault 

tolerance, preventing a cascade of overwhelming the 

server and experiencing a server shutdown. AWS 

EventBridge is used to manage thunderstorms of 

simultaneous invocations from different vendors. 

Internal benchmark showed that the system is capable of 

gathering more than 25000 data points from all around 

the world (OpenAQ API) with an average latency of less 

than 2 seconds per request. 

In terms of actual productivity monitoring and 

checking how the system behaves under different 

circumstances, AWS CloudWatch is being used. It 

provides such information in real time, while MongoDB 

just saves operational metadata, such as circuits for 

circuit breaker states, timestamps of vendor runs, API 

rate-limits, saving state, and so on. Those mechanisms 

provide us high level of traceability and recovery in case 

of failure. Also, with manual planned review (or AI 

review later on), we can identify system weak points, 

such as idle functions, too much memory allocated, 

duplicated data collected, and so on. This way, we can 

improve the system incrementally. The more it works, 

the better it gets. 

As for future improvements, the system may be 

integrated with AWS Step Functions and SageMaker 

Pipelines to support more advanced working processes. 

Those being the following: anomaly detection, timing 

predictions, or removing redundant resources. Those 

actions will maintain scalability while expanding 

analytical capabilities. 

V. CONCLUSION 

This study introduced and validated an adaptive 

orchestration model for efficient, serverless collection of 

heterogeneous environmental data. By combining meta-

data-driven configuration, continuous feedback control, 

and a fault-tolerant circuit breaker mechanism, the 

proposed system dynamically adjusts its execution stra-

tegies in response to external instabilities. Experimental 

evaluation confirmed notable improvements in effici-

ency, fault tolerance, and cost optimization compared 

with static orchestration methods. The integration of 

feedback-based metrics and runtime metadata mana-

gement enables the system to self-regulate and sustain 

stability in highly variable operational conditions. 

The scientific novelty of this work lies in merging 

adaptive orchestration principles with event-driven 

serverless architectures, providing a foundation for 

future self-learning orchestration systems capable of 

autonomous evolution. Prospective research will focus 

on incorporating reinforcement learning and predictive 

analytics for further optimization of orchestration 

behavior and decision-making in large-scale CPS and 

IoT environments. 
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