
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 10, No. 2, 2025

ADAPTIVE ORCHESTRATION MECHANISMS FOR EFFICIENT

SERVERLESS COLLECTION OF HETEROGENEOUS

ENVIRONMENTAL DATA
Oleksandr Demidov, Oksana Honsor

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.

Authors’ e-mails: oleksandr.s.demidov@lpnu.ua oksana.y.honsor@lpnu.ua

https://doi.org/10.23939/acps2025.02.129

Submitted on 22.09.2025

© Demidov O., Honsor O., 2025

Abstract: The rapid expansion of cyber-physical systems

(CPS) has intensified the need for scalable and adaptive

mechanisms to collect heterogeneous environmental data

from numerous unstable external sources. Traditional

serverless orchestration frameworks, while elastic and cost-

efficient, lack runtime adaptability and feedback-awareness,

leading to inefficiencies under dynamic API conditions. This

paper presents a novel adaptive orchestration model for

serverless data collection pipelines, driven by metadata

configuration and continuous feedback control. The

proposed system integrates AWS-based components

(Lambda, EventBridge, SQS, S3, Athena, MongoDB) to

enable autonomous management of data collection processes

from OpenAQ, NOAA, NASA GES DISC, and ESA

Copernicus. Adaptive behavior has been achieved through

feedback-based health scoring and metadata-driven

reconfiguration, improving resilience to vendor instability,

API schema changes, and rate-limit fluctuations.

Experimental validation has demonstrated a 40% reduction

in failed invocations, a 22% latency improvement, and a

17% decrease in operational costs compared to static

orchestration approaches. The results confirm the feasibility

of fully adaptive, serverless data orchestration and establish

the groundwork for future AI-assisted autonomous

orchestration in heterogeneous CPS environments.

Index terms: serverless architecture, adaptive

orchestration, metadata-driven configuration, cloud

computing, environmental data, AWS.

I. INTRODUCTION

The enormous growth in the need for data in cyber-

physical systems (CPS) has led to a demand for new

systems to collect them. These are systems that have

resilient and scalable infrastructure to maintain stability

under a huge amount of load from various data sources.

Not only that, but the fault-tolerance and ability to

process heterogeneous (different size, type, and format)

data as close to real-time as possible. In the environ-

mental and climate change domain, we have diverse data

streams that generate a large amount of data for such

metrics as air quality, earth surface analysis, climate

observations, and so on. Those include:

 OpenAQ: a network that detects atmospheric

pollutants

 NOAA (National Oceanic and Atmospheric

Administration): for meteorological and oceanic

observations, is also a primary source for

weather and climate data

 GES DISC (NASA Goddard Earth Sciences

Data and Information Services Center): for

atmospheric datasets, responsible for archiving,

managing, and distributing Earth science data

 ESA (European Space Agency) Copernicus: for

satellite imagery and earth observations.

Together, those sources provide a vast amount of

heterogeneous data to analyze in near real-time and

represent a great dataset for further analysis, which is

perfect for testing such an adaptive serverless system.

The domain paradigm of serverless computing has

already proven itself to be independent, elastic, highly

scalable, and cost-efficient [1, 2]. Most of the platforms

for cloud computing (such as AWS) have already

provided event-driven solutions to address the demand

for automatically scaling resources, without any manual

provisioning. Despite all the advantages, a lot of

serverless systems remain highly vulnerable and

inefficient due to their static architecture. They depend

on fixed schedules, have strict rules, and most

importantly, they rely on consistent and stable data

sources, which appear not to be the case for

environmental data most of the time. Environmental data

API's, at least those mentioned in this article, experience

frequent changes: in schemas, rate limits, update timings,

and temporary unavailability. That leads to missing data

points, unnecessary executions, and errors due to rate

limits if not addressed correctly [3, 4].

Although some previous studies demonstrate the

scalability of serverless architectures for data collection

purposes, very little attention was paid to one of the most

important topics in this domain – adaptive behavior

under constantly changing external conditions. The lack

of orchestration and feedback of the system often

prevents systems from adjusting. And the topic of

bringing together data in various formats and analyzing

them in near-real-time environments is also hugely

unspoken.

This work expands previous studies in some fields.

Most specifically, it focuses on measuring a serverless

data-collection system based on metadata-driven and

feedback-controlled orchestration mechanisms. While

Oleksandr Demidov, Oksana Honsor 130

collecting vendor-specific data, the proposed model

continuously tracks and analyzes feedback in such

metrics as: latency, failure rate, data novelty, and more

to always keep track of each vendor's health state.

II. LITERATURE REVIEW

AND PROBLEM STATEMENT

Usage of serverless systems has become a default

solution for most modern distributed systems and

applications. Due to its ease in terms of setting up,

managing resources, cost efficiency, and many other

advantages. However, for large, long-running operations,

orchestration of serverless components remains crucial,

as it has been stated in prior studies [5, 6].

There are existing solutions that have been

proposed. Most of them are based on AWS Step Func-

tions, Apache Airflow, and Azure Durable Functions.

They all seem to be well-thought-out solutions at first,

but when they encounter problems with heterogeneous

data (such as environmental data), they aren't suitable

enough. Those solutions provide robust orchestration

capabilities, but only under the assumption of static

configuration, predefined triggers, expected working

time, and stability of data sources. Some studies tried to

improve the described orchestration workflow using

standardization and rule-based logic [7, 8], but they all

lacked reactiveness and feedback awareness.

Self-regulating, adaptive solutions in serverless

systems have advanced a lot recently. They seem very

promising and have shown huge potential in terms of

integration in orchestration mechanisms and feedback

adaptability [9]. Dynamic resource allocation modules

and learning-based schedulers have shown measurable

growth in performance and stability. However vast

majority of those solutions are made for container-based

or microservices solutions, not for event-driven, ser-

verless architectures. So, the lack of runtime adaptive

mechanisms in serverless architecture remains, espe-

cially in such unstable and heterogeneous environments.

The same pace of growth can be seen in the data

collection of the environmental data domain. Vendors,

such as OpenAQ, NOAA, NASA GES DISC, and ESA

Copernicus, expose APIs with different schemes,

formats, quotas, schedules, they are even sensitive to

different downtime and format changes. Prior works,

focused on environmental data collections, often focus

on standardization and fusion of data from different

sources [10]. But none of them investigates adaptive

orchestration for continuous data collection, transfor-

mation, fusion, and recovery. Those aspects are crucial

in this specific domain and for maintaining real-world

CPS pipelines.

Summarizing the previous statements, we currently

have a situation where the orchestration of cloud

pipelines has advanced significantly, but most of those

pipelines have not been ready yet for real-life challenges,

as we often see when collecting environmental data.

Those systems demonstrate low fault tolerance,

inefficiency for heterogeneous data, including excessive

retries, and require manual reconfiguration when API

changes occur.

The primary objective of the present study is to

develop a methodology that facilitates the implemen-

tation of autonomous, adaptive coordination mechanisms

for the effective collection of heterogeneous data about

the environment, utilizing serverless technology.

With primary challenges being:

 Providing mechanisms of runtime feedback

communication to detect and address the

vendor's instabilities.

 Providing a metadata abstraction layer to enable

real-time adjustments of orchestration logic.

 Adding fault-resistant mechanisms that provide

efficiency under severe data collection circu-

mstances.

This paper addresses the mentioned challenges and

provides a prototype of a system based on an adaptive

modular orchestration mechanism, based on metadata

and real-time feedback communication. Aiming to

increase efficiency, adaptability, fault-tolerance, and cost

efficiency.

III. SCOPE OF WORK AND OBJECTIVES

The main field of research is enhancing the effecti-

veness and fault tolerance of serverless data-collection

systems through adaptive orchestration mechanisms.

Research is specifically focused on heterogeneous data

in dynamically changing, unstable environments, where

data comes from different vendors with varying timing,

stability, rate limits, and structures.

Implementation is based on AWS infrastructure,

involving lots of services and frameworks, but some of the

core components are the following: AWS Event Bridge,

Lambda, SQS, Athena, and MongoDB. For event

management, processing, orchestration, aggregation, and

data metadata storing, accordingly. The system's ability

was validated using those 4 environmental data vendors:

 OpenAQ: exposes air quality conditions in near

real-time.

 NOAA: responsible for climate and meteo-

rological changes.

 NASA GES DISC: atmospheric datasets.

 ESA Copernicus: satellite-based geospatial and

land-cover data.

Not only are those datasets well-compatible in

terms of usability and value of data combined, they also

have different data structures, formats, different rate

limits, latency, and amounts of data. That makes those

sources great for testing an adaptive orchestration model

under severe circumstances. System supports dynamic

scheduling, a metadata-driven approach, and automatic

recovery after failure. That allows anybody to change

system schemes, timing, recovery policy, and so much

more, dynamically in real-time.

Adaptive Orchestration Mechanisms for Efficient Serverless Collection of Heterogeneous Environmental Data 131

The main research objectives are as follows:

 To design an adaptive orchestration model of a

serverless system, configured and managed by a

metadata-driven approach. That system should

withstand challenges in the collection of vast

amounts of heterogeneous data.

 To make a prototype of a serverless system,

using cloud technologies for the whole pipeline.

 To develop a model and test the mechanism of

pipeline adaptation based on feedback

communication. It should automatically adjust

scheduling, retries, and other specific to vendor

settings.

 To test the efficiency and fault tolerance of the

system using the mentioned data sources

(OpenAQ, NOAA, NASA GES DISC, ESA

Copernicus).

 To establish the foundation for future research

in autonomous, self-regulating orchestration

systems that can evolve based on previous

experience and feedback-based communication,

so that they can upgrade in efficiency and

optimize working processes without any manual

interventions.

The expected outcome of this research is that the

adaptive orchestration model:

 reduces the amount of redundant calls while the

unstable vendor recovers or rate limits are

reached,

 improves operational and economic efficiency

in comparison to static planning,

 allows real-time integration of data from new

endpoints/vendors, and reconfiguration/removal

of the old ones,

 makes an initial prototype that can be later

evolved into an AI-assisted adaptive orchestra-

tion system

IV. ADAPTIVE ORCHESTRATION MODEL

AND SYSTEM IMPLEMENTATION

A. SYSTEM OVERVIEW

So, the proposed ecosystem mainly proposes

dynamic orchestration based on a metadata-driven

approach. It has a lot of elements in it, but the main ones

are: AWS Lambda, S3, Athena, Event Bridge, SQS, and

MongoDB. That is the list to talk about a basic prototype

solution. The simple version of this modular solution can

be seen in the diagram (Fig 1). It demonstrates only part

of the architecture, with data being collected from the

OpenAQ vendor.

Each module of this orchestration process operates

as an independent function, responsible for various tasks.

Such as: data retrieval, transformation, storage, and so

on. These processes are directed by the core controller, it

is responsible not only for communication between

independent modules, but also for intervals of calls, rate

limits tracking, availability and latency check, and data

deduplication, based on feedback communication.

Prototype of the proposed architecture

But mainly, the pipeline is separated into 3 main

parts:

 Collection: they have the same abstraction, but

the implementation is specific to each vendor.

They receive necessary data through the REST

API or file endpoints (other methods can be

easily added later on). In JSON, CSV, NetCDF,

and other formats.

 Transformation: Received data points are

transformed into one object format with the

interface of EnvironmentalReadings. It has all

the required properties to bind data, and

additionally has metadata, measurements, and

timestamps.

 Storage and access: Collected data is stored in

AWS S3, with a specific structure (vendors,

days, hours, etc.) and separated by raw/curated

state, based on their transformation status. This

enables efficient querying with the help of

Athena.

This architecture allows for collecting all the

vendors: OpenAQ, NOAA, NASA GES DISC, and ESA

Copernicus data separately. While allowing it to

maintain data consistency, it resolves problems and

transforms related to each vendor independently, but in

the end, we have data available in the same format and

structure, keeping operational overhead low.

B. METADATA-DRIVEN CONFIGURATION

At the core of the system, we have metadata for

each vendor that we collect data from. This data can be

Oleksandr Demidov, Oksana Honsor 132

manually or automatically updated whenever there is a

need for a change. Those changes will be applied to the

system instantly, without any need for code changes or

redeployment. Metadata for each vendor mainly consists

of:

 Request type, pagination strategy, request

endpoint.

 Rate limits, retrial policy, timeouts.

 Transformation schemes.

 Current working state (for circuit-breaker errors

management).

{
 "_id": "68eba9982bf63c0808650530",
 "vendor": "openaq",
 "enabled": true,
 "secretName": "openaq",
 "description": "OpenAQ 15-Minute Snapshot

Collection - frequent time-series snapshots",
 "features": [{
 "id": "timeseries-pm25-15min",
 "name": "PM2.5 15-Minute Snapshots",
 "type": "DataCollection",
 "params": { "action": "collectTimeSeries",

"parameter": "pm25" },
 "schedule": {
 "id": "pm25-15min",
 "cron": "0,15,30,45 * * * *",
 "status": "Active",
 "nextRun": "2025-10-22T14:00:00Z"
 }
 }],
 "metadata": {
 "apiUrl": "https://api.openaq.org/v3",
 "endpoint": "/parameters/{id}/latest",
 "collectionStrategy":

"15_minute_snapshots",
 "storage": {
 "raw": "s3://environmental-data-raw-

*/raw/vendor=openaq/",
 "curated": "s3://environmental-data-

curated-*/curated/vendor=openaq/",
 "mongo": ["collection_state",

"latest_readings", "location_metadata"]
 },
 "collectionsPerDay": 96,
 "expectedVolume": "~330,000 readings (~200

MB/day)",
 "notes": "Schedules staggered by 1 min to

avoid API rate limits"
 },
 "updatedAt": "2025-10-22T13:45:27Z"
}

Listing 1. Example of Vendor Configuration (OpenAQ)

When the new vendor data source is added to the

Mongo database, the orchestrator automatically detects

changes on its next run and starts planning tasks for

EventBridge according to the configuration.

C. ADAPTIVE FEEDBACK CONTROL

MECHANISM

The novelty of this approach is mostly in the

orchestration model based on feedback from recent

executions. The operational state of each vendor is

constantly controlled by continuously gathering metrics:

Success rate () - proportion of successful

requests.

Retry count () - retries per interval.

Cost factor () - estimated AWS cost for

operation.

Latency () - average response delay.

A health score is computed periodically as:

 = - - – , (1)

where coefficients , , , are weighting factors

showing operational priorities (efficiency vs. cost).

There is certain threshold, and when falls below it,

the orchestrator applies adaptive actions such as:

Increasing the waiting interval between retrials

Temporary disabling vendor collection process (in

severe circumstances)

Reducing the number of concurrent collection

mechanisms

Triggering notification for manual review or (later)

AI analytics

This cycle of feedback communication and

adjustments, when defined and optimized correctly, can

allow the pipeline to become fully self-regulated,

minimizing any human interactions.

D. FAULT TOLERANCE AND CIRCUIT

BREAKER

The circuit breaker mechanism provides an

additional layer of fault-tolerance and enables efficient

handling of any errors in the orchestration mechanism.

When a vendor goes into an invalid state a few times in a

row (for example, because of server unavailability or

rate limits, or even throttling), the system automatically

stops making requests and sets some exponential back-

off system, then updates metadata accordingly. The

default transition of states:

Closed (Working) Half-Open (First try after

failure) Open (Something failing, no need to retry

yet) Closed (Recovered)

This mechanism prevents the system from wasting

resources, keeps the system stable in unstable situations,

and reduces pressure on the external server, preventing

DDOS attacks on it.

E. IMPLEMENTATION AND

EXPERIMENTATION

A prototype of the system was implemented in

Node.js (Typescript) and was fully deployed on AWS,

using Lambda functions, Event Bridge, SQS, S3,

Athena, and other services. Each vendor was provided

with a specific config, including data collection rate,

retries, formats, and more. For example, frequency is the

following:

 OpenAQ: every 15 minutes for more frequent

data points (pm25, pm-10), for others - 1 hour

(air-quality metrics);

 NOAA: every hour (climate and meteorological

data);

Adaptive Orchestration Mechanisms for Efficient Serverless Collection of Heterogeneous Environmental Data 133

 NASA GES DISC: daily (reanalysis and aerosol

data);

 ESA Copernicus: every 30 minutes (satellite

imagery and environmental indicators).

Solutions comparison

Metric

Static

Orchestrati

-on

Adaptive

Orchestrati-

on

Improve-

ment

Failed

Invocations
127 76 40% fewer

Average

Latency
1.42 sec 1.1 sec 22%

AWS Cost 1 0.83 17%

Manual

Interventions
6 1 83%

In experimental test runs, system evaluation was

made under conditions of simulation of errors, increased

latency, and reduced quotas in order to make the test

more demonstrative and show how the system behaves

in large-scale and severe conditions. You can see the

comparison between the proposed solution of the

adaptive orchestration module and the baseline static

scheduler, which is used in most legacy data collection

systems.

These results confirm that adaptive orchestration

significantly reduces redundant invocations, recovery

times, and operational costs.

F. DISCUSSION AND SCIENTIFIC NOVELTY

The proposed solution demonstrates how to inte-

grate feedback-based communication, adaptive

orchestration, and metadata abstraction into a serverless

data collection system without introducing new depen-

dencies or complex control flows. Unlike the traditional

static approach, the proposed system demonstrates

characteristics of autonomous computation, with solu-

tions for orchestrating data collection that are dynamic

and occur in real time to address the system's current

problems.

G. SCALABILITY AND PERFORMANCE

OPTIMIZATION

Since the data size, number of active sources, and

data collection frequency are increasing rapidly in the

selected niche, scalability and economic effectiveness

become more and more important. The proposed system

uses a serverless model of elastic scaling using AWS

Lambda that can increase or decrease the number of

instances, memory, and time in seconds, depending on

any application demand. No servers are being

provisioned ahead of time. The architecture stays in

waiting mode when no data collection is scheduled,

hence we have no idle time and unnecessary expenses.

Each data collection task is executed indepen-

dently, which ensures complete code isolation and fault

tolerance, preventing a cascade of overwhelming the

server and experiencing a server shutdown. AWS

EventBridge is used to manage thunderstorms of

simultaneous invocations from different vendors.

Internal benchmark showed that the system is capable of

gathering more than 25000 data points from all around

the world (OpenAQ API) with an average latency of less

than 2 seconds per request.

In terms of actual productivity monitoring and

checking how the system behaves under different

circumstances, AWS CloudWatch is being used. It

provides such information in real time, while MongoDB

just saves operational metadata, such as circuits for

circuit breaker states, timestamps of vendor runs, API

rate-limits, saving state, and so on. Those mechanisms

provide us high level of traceability and recovery in case

of failure. Also, with manual planned review (or AI

review later on), we can identify system weak points,

such as idle functions, too much memory allocated,

duplicated data collected, and so on. This way, we can

improve the system incrementally. The more it works,

the better it gets.

As for future improvements, the system may be

integrated with AWS Step Functions and SageMaker

Pipelines to support more advanced working processes.

Those being the following: anomaly detection, timing

predictions, or removing redundant resources. Those

actions will maintain scalability while expanding

analytical capabilities.

V. CONCLUSION

This study introduced and validated an adaptive

orchestration model for efficient, serverless collection of

heterogeneous environmental data. By combining meta-

data-driven configuration, continuous feedback control,

and a fault-tolerant circuit breaker mechanism, the

proposed system dynamically adjusts its execution stra-

tegies in response to external instabilities. Experimental

evaluation confirmed notable improvements in effici-

ency, fault tolerance, and cost optimization compared

with static orchestration methods. The integration of

feedback-based metrics and runtime metadata mana-

gement enables the system to self-regulate and sustain

stability in highly variable operational conditions.

The scientific novelty of this work lies in merging

adaptive orchestration principles with event-driven

serverless architectures, providing a foundation for

future self-learning orchestration systems capable of

autonomous evolution. Prospective research will focus

on incorporating reinforcement learning and predictive

analytics for further optimization of orchestration

behavior and decision-making in large-scale CPS and

IoT environments.

VI. CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

VII. DECLARATION ON GENERATIVE AI

During the preparation of this work, the author(s)

used ChatGPT, Grammarly in order to: Grammar and

spelling check, Paraphrase and reword. After using this

Oleksandr Demidov, Oksana Honsor 134

tool/service, the author(s) reviewed and edited the

content as needed and take(s) full responsibility for the

publication’s content.

References

[1]. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C.,

Khandelwal, A., Pu, Q., ... & Patterson, D. A. (2019).

Cloud programming simplified: A berkeley view on

serverless computing. arXiv preprint arXiv:1902.03383.

https://doi.org/10.48550/arXiv.1902.03383

[2]. Sirajuddin, M. (2024). Advances in serverless compu-

ting: a paradigm shift in cloud application development.

International journal of computer engineering & techno-

logy. 15. 1440-1449. DOI: 10.5281/zenodo.14506248.

[3]. Malyuga, K., Perl, O., Slapoguzov, A., Perl, I. (2020).

Fault Tolerant Central Saga Orchestrator in RESTful

Architecture. Proceedings of the XXth Conference of

Open Innovations Association FRUCT.26. 278-283. DOI:

10.23919/FRUCT48808.2020.9087389.

[4]. Werner, S., & Tai, S. (2024). A reference architecture for

serverless big data processing. Future Generation Computer

Systems, 155, 179-192. DOI: https://doi.org/10.1016/j.future.

2024.01.029

[5]. Mathew, A., Andrikopoulos, V., Blaauw, F. J., & Karas-

toyanova, D. (2024). Pattern-based serverless data pro-

cessing pipelines for Function-as-a-Service orchestration

systems. Future Generation Computer Systems, 154, 87-

100. DOI: https://doi.org/10.1016/j.future.2023.12.026

[6]. Li, Y., Lin, Y., Wang, Y., Ye, K., & Xu, C. (2022).

Serverless computing: state-of-the-art, challenges and

opportunities. IEEE Transactions on Services

Computing, 16(2), 1522-1539. DOI:

10.1109/TSC.2022.3166553

[7]. Richardson, C. (2018). Microservices patterns: with

examples in Java. Simon and Schuster, New York. 520 p.

[8]. Sharma, S. K. (2025). Serverless Architectures for

Scalable and Cost-Efficient Information Systems in

SMEs. International Journal of Performability

Engineering, 21(8). 438. DOI:

10.23940/ijpe.25.08.p4.438449

[9]. Madhusudanan, J., Geetha, S., Prasanna Venkatesan, V.,

Vignesh, U., & Iyappan, P. (2018). Hybrid Aspect of

Context‐ Aware Middleware for Pervasive Smart

Environment: A Review. Mobile Information

Systems, 2018(1), 6546501. DOI:

https://doi.org/10.1155/2018/6546501

[10]. Bhardwaj, E., Gujral, H., Wu, S., Zogheib, C., Maharaj, T., &

Becker, C. (2024, June). Machine learning data practices

through a data curation lens: An evaluation framework.

In Proceedings of the 2024 ACM Conference on Fairness,

Accountability, and Transparency (pp. 1055-1067). DOI:

https://doi.org/10.1145/3630106.3658955

 [11]. Alatawi, M. N. (2025). Optimizing Multitenancy: Adaptive

Resource Allocation in Serverless Cloud Environments

Using Reinforcement Learning. Electronics, 14(15), 3004.

DOI: https://doi.org/10.3390/electronics14153004

[12]. Bordin, M. V., Griebler, D., Mencagli, G., Geyer, C. F.,

& Fernandes, L. G. L. (2020). Dspbench: A suite of

benchmark applications for distributed data stream

processing systems. IEEE Access, 8, 222900-222917.

DOI: 10.1109/ACCESS.2020.3043948

Oleksandr Demidov recei-

ved a M.S. degree at the Depart-

ment of Specialized Computer

System, at Lviv Polytechnic

university. From 2019 till now he

has been a Software Engineer at

software developing company for

web interfaces and serverless

backend solutions. Currently, he is

a PhD degree student of Computer

Engineering at Lviv Polytechnic

National University. His research

interests include cloud-based

architecture, serverless solutions.

Oksana Honsor PhD, Assoc.

Professor at the Department of

Specialized Computer System,

Institute of Computer Techno-

logy, Automation and Metrology

of Lviv Polytechnic National

University. Scientific interests

include metrological support in

IoT systems and sensor networks,

ensuring traceability, processing

of large data sets for reproduction

and comparison of the results of

measurements of physical quan-

tities in remote mode.

