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Abstract: The article explores a hybrid framework for
autonomous penetration testing that integrates Large
Language Models (LLMs) with Markov decision processes
(MDP/POMDP) and reinforcement learning (RL).
Conventional penetration testing is increasingly insufficient
for modern, complex cyber threats. LLMs are utilized for
high-level strategic planning, generating potential attack
paths, while MDP/POMDP models combined with RL
execute low-level actions under uncertainty. A feedback loop
allows outcomes to refine strategies in dynamic and partially
observable environments. A conceptual hybrid architecture
has been proposed, accompanied by a workflow diagram and
an illustrative table showing potential decision outcomes.
This paradigm enhances automation, adaptability, efficiency,
and scalability, providing a pathway toward next-generation
Al-driven cybersecurity assessment tools.

Index terms: Autonomous Penetration Testing, Large
Language Models, Markov Processes, Reinforcement
Learning, Cybersecurity, Hybrid Al Architectures

I. INTRODUCTION

In the contemporary digital landscape, cyber threats
are not only more frequent but also increasingly
sophisticated, targeting organizations of all sizes across
industries. Data breaches, ransomware attacks, and
advanced persistent threats (APTs) can result in
significant financial losses, reputational damage, and
regulatory penalties. Traditional penetration testing where
human experts manually simulate attacks to identify
vulnerabilities remains a cornerstone of cybersecurity
strategy. However, the sheer scale of modern IT
infrastructures, combined with the dynamic nature of
networks and cloud environments, makes manual testing
labor-intensive, time-consuming, and often insufficient for
uncovering complex, hidden vulnerabilities [1].

The limitations of conventional approaches are
further compounded by the rise of zero-day vulnerabilities
and highly targeted attacks. Human testers, despite their
expertise, may struggle to explore all possible attack
vectors in large or rapidly changing environments. In
addition, repetitive tasks such as scanning, reconna-
issance, and log analysis consume significant time and
resources, which could otherwise be devoted to strategic
decision-making and remediation.

Artificial intelligence (Al) presents a transformative
opportunity in this context. Large Language Models
(LLMs) can process and reason over vast amounts of
textual and structural information, including system
configurations, vulnerability databases, and security re-
ports, to propose high-level attack strategies. Simulta-
neously, Markov decision processes (MDP/POMDP)
provide a mathematical framework for sequential deci-
sion-making under uncertainty, enabling Al agents to
adaptively plan actions in complex and partially obser-
vable environments. Reinforcement learning (RL) comp-
lements this by allowing agents to learn optimal policies
through interaction with the network environment,
continuously improving their effectiveness over time [2].

By combining these approaches, it becomes possible
to develop a hybrid framework that leverages the strategic
reasoning capabilities of LLMs with the adaptive,
feedback-driven execution of MDP/POMDP and RL.
Such a framework has the potential to automate repetitive
tasks, explore attack paths more efficiently, and adapt
dynamically to unforeseen network conditions. This
represents a step toward fully autonomous penetration
testing agents capable of operating at the speed and scale
required to address modern cybersecurity challenges.

In this article, conceptual hybrid architecture is
suggested, including a workflow and example decision
outcomes, to illustrate how Al-driven penetration testing
can enhance automation, adaptability, and precision,
ultimately providing more robust and proactive
cybersecurity assessments.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The integration of artificial intelligence into
cybersecurity has attracted growing attention in recent
years, particularly in the domain of vulnerability
assessment and penetration testing. Traditional penetration
testing continues to play an important role in identifying
weaknesses within digital infrastructures, yet it is
increasingly limited by its reliance on manual expertise,
fixed procedures, and static tools. As networks expand in
scale and become more dynamic, the traditional model
proves insufficient to address the speed and sophistication
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of modern cyber threats [3]. Research consistently points
to issues of scalability, adaptability, and cost efficiency,
which remain unresolved by conventional approaches.

In response to these limitations, the cybersecurity
community has begun to explore the potential of artificial
intelligence. Large Language Models have emerged as
promising instruments for guiding security analysis. Their
capacity to process vast amounts of textual information,
reason about vulnerabilities, and suggest attack strategies
distinguish them from automated scanners that merely
collect raw technical data. By incorporating contextual
reasoning, such models can prioritize potential
exploitation paths, generate hypotheses about system
weaknesses, and support high-level decision-making [4].
However, despite these strengths, LLMs are inherently
probabilistic in nature and may generate inaccurate or
misleading outputs if deployed without additional control
mechanisms. This raises the challenge of ensuring
reliability when LLMs are placed in high-stakes
environments such as penetration testing.

Parallel to these developments, the field of
sequential decision-making under uncertainty has offered
its own solutions in the form of Markov decision
processes and their extensions, including partially
observable MDPs (POMDPs). These models provide a
mathematical structure for describing attack—defense
interactions, particularly when the attacker operates with
incomplete information [5]. Reinforcement learning builds
on this foundation by allowing agents to iteratively
improve their strategies through experience, gradually
optimizing policies for reconnaissance, exploitation, or
lateral movement. Several studies have shown that
reinforcement learning can outperform traditional scripted
approaches in simulated attack scenarios [6]. Yet,
practical limitations remain. RL-based agents often
require large amounts of training data, struggle with
generalization across heterogeneous environments, and
may fail to adapt when confronted with unexpected
conditions in real-world networks [7].

This body of research reveals a gap between two
distinct streams of innovation. On one side, LLMs provide
strategic reasoning and contextual awareness but lack
precise mechanisms for reliable execution. On the other
hand, MDP- and RL-based systems excel at tactical
adaptation but struggle to design coherent, high-level
attack strategies. When applied independently, each
approach falls short of delivering the level of autonomy,
accuracy, and resilience that modern penetration testing
demands [8].

The problem therefore lies in the absence of a
unified framework that can combine the complementary
strengths of these two paradigms. A system capable of
integrating high-level planning with adaptive, feedback-
driven execution would represent a significant step
forward in the development of autonomous penetration
testing. Such a hybrid model has the potential not only to
reduce human workload but also to provide a more
comprehensive, scalable, and intelligent method for
evaluating the security posture of complex digital
infrastructures.
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III. SCOPE OF WORK AND OBJECTIVES

This study examines the integration of artificial
intelligence into penetration testing, focusing on how large
language models, decision processes, and reinforcement
learning can enhance security assessments. The aim is to
show how these methods can make testing more adaptive,
scalable, and reliable compared to traditional or fully
automated tools. Key objectives include reviewing current
approaches, analyzing the role of individual Al techniques
at different stages of the testing lifecycle, and outlining a
conceptual framework that combines reasoning with
adaptive execution. Ethical and operational considerations
are also addressed, highlighting the need for trust,
accountability, and human oversight in Al-driven security
testing.

IV. PROPOSED HYBRID FRAMEWORK

The proposed framework introduces a hybrid
architecture that unifies the reasoning capabilities of Large
Language Models (LLMs) with the structured decision-
making of Markov decision processes (MDPs) and
reinforcement learning (RL). Unlike conventional
penetration testing, which relies heavily on predefined
scripts or manual expertise, this paradigm enables both
strategic foresight and adaptive execution.

At the strategic level, LLMs act as high-level
planners. By analyzing system descriptions, vulnerability
databases, or previous attack reports, an LLM can
generate possible attack paths in natural language, then
translate them into structured actions. This stage answers
the question: “What could be the most promising ways to
compromise the target?”

At the tactical level, decision-making under
uncertainty is handled by MDPs or their probabilistic
extension POMDPs. Here, reinforcement learning agents
execute step-by-step actions such as scanning ports,
probing services, or escalating privileges. These agents
rely on reward mechanisms - for example, successfully
accessing a protected resource yields a positive reward,
while triggering a defense mechanism incurs a penalty.

The interaction between both layers creates a
feedback loop: LLMs suggest attack strategies, RL agents
test them in practice, and the outcomes are fed back to
refine subsequent decisions. This design ensures
adaptability even in dynamic or partially observable
environments.

To better illustrate these interactions, Figure 1
provides an overview of the proposed hybrid architecture
for Al-driven penetration testing. The framework is
structured into three vertically aligned layers, highlighting
the flow of information and decision-making:

Strategic Layer: Managed by a Large Language
Model (LLM), acting as a high-level planner. It analyzes
system descriptions, vulnerability databases, and prior
attack reports to generate potential attack paths, providing
a strategic overview of possible actions.

Execution Layer: Decision-making under uncertainty
is handled by MDP/POMDP models, while reinforcement
learning agents execute tactical actions such as scanning
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ports, probing services, and escalating privileges. Compo-
nents within this layer are arranged side by side, reflecting
their close interaction in executing attack strategies.

Environment Layer: Represents the target systems,
including servers, applications, and defenses, whether real
or simulated. It serves as the context in which
reinforcement learning agents operate.

A feedback loop connects the Environment Layer
back to the Strategic Layer, indicating that the outcomes
of tactical actions are used to update strategies and refine
agent policies. This loop ensures continuous adaptation in
dynamic or partially observable environments.

The diagram uses a clean, black-and-white style with
compact, evenly aligned blocks, maintaining clarity and
readability while showing the hierarchical structure and
relationships between layers.

Strategic Layer

LLM Planner
- Generates attack paths
- Interprets vulnerabilities
- Prioritizes targets

I Execution Layer 1
MDP / POMDP Model Remnforcement Leaming Agent
- - Learns optimal policies
- Handles uncertainty - Executes tactical steps
- Represents state transitions - Adapts dynamically

I Environment Layer

Target Network / Systems
- Servers, web apps, defenses
- Real or simulated environments

Feedback & Adaptation
Reports outcomes [ . ____ .
- Updates LLM sirategy
- Refines RL policy

Proposed hybrid architecture
for Al-driven penetration testing

As it is shown in Figure 1, the LLM provides high-
level planning that feeds into MDP/POMDP decision
models and RL execution; observed outcomes are
returned to update strategy and policies.

V. AUTONOMOUS DECISION-MAKING IN
REALISTIC PENETRATION SCENARIOS

The application of autonomous agents in penetration
testing extends beyond theoretical modeling and simulated
environments. When deployed against real-world network
infrastructures, Al-driven systems encounter a complex
interplay of dynamic configurations, heterogeneous
devices, and adaptive defense mechanisms. These factors
introduce variability that challenges both strategic
planning and tactical execution. For example, enterprise
networks often implement intrusion detection systems,
automated patch management, and multi-factor authen-
tication, all of which can alter the success probability of
reconnaissance or exploitation actions [9].

Empirical studies in industrial cybersecurity contexts
have shown that the effectiveness of automated scanning
and exploitation varies significantly depending on
network topology, system diversity, and the presence of
defensive controls. In controlled evaluations conducted on
mid-sized corporate networks, autonomous agents
achieved successful vulnerability identification in
approximately 65-78% of exposed services, with lateral
movement attempts succeeding in 42-55% of cases,
depending on segmentation and privilege constraints [10].
These results underscore the adaptive nature of real-world
environments, where the same action may yield divergent
outcomes across different targets or even at different times
on the same system.

Feedback loops are critical in enhancing agent
performance under these conditions. Observed outcomes
from reconnaissance, credential testing, and exploit
deployment allow the system to recalibrate its attack path
probabilities and adjust reward functions dynamically. For
instance, a failed exploit attempt can trigger the agent to
deprioritize similar actions or explore alternative vectors,
while successful reconnaissance may highlight previously
unrecognized critical nodes in the network. Such adaptive
behavior mirrors human reasoning in penetration testing
yet operates at a speed and scale unattainable for manual
teams [11].

The interplay of risk assessment and adaptive
decision-making, as shown in Table 1, highlights how
different autonomous actions trigger feedback
mechanisms and strategic adjustments without relying on
fixed numerical probabilities. While specific numerical
probabilities fluctuate with environmental conditions, the
table demonstrates the relationship between action types,
perceived risk, and the role of feedback in shaping future
strategies. By continuously integrating observations,
autonomous agents can refine their approach, reduce
redundant actions, and optimize resource allocation,
leading to a more efficient penetration testing process
even in complex and partially observable networks.

Illustrative Decision Outcomes in Autonomous
Penetration Testing

Action Type Risk Level Feedback Loop
Network Scan Low Adjust scan depth and
focus on active subnets
Credential ' 'Update password
Medium dictionary and refine
Attack .
strategies
Exploit Record vulnerability in
De 1(? ent High database and adjust
ploym model
Lateral Hich Recalculate attack path
Movement £ strategy

The outcomes in Table 1 are not static; they depend
on multiple factors, including system defenses, network
topology, and the quality of prior knowledge embedded in
vulnerability databases. Empirical studies show that
adaptive agents can achieve success rates in reconna-
issance and exploitation tasks ranging from 70% to 90%
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under controlled laboratory conditions, while real-world
performance varies according to environmental
complexity [12].

The feedback loop is essential for continuous
improvement. Each action outcome provides critical
information for the LLM to refine high-level planning,
while RL mechanisms adjust tactical execution accor-
dingly. This dual-layer adaptation enables autonomous
agents to navigate partially observable environments,
anticipate potential defenses, and modify strategies in real
time.

Overall, the hybrid framework signifies a shift
toward intelligent, autonomous penetration testing. By
combining strategic reasoning with adaptive execution, it
supports comprehensive assessments, minimizes human
error, and proactively identifies vulnerabilities that
traditional methods might overlook.

VI. CHALLENGES AND FUTURE DIRECTIONS
IN HYBRID AI-DRIVEN AUTONOMOUS
PENETRATION TESTING

Despite the significant advances demonstrated by
hybrid Al frameworks in autonomous penetration testing,
several challenges remain that must be addressed to fully
realize their potential. One primary limitation is the
dependence on the quality and completeness of underlying
data. Large Language Models rely on extensive
vulnerability databases, system documentation, and prior
attack reports. Incomplete or outdated information can
lead to suboptimal planning or misprioritized attack paths
[13]. Similarly, reinforcement learning agents require
sufficiently diverse training environments to generalize
effectively. In real-world deployments, network
heterogeneity, adaptive  defenses, and dynamic
configurations introduce uncertainty that may reduce the
accuracy of autonomous decision-making [14].

Ethical and operational considerations also pose
significant challenges. Fully autonomous systems
executing penetration actions must operate within legal
boundaries and respect organizational policies. The
potential for unintended disruptions or collateral effects
necessitates robust oversight mechanisms and fail-safe
designs. Moreover, interpretability remains a concern:
organizations must understand the reasoning behind Al-
driven actions to trust and validate results.

Looking forward, several avenues promise to enhan-
ce the effectiveness and reliability of autonomous pene-
tration testing. Integrating real-time threat intelligence
feeds and continuous learning mechanisms can improve
responsiveness to emerging vulnerabilities. Advances in
explainable Al may increase trust by providing transparent
rationale for both strategic planning and tactical execution.
Furthermore, hybrid models could benefit from multi-
agent collaboration, allowing multiple autonomous
entities to coordinate attacks, share observations, and
optimize coverage while minimizing redundancy.

Finally, standardization of evaluation metrics and
controlled benchmarking environments will be critical for
assessing performance, comparing approaches, and

guiding iterative improvement. By addressing these
challenges, future research can extend the capabilities of
hybrid AI frameworks, moving closer to fully
autonomous, adaptive, and ethically aligned penetration
testing solutions that operate efficiently across complex
and dynamic cyber environments.

VII. IMPLEMENTATION CONSIDERATIONS

The deployment of a hybrid autonomous penetration
testing system in real-world organizational environments
requires a comprehensive approach. Firstly, it is essential
to ensure access to up-to-date and complete information
about the network infrastructure, system configurations,
and known vulnerability databases. Without this, even the
most advanced models may generate ineffective or
incorrect attack strategies.

Secondly, system integration must account for
existing security measures, organizational policies, and
legal requirements. Autonomous agents must operate
within permitted boundaries to avoid unintended
disruptions or violations of regulatory norms.

Thirdly, to maintain effectiveness and adaptability, it
is important to combine Al-driven analysis with human
expertise. Regular model updates, integration of real-time
threat intelligence, and periodic testing in controlled envi-
ronments help reduce risks and improve the accuracy of
results.

Finally, the implementation of such systems requires a
phased approach: starting with laboratory testing, moving to
limited deployment in real networks, and gradually scaling
up. This approach ensures the safe and effective use of the
hybrid Al framework while enhancing the overall resilience
of the organization against cyber threats.

VIII.  CONCLUSION

This study highlights how integrating Large Langu-
age Models, Markov decision processes, and reinfor-
cement learning creates a powerful hybrid framework for
autonomous penetration testing. By combining high-level
strategic reasoning with adaptive, feedback-driven
execution, these systems can efficiently explore complex
networks, prioritize critical vulnerabilities, and adjust
actions in real time. The framework enhances the
precision, scalability, and speed of penetration testing,
reducing human effort while improving overall coverage
of potential attack paths.

Despite the evident strides, uncertainties remain. The
dependability and efficiency of autonomous agents can be
affected by the quality of input data, environmental
variations, and the necessity for human control. It is
important to follow the socially accepted moral norms and
at the same time reduce the effect on the natural
environment and human life. These issues can be solved
through a continuous process of real-time threat
intelligence, explainable Al techniques, and standardized
evaluation approaches.

Overall, the use of the hybrid method implies a
major move towards smart, self-regulating cybersecurity
evaluation. Through integrating Al-based evaluation with
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human experience, companies are able to avail the full
extent of security measures that are more comprehensive,
pre-emptive, and flexible in nature which in turn result in
their better preparedness to respond and neutralize
potential cyber threats.
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