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Abstract: The basis of a significant amount of 
cryptographic systems for information protection are 
different computationally hard problems. One of these 
problems is finding the discrete logarithm value in a certain 
finite group. The problem is to obtain for any two given 
elements of this group such natural number that the first 
element to the power of the number equals the second 
element. 

In order to implement the cryptosystem, they have to 
choose an appropriate finite group and an element of high 
multiplicative order in it, so that computing the discrete 
logarithm is a hard problem. Powerful quantum computers 
will solve in polynomial time the discrete logarithm problem 
in the most common finite groups (multiplicative group of 
prime or extended finite field, group of points of elliptic 
curve over a finite field). That is why, as one of directions, 
they study groups consisting of invertible elements of group 
rings specified by various rings and groups. In the paper, the 
issue of finding high order units for special group rings, 
defined by finite field and dihedral group, is explored. 

Index terms: discrete logarithm problem, group ring, finite 
field, dihedral group. 

I. INTRODUCTION 
At the heart of most public key cryptosystems are the 

so called computationally hard problems. One such 
problem is obtaining the discrete logarithm in a suitably 
chosen finite group G: for given elements Ghg ∈, , find 
positive integer x such that h = gx. 

Based on this problem, Diffie and Hellman proposed 
protocol for two parties (Alice and Bob) to agree on a 
secret key using a public communication channel [1]. 

Alice chooses randomly a positive integer x and 
calculates the value gx. Analogously, Bob chooses number 
y and calculates gy. They exchange these elements and 
then count the same value (secret key) 

yxxy ggK )()( == . Slightly improving the considered 
construction, El-Gamal proposed an asymmetric 
cryptosystem. 

The multiplicative order of element g is the smallest 
positive integer n with the condition egn = , where e is 
the group identity element. Both described cryptographic 
protocols give the correct result for an arbitrarily chosen 
element g. However, their resistance to hacking depends 
on how high is the element order. 

To implement the mentioned cryptographic 
protocols, one must take a suitable finite group and high 
order element in it, that is to ensure that computing the 
discrete logarithm is a hard problem. The most well-
known choices are the following: multiplicative group of 
prime finite field }1,...,2,1{* −= pFp , where p is a large 
prime (originally Diffie and Hellman used this group); 
multiplicative group of extended finite field; group of 
points of an elliptic curve over a finite field. 

Quantum computers can solve efficiently the discrete 
logarithm problem in these three groups exploiting Shor 
algorithm [1]. This fact makes these constructions 
unreliable in the future. Because of this, research is being 
done that will ensure the resistance of cryptographic 
schemes in the coming era of quantum computers. One of 
such directions is using of algebraic structures called 
group rings [2]. 

Let ring with unity R and group G be given. Then the 
set of all possible records 
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is called a group ring. Element  of the group ring is 
invertible (unit), if there exist element  of this ring, such 
that uv=vu=1 holds. The multiplicative group ])[( GRU  
of the ring consists of its units. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Group rings were not used in cryptography until the 
second decade of the 21st century. A public-key 
cryptosystem using group rings was first proposed in [3]. 
For encryption and decryption, units and the 
computational complexity of the discrete logarithm in 
group rings were used. Numerous applications of group 
rings in communications and digital signal processing are 
discussed in [4]. 

Two asymmetric cryptosystems based on group 
rings were suggested in [5]. The first one is an asymmetric 
cryptosystem over a group ring that combines elliptic 
curves and the El-Gamal construction, and the second one 
is an asymmetric cryptosystem over a group ring of the 
El-Gamal type without involving elliptic curves. Both 
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computational schemes use units of group rings. Two 
mentioned cryptosystems and generally group rings-based 
cryptosystems have a higher level of security than existing 
cryptosystems, since no quantum algorithm is currently 
known to solve efficiently (in polynomial time) the 
discrete logarithm problem in group rings [5]. In the 
coming era of quantum computers, this enhanced 
protection would play a significant role. 

There is a significant number of publications on the 
structure of the unit group of a group ring. But only a few 
papers consider how to explicitly obtain elements of this 
group. However, the actual explicit construction of these 
elements, as well as ensuring that they have high order, is 
essential for using of group rings in cryptography. 

Works [5, 6] describe how to search for units for a 
number of group rings. In particular, they use well-known 
environments for mathematical calculations GAP 
(LAGUNA, Wedderga packages), Magma, Matlab. Using 
the LAGUNA package of the GAP environment [5], the 
group of units of a group ring given by a finite field of p 
elements for some prime number p and a finite p-group 
can be efficiently computed for small values of p. 
However, as the number increases, the GAP environment 
becomes inefficient. 

To define a group ring, different options for ring and 
group are considered. As ring they usually take finite field 
or ring of integers. Possible choices for group are as 
follows: finite cyclic group, dihedral group, permutation 
group. Research is also being conducted related to the use 
of LWE problem [7] or matrices over group rings [8, 9]. 
An issue of finding high order units in group rings given 
by finite field and finite cyclic group is investigated in 
[10]. Note that this group ring is commutative. 

One of the promising directions is the study of the 
unit group of non-comutative group rings formed by a 
finite field and a finite dihedral group. Despite the 
availability of theoretical descriptions [11-13], explicitly 
finding such elements remains a difficult task, especially 
for large parameters. In [13] the structure of such rings is 
described under the condition that q is coprime with r and 
every prime divisor of the number r divides 1−q . In [12] 
a review of works in which this condition is removed for 
some partial cases is made. Based on the literary survey, 
the unit group structure of group rings has been 
established for the following cases: ][ 22 mDF n  (m is odd 

number), ][
2 mn pp

DF  (p is odd prime), FqD60, FqD40 and 

FqD36, where Fq denotes finite field with q = pn elements 
for some natural number n. 

III. SCOPE OF WORK AND OBJECTIVES 
The purpose of this work is to explore the potential 

of using Wedderburn-Artin theorem to describe the group 
of invertible elements (units) in one class of group rings. 
We consider such class of group rings, for which this 
theorem is applicable, and which are at the same time 
important for the implementation of cryptographic 
primitives that are resistant to different possible (pre-
quantum and quantum) attacks. 

This paper demonstrates how one can obtain a 
description of a group ring by considering a ring 
isomorphic to it. 

The aim of this work is to investigate the problem of 
finding units in group rings formed by a finite field and a 
dihedral group. Of particular interest is the search for units 
of high order that can be used in cryptographic protocols 
such as Diffie-Hellman key exchange and ElGamal public 
key cryptosystem and ensure resistance to quantum 
attacks. 

IV. OBTAINING ELEMENTS OF HIGH ORDER 
We consider the case, when ring R = Fq is a finite 

field, and group G = Dr is a dihedral group (non-abelian 
for r ≥ 3). This group describes the symmetries of regular 
r-gon and includes r rotations (in particular, the identity 
symmetry e) and r reflections. It is given by generators x 
and y, where x is the rotation by the angle 2π/r, i.e. xr = e, 
y is the reflection (mirror symmetry) such, that y2 = e, and 
the additional relationship yxy-1=x-1. List of group 
elements is as follows: 

Dr = {1, x, x2, …, xr-1, y, yx, yx2, …, yxr-1}.      (1) 
The main point in obtaining high order units is 

calculating the number of the units. This value can be 
determined by iterating through the elements, which 
requires significant computational effort. Indeed, taking an 
arbitrary element of a group ring, we must first find out 
whether it is a unit. Unlike group rings given by a finite 
field and a finite cyclic group, the Euclidean algorithm 
does not work in dihedral group rings. Therefore, we need 
to iterate over the powers of the element and see when we 
get 1. At the same time, we also obtain the order of the 
element if it is a unit. At the same time, the total number 
of q2r elements of the ring Fq[Dr] increases rapidly with 
increasing of the numbers q and r. 

To reduce computational costs, it is proposed to use 
an algebraic approach. It consists in applying a 
combination of two fundamental results from the theory of 
algebraic structures. 

On the one hand, the structure of semisimple rings is 
described by the Wedderburn-Artin theorem. The theorem 
states that any semisimple (artinian) ring is isomorphic to 
the direct sum of rings of matrices of size ni by ni with 
elements from the division ring Di, where numbers ni are 
uniquely defined, and division rings − up to isomorphism. 
In particular, a simple ring is isomorphic to a matrix ring 
over the division ring. 

On the other hand, the Maschke theorem is a 
theorem in group representation theory regarding the 
decomposition of representations of finite groups into 
irreducible representations. The theorem allows us to draw 
conclusions about the representation of finite groups 
without calculating them. It reduces the problem of 
classifying all representations to the problem of 
classifying irreducible representations, the direct sum of 
which decomposes an arbitrary representation. 

If F is a field and G a finite group with n elements, 
then the group ring F[G] is semi simple if and only if the 
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field characteristic does not divide n. This result is known 
as Maschke theorem and is important in group 
representation theory. The conditions of Maschke theorem 
are satisfied by the group ring Fq[Dr] if the characteristic 
of the field does not divide the number 2r. 

Combining both results, for the group ring Fq[Dr] 
(the characteristic of the field Fq does not divide 2r), we 
have that it is a direct sum of a finite number of complete 
matrix rings over division rings [13]: 

)(][
1 ii qn

l
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FMGR

=
⊕≅ ,                      (2) 

where numbers ni and qi are uniquely defined. 
This means that each such ring can be represented as 

a direct sum of such elementary “building blocks” − 
matrix rings, and this representation is unique. Uniqueness 
of the decomposition − the decomposition into such 
blocks is unique up to the order of factors. 

Based on this decomposition, the number of units in 
the group ring can be calculated as the product of numbers 
of units in each block. At the same time, one should also 
take into account the peculiarities of searching for high 
order units in each of factors. 

If the number ni = 1, i.e. the complete matrix ring 
reduces to a finite field, then all nonzero elements are 
units. The maximum possible order of an element is equal 
to the number of non-zero elements of the field. It is 
known that elements of the mentioned order always exist. 

If the number ni > 1, then the invertible elements of 
the complete matrix ring form the so called general linear 
group over a finite field. More precisely, take a natural 
number 2≥in . One of the widely known non-abelian 
groups is the general linear group ),( qi FnGL  – matrices 

of size ii nn × , which are filled with elements of the field 

qF  and with non-zero determinant, with respect to the 
matrix multiplication operation (or in another form linear 
transformations in one variant from m

qF )(  to m
qF )( , and 

in another variant – from mq
F  to mq

F , with respect to the  

operation of composition of mappings). The number of 
elements of the group equals 

∏
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qi qqFnGL . It is shown (Cayley-

Hamilton theorem) that the maximum possible order of an 
element in this group is equal to 1−inq . It is also known 
that elements of the specified order always exist. They are 
commonly called Singer cycles. However, it is not known 
how to explicitly construct the mentioned elements in 
general. 

The decomposition given earlier is a result about the 
existence. It is not clear from it how to actually get the 
decomposition. Results on how this can be done explicitly 
are not known for arbitrary pairs q and r. The 
corresponding description, provided that every prime 
divisor of the number r divides 1−q , is given in 
[13, Theorem 4.4]. 

To verify the validity of theoretical constructions, in 
particular the mentioned description, we performed 
calculations in Python environment for various group 
rings that are given by a finite field and dihedral group. 
Some of the obtained results are given in Table 1. 
Comments and explanations for some rows of this table 
are provided after the table.  

Actually, three fundamentally different cases were 
considered. In this case, we use the following notation: k 
is the greatest common divisor of the numbers r and 

1−q ; 
k
rm = . 

1. The case when number r is odd. 
In this case, the decomposition has the block of the 

form 2Fq, 2
1−k  blocks of the form M2(Fq) and for every 

divisor t of the number m (t ≠ 1) 
t
tk

2
)(ϕ  blocks of the 

form )(2 tq
FM . 

Structure of Group Rings of the Form Fq[Dr] 

q r Structure of Fq[Dr] 
5 8 )()(4 252525 FMFMF ⊕⊕  

5 32 )()()()(4 842 525252525 FMFMFMFMF ⊕⊕⊕⊕  

5 128 )()()()()()(4 3216842 5252525252525 FMFMFMFMFMFMF ⊕⊕⊕⊕⊕⊕  

7 6 )(24 727 FMF ⊕  

7 54 )(2)(2)(24 93 7272727 FMFMFMF ⊕⊕⊕  

7 243 )()()()()(2 812793 72727272727 FMFMFMFMFMF ⊕⊕⊕⊕⊕  

9 128 )(2)(2)(2)(2)(34 16842 92929292929 FMFMFMFMFMF ⊕⊕⊕⊕⊕  

11 125 )(2)(2)(22 255 11211211211 FMFMFMF ⊕⊕⊕  

13 128 )()()()()()(4 3216842 13213213213213213213 FMFMFMFMFMFMF ⊕⊕⊕⊕⊕⊕  

17 128 )(4)(4)(4)(74 842 17217217217217 FMFMFMFMF ⊕⊕⊕⊕  
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For example, take q = 7 and r = 243. Then there is 
the block 2F7 in the decomposition. Since k = 3, then 

1
2

1
=

−k  and we have one block )( 72 FM . As m = 81, 

then the non-1 divisors of this number are equal to 3, 9, 27 
and 81. For each of these divisors t, the value of the 

expression 
t
tk

2
)(ϕ  is calculated. For all four values of 

divisors, the value of the expression is equal to 1. That is, 
we have in the decomposition one block )( 372 FM , 

)( 972 FM , )( 2772 FM  and )( 8172 FM  at a time. 
Summarizing the above considerations, we obtained 

the following decomposition: 

)()(

)()()(2][

8127

93

7272

72727272437

FMFM

FMFMFMFDF

⊕

⊕⊕⊕⊕≅
.  (3) 

Based on the decomposition, we have the following 
number of units: 

)]77()17[(

)]77)(17[()]77)(17[(

)]77)(17[()]77)(17[(7|][|

81162162

27545491818

366222*
2437

−⋅−

⋅−−⋅−−

⋅−−⋅−−⋅=DF

 

2. The case when r is even and )4(mod1≡q  or 8 
does not divide r. 

The decomposition has the block of the form 4Fq, 

1
2

−
k  blocks of the form M2(Fq) and for every divisor t of 

the number m, that is not equal to 1, 
t
tk

2
)(ϕ  blocks of the 

form )(2 tq
FM . 

We took for example q = 5 and r = 128. Then there is 
the block 4F5 in the decomposition. Since k = 4, then 

11
2

=−
k  and we have one block )( 52 FM . As m = 32, then 

the non-1 divisors of this number are equal to 2, 4, 8, 16 and 
32. For each of these divisors t, the value of the expression 

t
tk

2
)(ϕ  is calculated. For all five values of divisors, the value 

of the expression is equal to 1. That is, we have in the 
decomposition one block )( 252 FM , )( 452 FM , )( 852 FM , 

)( 1652 FM  and )( 3252 FM  at a time. 
Summarizing the above considerations, we obtained 

the following decomposition: 

)()()(

)()()(4][

32168

42

525252

52525251285

FMFMFM

FMFMFMFDF

⊕⊕

⊕⊕⊕⊕≅
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Based on the decomposition, we have the following 
number of units: 

)]55()15[(

)]55()15[()]55)(15[()]55)(15[(

)]55)(15[()]55)(15[(4|][|

326464

16323281616488

244224*
1285

−⋅−

⋅−⋅−⋅−−⋅−−

⋅−−⋅−−⋅=DF
 

3. The case when r is even and )4(mod3≡q  and 8 
divides r. 

We use the following additional notation: 

))1(),
2

(min( 22 += qr
ννν , 

k
rm ν2

=′ , the number i 

equals 0, if )
2

()1( 22
rq νν >+ , and equals 1, if 

)
2

()1( 22
rq νν ≤+ . 

In this case, the decomposition has the block of the 
form 4Fq, 32 −+ −ik ν  blocks of the form M2(Fq), 

1
4

22 12 +−− −− kk νν  blocks of the form )( 22 q
FM , for 

every odd divisor t of the number m′  (t ≠ 1) 
t
tk

2
)(ϕ  

blocks of the form )(2 tq
FM  and 

t
tk

2
)()12( 1 ϕν −−

 blocks 

of the form )( 22 tq
FM , for every even divisor t of the 

number m′  − 
t

tk )(2 2 ϕν −

 blocks of the form )( 22 tq
FM . 

After obtaining the number of elements, typical 
techniques should be applied: factoring the obtained 
number into prime factors and applying the corollary of 
Lagrange's theorem for finite groups. 

Factor the number ])[(| rq DFU  into prime factors. 

In general, the computational complexity of factoring a 
number is subexponential. However, for factors of a 
specific type that are present in this number, you can use 
ready-made tables from the Cunningham project (with 
Brent-Montgomery-te Riel additions). This is a project to 
factor numbers of the form bn ± 1. There are three printed 
versions of the tables, as well as an online version. 

For example, in the case q = 5 and r = 128, we have 
the following factorizations into primes for divisors of the 
number ])[(| rq DFU : 

516 – 1 = 26 ·3 · 13 · 17 · 313 · 11489 

516 - 58 = 25 · 3 · 58 ·13 · 313 

564 – 1 = 28 · 3 · 13 · 17 · 313 · 641 · 2593 · 11489 · 
29423041 · 75068993 · 241931001601 

564 - 532 = 27 · 3 · 532 · 13 · 17 · 313 · 2593 · 11489 · 
29423041 

5128 – 1 = 29 · 3 · 13 · 17 · 313 · 641 · 769 · 2593 · 11489 · 
75068993 · 29423041 · 3666499598977 · 241931001601 · 
96132956782643741951225664001 

5128 - 564 = 28 · 3 · 564 · 13 · 17 · 313 · 641 · 2593 · 11489 · 
29423041 · 75068993 · 241931001601 

Randomly select element of the group ring. 
Applying corollary of Lagrange theorem for finite groups, 
find the order of the element. The formulation of this 



Paper Title 172 

corollary is that the order of any element of a finite group 
is a divisor of the number of elements of the group. If the 
element is not a unit (does not equal to the group identity 
in the power of any possible divisor) or a unit, but not of 
high order, then return to element selection. 

V. CONCLUSION 
To implement cryptosystems based on the discrete 

logarithm problem in group rings, it is necessary to find 
high order elements in these rings explicitly. 

A method was proposed for obtaining units of high 
multiplicative order in group rings given by a finite field 
and a finite non-abelian dihedral group. The main point 
here was to calculate the number of units. To reduce 
computational costs, an algebraic approach should be 
used: decompose the group ring into a direct sum of a 
finite number of complete matrix rings over finite fields. 
Based on this decomposition, the number of units in the 
group ring can be calculated as the product of numbers of 
units in each block. 

This method can be applied provided that the 
numbers q and 2r are coprime, and every prime divisor of 
the number r divides 1−q . The limitation of the method 
is that it is not always possible to find the factorization of 
the number of group ring units. 
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