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Abstract: The basis of a significant amount of
cryptographic systems for information protection are
different computationally hard problems. One of these
problems is finding the discrete logarithm value in a certain
finite group. The problem is to obtain for any two given
elements of this group such natural number that the first
element to the power of the number equals the second
element.

In order to implement the cryptosystem, they have to
choose an appropriate finite group and an element of high
multiplicative order in it, so that computing the discrete
logarithm is a hard problem. Powerful quantum computers
will solve in polynomial time the discrete logarithm problem
in the most common finite groups (multiplicative group of
prime or extended finite field, group of points of elliptic
curve over a finite field). That is why, as one of directions,
they study groups consisting of invertible elements of group
rings specified by various rings and groups. In the paper, the
issue of finding high order units for special group rings,
defined by finite field and dihedral group, is explored.

Index terms: discrete logarithm problem, group ring, finite
field, dihedral group.

I. INTRODUCTION

At the heart of most public key cryptosystems are the
so called computationally hard problems. One such
problem is obtaining the discrete logarithm in a suitably
chosen finite group G: for given elements g,k e G, find

positive integer x such that 4 = g*.

Based on this problem, Diffie and Hellman proposed
protocol for two parties (Alice and Bob) to agree on a
secret key using a public communication channel [1].

Alice chooses randomly a positive integer x and
calculates the value g*. Analogously, Bob chooses number
y and calculates g’. They exchange these elements and
then count the same value (secret key)

K=(g") =(g")”. Slightly improving the considered
construction, El-Gamal

cryptosystem.
The multiplicative order of element g is the smallest

proposed an asymmetric

positive integer n with the condition g" =e, where e is

the group identity element. Both described cryptographic
protocols give the correct result for an arbitrarily chosen
element g. However, their resistance to hacking depends
on how high is the element order.

To implement the mentioned cryptographic
protocols, one must take a suitable finite group and high
order element in it, that is to ensure that computing the
discrete logarithm is a hard problem. The most well-
known choices are the following: multiplicative group of

prime finite field F; ={1,2,...,p—1}, where p is a large

prime (originally Diffie and Hellman used this group);
multiplicative group of extended finite field; group of
points of an elliptic curve over a finite field.

Quantum computers can solve efficiently the discrete
logarithm problem in these three groups exploiting Shor
algorithm [1]. This fact makes these constructions
unreliable in the future. Because of this, research is being
done that will ensure the resistance of cryptographic
schemes in the coming era of quantum computers. One of
such directions is using of algebraic structures called
group rings [2].

Let ring with unity R and group G be given. Then the
set of all possible records

t
RIGI={> rg 1t=012,.;r,eR g G}, (1)

i=0
is called a group ring. Element u of the group ring is
invertible (unit), if there exist element v of this ring, such
that uv=vu=1 holds. The multiplicative group U(R[G])

of the ring consists of its units.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Group rings were not used in cryptography until the
second decade of the 2Ist century. A public-key
cryptosystem using group rings was first proposed in [3].
For encryption and decryption, units and the
computational complexity of the discrete logarithm in
group rings were used. Numerous applications of group
rings in communications and digital signal processing are
discussed in [4].

Two asymmetric cryptosystems based on group
rings were suggested in [5]. The first one is an asymmetric
cryptosystem over a group ring that combines elliptic
curves and the El-Gamal construction, and the second one
is an asymmetric cryptosystem over a group ring of the
El-Gamal type without involving elliptic curves. Both
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computational schemes use units of group rings. Two
mentioned cryptosystems and generally group rings-based
cryptosystems have a higher level of security than existing
cryptosystems, since no quantum algorithm is currently
known to solve efficiently (in polynomial time) the
discrete logarithm problem in group rings [5]. In the
coming era of quantum computers, this enhanced
protection would play a significant role.

There is a significant number of publications on the
structure of the unit group of a group ring. But only a few
papers consider how to explicitly obtain elements of this
group. However, the actual explicit construction of these
elements, as well as ensuring that they have high order, is
essential for using of group rings in cryptography.

Works [5, 6] describe how to search for units for a
number of group rings. In particular, they use well-known
environments for mathematical calculations GAP
(LAGUNA, Wedderga packages), Magma, Matlab. Using
the LAGUNA package of the GAP environment [5], the
group of units of a group ring given by a finite field of p
elements for some prime number p and a finite p-group
can be efficiently computed for small values of p.
However, as the number increases, the GAP environment
becomes inefficient.

To define a group ring, different options for ring and
group are considered. As ring they usually take finite field
or ring of integers. Possible choices for group are as
follows: finite cyclic group, dihedral group, permutation
group. Research is also being conducted related to the use
of LWE problem [7] or matrices over group rings [8, 9].
An issue of finding high order units in group rings given
by finite field and finite cyclic group is investigated in
[10]. Note that this group ring is commutative.

One of the promising directions is the study of the
unit group of non-comutative group rings formed by a
finite field and a finite dihedral group. Despite the
availability of theoretical descriptions [11-13], explicitly
finding such elements remains a difficult task, especially
for large parameters. In [13] the structure of such rings is
described under the condition that ¢ is coprime with » and
every prime divisor of the number » divides ¢ —1. In [12]
a review of works in which this condition is removed for
some partial cases is made. Based on the literary survey,
the unit group structure of group rings has been
established for the following cases: Fz" [D,,,] (m is odd

number), Fp,Z [szm] (p is odd prime), F,Dgo, F,Dsy and

F,Dss, where F, denotes finite field with ¢=p" elements
for some natural number 7.

III. SCOPE OF WORK AND OBIJECTIVES

The purpose of this work is to explore the potential
of using Wedderburn-Artin theorem to describe the group
of invertible elements (units) in one class of group rings.
We consider such class of group rings, for which this
theorem 1is applicable, and which are at the same time
important for the implementation of cryptographic
primitives that are resistant to different possible (pre-
quantum and quantum) attacks.
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This paper demonstrates how one can obtain a
description of a group ring by considering a ring
isomorphic to it.

The aim of this work is to investigate the problem of
finding units in group rings formed by a finite field and a
dihedral group. Of particular interest is the search for units
of high order that can be used in cryptographic protocols
such as Diffie-Hellman key exchange and ElGamal public
key cryptosystem and ensure resistance to quantum
attacks.

IV.OBTAINING ELEMENTS OF HIGH ORDER

We consider the case, when ring R = F, is a finite
field, and group G = D, is a dihedral group (non-abelian
for » > 3). This group describes the symmetries of regular
r-gon and includes 7 rotations (in particular, the identity
symmetry e) and 7 reflections. It is given by generators x
and y, where x is the rotation by the angle 2n/r, i.e. X" = e,
y is the reflection (mirror symmetry) such, that y*= e, and
the additional relationship yxy'=x'. List of group
elements is as follows:

Do={1,x,x ... xX" y,yx, o, o (D)

The main point in obtaining high order units is
calculating the number of the units. This value can be
determined by iterating through the elements, which
requires significant computational effort. Indeed, taking an
arbitrary element of a group ring, we must first find out
whether it is a unit. Unlike group rings given by a finite
field and a finite cyclic group, the Euclidean algorithm
does not work in dihedral group rings. Therefore, we need
to iterate over the powers of the element and see when we
get 1. At the same time, we also obtain the order of the
element if it is a unit. At the same time, the total number
of ¢ elements of the ring F,[D,] increases rapidly with
increasing of the numbers ¢ and r.

To reduce computational costs, it is proposed to use
an algebraic approach. It consists in applying a
combination of two fundamental results from the theory of
algebraic structures.

On the one hand, the structure of semisimple rings is
described by the Wedderburn-Artin theorem. The theorem
states that any semisimple (artinian) ring is isomorphic to
the direct sum of rings of matrices of size n; by n; with
elements from the division ring D;, where numbers #; are
uniquely defined, and division rings — up to isomorphism.
In particular, a simple ring is isomorphic to a matrix ring
over the division ring.

On the other hand, the Maschke theorem is a
theorem in group representation theory regarding the
decomposition of representations of finite groups into
irreducible representations. The theorem allows us to draw
conclusions about the representation of finite groups
without calculating them. It reduces the problem of
classifying all representations to the problem of
classifying irreducible representations, the direct sum of
which decomposes an arbitrary representation.

If F is a field and G a finite group with n elements,
then the group ring F[G] is semi simple if and only if the
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field characteristic does not divide #. This result is known
as Maschke theorem and is important in group
representation theory. The conditions of Maschke theorem
are satisfied by the group ring F,[D,] if the characteristic
of the field does not divide the number 2r.

Combining both results, for the group ring F,[D,]
(the characteristic of the field F, does not divide 2r), we
have that it is a direct sum of a finite number of complete
matrix rings over division rings [13]:

R[G] = eiaanl (F,) (2

where numbers »; and g, are uniquely defined.

This means that each such ring can be represented as
a direct sum of such elementary “building blocks” —
matrix rings, and this representation is unique. Uniqueness
of the decomposition — the decomposition into such
blocks is unique up to the order of factors.

Based on this decomposition, the number of units in
the group ring can be calculated as the product of numbers
of units in each block. At the same time, one should also
take into account the peculiarities of searching for high
order units in each of factors.

If the number n; = 1, i.e. the complete matrix ring
reduces to a finite field, then all nonzero elements are
units. The maximum possible order of an element is equal
to the number of non-zero elements of the field. It is
known that elements of the mentioned order always exist.

If the number n; > 1, then the invertible elements of
the complete matrix ring form the so called general linear
group over a finite field. More precisely, take a natural
number n; >2. One of the widely known non-abelian

groups is the general linear group GL(n;,F,) — matrices
of size n; xn;, which are filled with elements of the field
F, and with non-zero determinant, with respect to the
matrix multiplication operation (or in another form linear
transformations in one variant from (F,)" to (F,)", and

in another variant — from qu to qu , with respect to the

High Order Units in Group Rings Specified by Finite Field and Dihedral Group

operation of composition of mappings). The number of

elements of the group equals
n;—1 )

|GL(n;, F))|=[](¢" —¢'). 1t is shown (Cayley-
i=0

Hamilton theorem) that the maximum possible order of an

element in this group is equal to ¢" —1. It is also known

that elements of the specified order always exist. They are
commonly called Singer cycles. However, it is not known
how to explicitly construct the mentioned elements in
general.

The decomposition given earlier is a result about the
existence. It is not clear from it how to actually get the
decomposition. Results on how this can be done explicitly
are not known for arbitrary pairs g and r. The
corresponding description, provided that every prime
divisor of the number r divides ¢g—1, is given in
[13, Theorem 4.4].

To verify the validity of theoretical constructions, in
particular the mentioned description, we performed
calculations in Python environment for various group
rings that are given by a finite field and dihedral group.
Some of the obtained results are given in Table 1.
Comments and explanations for some rows of this table
are provided after the table.

Actually, three fundamentally different cases were
considered. In this case, we use the following notation: &
is the greatest common divisor of the numbers r and

1;m=2
q—1; P
1. The case when number r is odd.
In this case, the decomposition has the block of the

form 2F,, % blocks of the form M,(F,) and for every

divisor ¢ of the number m (¢ # 1) @ blocks of the
t

form M, (F,).

Structure of Group Rings of the Form F,[D,]

q r Structure of F,|D,]

5 |8 4F§®M2(F5)®M2(F;2)

5 132 4F5®M2(F3)®M2(F;2)®M2(F;4)®Mz(Fss)

5 1128 4FS@Mz(FS)@Mz(FSZ)@Mz(FSzt)@Mz(FSs)@Mz(FSm)@Mz(FSn)
7 16 4F, @2M,(F;)

7 | 54 4F7®2M2(F7)®2M2(F73)®2M2(F79)

7 1243 2F7®M2(F7)®M2(F73)®M2(F79)®M2(F727)®M2(F781)

9 | 128 4F9G—)3M2(F9)®2M2(F92)®2M2(F94)®2M2(F98)®2M2(F91(,)

11 | 125 ZF]I®2M2(F]1)®2M2(F;15)®2M2(F;125)

13 | 128 4F13@Mz(FB)(-DM2(F132)(-DM2(F134)(-DM2(F138)(-DM2(F131(,)(-DM2(F;332)
17 | 128 | 4Fy G—)7M2(F17)G—)4M2(F172)®4M2(F174)®4M2(F178)
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For example, take ¢ = 7 and r = 243. Then there is
the block 2F; in the decomposition. Since & = 3, then

%zl and we have one block M, (F;). As m = 8l,

then the non-1 divisors of this number are equal to 3, 9, 27

and 81. For each of these divisors ¢, the value of the
expression @ is calculated. For all four values of
t

divisors, the value of the expression is equal to 1. That is,
we have in the decomposition one block M, (F73) ,
M, (F79 ), M, (F727 ) and M, (F731 ) at a time.

Summarizing the above considerations, we obtained
the following decomposition:

Fi[Dy3]1=2F; @Mz(F7)@M2(F73)@M2(F79)@ 3
My ()@ My (F ) '

Based on the decomposition, we have the following
number of units:

| Fy[Dys ] =72 -L(77 =17 = D[ -)(7° = 7)]-
(7" =D =TT =T =77
(7162 —1)- (7' —7%1y]

2. The case when r is even and g =1(mod4) or 8

does not divide r.
The decomposition has the block of the form 4F,

%— 1 blocks of the form M,(F,) and for every divisor ¢ of

the number m, that is not equal to 1, kqo_gt) blocks of the

2
form M, (F,,).

We took for example ¢ = 5 and » = 128. Then there is
the block 4Fs in the decomposition. Since & = 4, then
%—l =1 and we have one block M, (Fy) . As m =32, then

the non-1 divisors of this number are equal to 2, 4, 8, 16 and
32. For each of these divisors ¢, the value of the expression

@ is calculated. For all five values of divisors, the value
t

of the expression is equal to 1. That is, we have in the
decomposition one block M, (F52 ), M, (F54 ), M, (F58 ),
M, (F516 ) and M, (17532 ) atatime.

Summarizing the above considerations, we obtained
the following decomposition:

F5[Dyy5] = 4F5 @Mz(&)@Mz([gz)@Mz([g4)@
Mz(FSss)@Mz(F516)@M2(F532)

Based on the decomposition, we have the following
number of units:

| F5[Dyps]” |2 4% [(5% =1)(5* =9I [(5* - (5* =57)]-
[(5° -=1)(5* = 5H]-[(5" - D' =5%)]-[(57% - 1) (57 = 5'%)]-
[(564 _ 1) . (564 _532)]
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3. The case when r is even and ¢ =3(mod4) and 8
divides r.
We additional notation:

use the following

!

r r
v =min(v,(=),v,(g+1)), m'=——, the number i
(2(2) 2(g+1) o

equals 0, if v2(q+l)>v2(§), and equals 1, if

r
va(g+D<v;(5).
In this case, the decomposition has the block of the
form 4F, k+2"" -3 blocks of the form My(F,),

22k =2~ K L1 blocks of the form M (F,), for
4 >

k(1)

every odd divisor ¢ of the number m' (¢ # 1) Y

v-l _
blocks of the form M, (Fq,) and (22—?]@(0 blocks

of the form M2(Fq2,), for every even divisor ¢ of the

v=2
number m' — 2 Tke® blocks of the form M2(Fq2,).
t

After obtaining the number of elements, typical
techniques should be applied: factoring the obtained
number into prime factors and applying the corollary of
Lagrange's theorem for finite groups.

Factor the number |U(F,[D,]) into prime factors.

In general, the computational complexity of factoring a
number is subexponential. However, for factors of a
specific type that are present in this number, you can use
ready-made tables from the Cunningham project (with
Brent-Montgomery-te Riel additions). This is a project to
factor numbers of the form b” + 1. There are three printed
versions of the tables, as well as an online version.

For example, in the case ¢ = 5 and » = 128, we have
the following factorizations into primes for divisors of the
number |U(F,[D,]):

59_1=203-13-17-313- 11489

5.5%=2%.3-5%13-313
5% - 1=2"-3-13-17-313 - 641 - 2593 - 11489 -
29423041 - 75068993 - 241931001601
5% .57=27-3-5%.13-17- 313 - 2593 - 11489 -
29423041
5% 1=2"-3-13-17-313-641- 769 - 2593 - 11489 -
75068993 - 29423041 - 3666499598977 - 241931001601 -
96132956782643741951225664001
51 _5%=2%.3.5%.13-17-313- 641 - 2593 - 11489 -
29423041 - 75068993 - 241931001601

Randomly select element of the group ring.

Applying corollary of Lagrange theorem for finite groups,
find the order of the element. The formulation of this
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corollary is that the order of any element of a finite group
is a divisor of the number of elements of the group. If the
element is not a unit (does not equal to the group identity
in the power of any possible divisor) or a unit, but not of
high order, then return to element selection.

V. CONCLUSION

To implement cryptosystems based on the discrete
logarithm problem in group rings, it is necessary to find
high order elements in these rings explicitly.

A method was proposed for obtaining units of high
multiplicative order in group rings given by a finite field
and a finite non-abelian dihedral group. The main point
here was to calculate the number of units. To reduce
computational costs, an algebraic approach should be
used: decompose the group ring into a direct sum of a
finite number of complete matrix rings over finite fields.
Based on this decomposition, the number of units in the
group ring can be calculated as the product of numbers of
units in each block.

This method can be applied provided that the
numbers ¢ and 2r are coprime, and every prime divisor of
the number r divides ¢ —1. The limitation of the method

is that it is not always possible to find the factorization of
the number of group ring units.
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