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Abstract: This study extends previous research on
Remaining Useful Life (RUL) prediction for agricultural
vehicles by utilizing an enriched dataset to overcome earlier
limitations in forecasting RUL for electric and hydraulic
system components. Influential features have been identified
through Pearson correlation and Random Forest feature
importance analysis. Discrete Wavelet Transform (DWT)
has been applied to extract additional approximation and
detail coefficients, enhancing the feature set. Prediction
algorithms—LSTM, FCNN, and SVM—have been evaluated
using Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Squared Error
(RMSE), and Coefficient of Determination (R*) metrics.
Results indicate that LSTM models demonstrate superior
performance, particularly those incorporating DWT-
extracted features and geospatial factors such as weather and
terrain conditions. The findings suggest that the developed
RUL prediction models can be integrated into future
Internet of Things (10T) systems for remote monitoring and
predictive maintenance of agricultural machinery.

Index Terms: Agriculture vehicles, GIS, RNN. LSTM,
FCNN, SVM, Predictive Maintenance, RUL, DWT

I. INTRODUCTION

To enhance efficiency and meet the demands of a
growing population, modern agriculture increasingly
depends on various machinery, including tractors,
harvesters, and other vehicles [1,2]. These machines play
a vital role during seasonal operations such as planting
and harvesting, where any malfunction can disrupt
workflows and cause significant economic losses [3]. To
help farmers proactively address issues, optimize
maintenance schedules, and extend machinery lifespan,
predictive maintenance with Remaining Useful Life
(RUL) estimation is employed.

In our previous study [4], we introduced an approach
for RUL prediction by integrating telemetry data from
agricultural ~ vehicles, maintenance  records, and
Geographic Information System (GIS) data—such as
weather and terrain conditions—to train a Long Short-
Term Memory (LSTM) model. Our results demonstrated
that models incorporating GIS data achieved higher
accuracy compared to those without it. However, RUL
prediction performance for electrical and hydraulic
components did not meet expectations due to insufficient
data. Additionally, that study focused solely on evaluating
the LSTM algorithm for RUL prediction.

This study extends our earlier work [4] with three
main objectives. First, we examine the influence of GIS
data on other machine learning algorithms, including
Fully Connected Neural Networks (FCNN) and Support
Vector Machines (SVM). By comparing each model’s
performance with and without GIS data, we aim to assess
how these variables affect RUL prediction accuracy across
different computational approaches. Second, we seek to
enhance RUL prediction for electrical and hydraulic
systems by addressing the data limitations identified
previously. To achieve this, the LSTM model will be
reconstructed and re-evaluated using an expanded dataset.
Third, we apply Discrete Wavelet Transform (DWT) to
telemetry features to extract temporal and frequency-
domain characteristics, investigating whether these
wavelet-based features further improve prediction
accuracy.

This research offers practical insights for agricultural
operations adopting predictive maintenance systems
tailored to their equipment’s unique characteristics. Our
findings on the comparative performance of different
algorithms across machinery components contribute to
more resilient, efficient, and cost-effective farming
practices.

Il. LITERATURE REVIEW AND PROBLEM
STATEMENT

RUL prediction is not a new challenge, and several
established methods have been developed to address it.
A review of the literature shows that Recurrent Neural
Networks (RNNs) are highly suitable for analyzing time-
series telemetry data to predict potential equipment
failures, as they perform well with sequential data [5].
Temporal dependencies are crucial for accurate RUL
estimation, and RNNs capture these dependencies by
feeding the output of one step into the next. This is
achieved through hidden layers that retain information
about previous inputs. Long Short-Term Memory (LSTM)
networks are an advanced form of RNNs that overcome
the limitations of ftraditional RNNs, particularly in
handling long-term dependencies. LSTM networks use
three gates, nput, output, and forget, which act like
switches that can be turned on (1) or off (0) [6]. This
mechanism enables LSTMs to retain only relevant
information over extended periods while discarding
unnecessary details. Consequently, LSTMs are well-suited
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for predicting the RUL of agricultural machinery, as they
can process large datasets combining telemetry data,
maintenance records, and GIS information.

FCNN presents another approach used in predictive
maintenance. These networks process input data
sequentially through an input layer, hidden layers, and an
output layer, without feedback loops. Unlike RNNSs,
FCNNs do not retain memory of past data, and their
connections have distinct weights that are not shared
across layers [7]. Despite this limitation, FCNNs can still
effectively analyze sensor data, maintenance histories, and
geographic context information.

Both neural network types discussed above are
forms of deep learning models that can automatically
detect patterns without explicit supervision. However,
traditional supervised learning algorithms are also applied
to RUL prediction, with SVMs being a notable example.
As noted in [8], SVMs perform well for RUL estimation
due to their ability to handle high-dimensional data
efficiently. Their capacity to determine optimal separating
boundaries, known as hyperplanes, makes them
particularly effective for binary classification tasks—such
as distinguishing between machinery operating normally
and machinery nearing failure.

The prediction of agricultural vehicle RUL remains
an underexplored research area, with relatively few studies
dedicated to it. Recent works [9-11] indicate a growing
interest in applying advanced machine learning techniques
to predict equipment lifespan. However, most of these
studies rely solely on onboard sensor data, overlooking
environmental and  operational  conditions  that
significantly affect machinery longevity. Moreover, there
is a lack of research evaluating RUL prediction algorithms
using consistent datasets and standardized performance
metrics. The integration of geospatial data into RUL
prediction for agricultural machinery also remains largely
unexplored. As highlighted in our previous work [3],
accurately predicting RUL for electrical and hydraulic
systems in agricultural vehicles is still a challenging
problem that demands further investigation.

The study in [12] proposes an enhanced prediction
approach utilizing the Discrete Wavelet Transform
(DWT) and demonstrates that LSTM, RNN, and Back
Propagation (BP) models achieve higher accuracy when
DWT-extracted features are applied to wind power
prediction. Similar improvements were observed in RUL
prediction for lithium batteries, as shown in [13].
However, it remains uncertain whether these algorithms
will exhibit comparable performance in agricultural
machinery RUL prediction, particularly when telemetry
data is combined with GIS information.

I11. SCOPE OF WORK AND OBJECTIVES

In this study, we aim to assess the performance of
LSTM, FCNN, and SVM algorithms for predicting the
RUL of agricultural vehicles. Our objective is to
determine how GIS data and DWT-extracted features
influence prediction accuracy. To achieve this, four
groups of models will be implemented, and their
performance metrics are compared: a dataset without GIS

and DWT-extracted features, a dataset with GIS but
without DWT-extracted features, a dataset without GIS
but with DWT-extracted features, and a dataset including
both GIS and DWT-extracted features. These comparisons
will help identify the most suitable algorithm for
agricultural vehicle RUL prediction.

Furthermore, this research emphasizes the
integration of telemetry, maintenance, and geospatial data
to create a comprehensive dataset, addressing the specific
challenge of predicting failures in electrical and hydraulic
systems of agricultural machinery. The results are
expected to support the development of more robust
predictive maintenance models, improving remote health
monitoring of agricultural vehicles and enabling
optimized operations while reducing maintenance costs.

IV.MATERIALS AND METHODS

The proposed RUL prediction workflow follows the
same procedure as in our previous study [3]. It starts with
data collection, including telemetry, maintenance records,
weather conditions, and terrain information, followed by
dataset integration and preprocessing. Subsequently,
predictive models are developed for each vehicle
component using machine learning techniques such as
LSTM, FCNN, or SVM. The final step involves applying
these models to generate RUL predictions. In our prior
research [3], the dataset was insufficient for accurately
predicting the RUL of electric and hydraulic components.
To address this limitation, a new dataset was obtained
from a US-based cereal farming operation, comprising
telemetry and maintenance records. The dataset includes
records collected in 2023 from 50 tractors across 5
different tractor models, operating on 2 farms located in
distinct regions. Relevant features, that were extracted
from maintenance records, are presented in Table 1.

The telemetry dataset includes several features.
Timestamp represents the exact date and time when the
telemetry data was recorded. Tractor ID is a unique
identifier for each tractor in the fleet. Mileage indicates
the total distance traveled by the tractor from the
beginning of its operational life in kilometers. Engine
RPM shows how fast the engine is spinning. Fuel
Productivity refers to the rate of fuel consumption in liters
per hour. Engine Load represents the current engine load
as a percentage of maximum capacity. Current Speed
indicates the current speed of the tractor in kilometers per
hour. Power Take Off Load refers to the amount of power
being transferred through the Power Take Off (PTO)
system to operate attached implements, measured in
kilowatts. Transmission Load shows the current stress on
the transmission system as a percentage. Lub Oil
Temperature is the temperature of the engine’s lubricating
oil in degrees Celsius. Coolant Temperature represents the
temperature of the engine cooling system in degrees
Celsius. Battery Voltage indicates the main battery voltage
level in volts. Alternator Output Voltage is the voltage
output from the alternator in volts. Alternator Current
represents the current output from the alternator in
amperes. Battery Current shows the battery charge or
discharge current in amperes. Starter Motor Current
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indicates the current draw during engine start in amperes.
ECU Voltage represents the voltage at the Electronic
Control Unit in volts. Power Consumption Total refers to
the total electrical load on the system in watts. Battery
Temperature is the temperature of the main battery in
degrees Celsius. Alternator Temperature represents the
operating temperature of the alternator in degrees Celsius.
Battery State of Charge indicates the estimated battery
charge level as a percentage. Battery State of Health
represents the estimated battery condition as a percentage.
Generator RPM shows the rotational speed of the
generator or alternator. Circuit Load Distribution
represents the load distribution across electrical circuits as
a percentage. Charging System Status refers to the status
codes for the charging system. Electrical Fault Codes are
the diagnostic trouble codes for electrical systems.
Hydraulic Oil Pressure indicates the main system pressure
in bar or PSI. Hydraulic Oil Temperature shows the oil
temperature in degrees Celsius. Hydraulic Oil Level
represents the fluid level in the reservoir as a percentage.
Hydraulic Pump Speed indicates the rotational speed of
the main pump in revolutions per minute. Hydraulic Flow
Rate refers to the system flow rate in liters per minute.
Hydraulic Filter Differential Pressure represents the
pressure difference across the hydraulic filter in bar.
Hydraulic Actuator Position indicates the position of
hydraulic cylinders as a percentage. Hydraulic Valve
Position represents the position of control valves as a
percentage. Hydraulic System Leakage refers to the
calculated leak rate in liters per minute. PTO Hydraulic
Pressure indicates the Power Take-Off hydraulic pressure
in bar. Steering Hydraulic Pressure shows the steering
system pressure in bar. Implement Hydraulic Pressure
represents the implement circuit pressure in bar. Hydraulic
Pump Efficiency indicates the calculated pump efficiency
as a percentage. Hydraulic Cooler Efficiency represents
the heat exchanger effectiveness as a percentage.
Hydraulic System Load refers to the load on the hydraulic
system as a percentage. Hydraulic Fault Codes are the
diagnostic trouble codes for hydraulic systems.

Geospatial information including weather and terrain
data for regions in provided datasets was manually
collected. For this purpose, VisualCrossing (https://www.
visualcrossing.com) solution was used to obtain weather
records, and ArcGIS (https://www.arcgis.com/) solution
was used to identify terrain characteristics. This process
was done for each field's geographical boundaries in
obtained dataset. Table 2 represents extracted weather
data features, and Table 3 — extracted terrain data features.

The dataset preparation workflow began with
preprocessing and integrating the collected data to support
predictive maintenance analysis. Integration started by
joining telemetry and maintenance records using the
TractorID field. This combined dataset was then enriched
with corresponding weather and terrain records using the
Region and Timestamp fieldsio telemetry data were
recorded every minute, while weather information was
collected daily, resulting in uniform weather parameters
across all same-day telemetry records within each region.

Table 1
Maintenance Data Features
Name Description
Timestamp The exact date and time when the
maintenance entry was recorded
TractorlD A unique identifier for each tractor in
the fleet
Model The specific make and model of the
tractor.
Region The geographical area where the
tractor is operating
Age The number of years since the tractor
was manufactured or put into service
Mileage The total distance traveled by the

tractor from the beginning of its
operational life till the maintenance
date (km)

ComponentFailure

Indicates which specific part or
system of the tractor failed

Table 2
Weather Data Features
Name Description
Year The calendar year during which the
weather data was recorded
Month The calendar month during which the
weather data was recorded
Day The calendar day during which the
weather data was recorded
AvgTemperature The average temperature that day (C)
MinTemperature | The minimum temperature that day (C)
MaxTemperature | The maximum temperature that day (C)

Precipitation

The total amount of precipitation that
day (mm)

Wind The average wind speed (Km/h)
Region The geographical area for which data is
collected
Table 3
Terrain Data Features
Name Description
MeanElevation | The average elevation of the terrain (m)
MinElevation The minimum elevation of the terrain
(m)
MaxElevation The maximum elevation of the terrain
(m)

StdElevation

The standard deviation of elevation of
the terrain (m)

MeanSlope The average slope within the region

(degrees)

MinSlope The minimum slope within the region
(degrees)

MaxSlope The maximum slope within the region
(degrees)

StdSlope The standard deviation of slope within

the terrain (degrees)
Region The geographical area for which data is

collected
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Next, highly correlated features were identified, as
they could negatively impact model performance. Pearson
correlation analysis was applied to the integrated 54-feature
dataset to detect potential feature redundancies. The
following features, with correlation coefficients near -1 or 1,
were considered highly correlated and removed: ECU
Voltage, Circuit Load Distribution, Charging System
Status, Electrical Fault Codes, Hydraulic Actuator Position,
Hydraulic Valve Position, Hydraulic System Leakage, PTO
Hydraulic  Pressure, Steering Hydraulic  Pressure,
Implement Hydraulic Pressure, Hydraulic Pump Efficiency,
Hydraulic Cooler Efficiency, Hydraulic Fault Codes,
MinTemperature, MaxTemperature, MinElevation,
MaxElevation, StdElevation, MinSlope, MaxSlope,
StdSlope. A total of 21 features were removed, leaving 33
features for further modeling.

The combined dataset was further enhanced by
calculating RUL values for each component based on
maintenance history analysis. These values represented the
intervals between consecutive failures in the maintenance
records. Consequently, four new fields were added:
EngineRUL, ElectricSystemRUL, HydraulicSystemRUL,
and TransmissionRUL. With five tractor models and four
components under study, the main dataset was partitioned
into 20 distinct subsets, each focusing on a specific
component-tractor model combination while excluding
irrelevant features associated with other components or
models. Random Forest was then employed to identify the
most influential features for predicting each specific
component’s RUL.

After that, for each subset of the dataset, DWT was
applied specifically to the telemetry features within that
subset to extract additional features, namely the
approximation and detail coefficients. The transformation
was implemented using the Daubechies wavelet of order 2
(db2). Compared to higher-order Daubechies wavelets
(db4, dbb, etc.), db2 is less sensitive to noise and less prone
to excessive approximation, making it more stable for
practical telemetry data processing tasks where signals may
contain a significant level of noise. In addition, db2
provides a better trade-off between signal reconstruction
accuracy and computational complexity, which is important
when working with large datasets. Daubechies wavelet
shows higher classification accuracy, comparing to Haar
wavelet [14]. The approximation coefficients a;,, [k] and

detail coefficients d;,, k are calculated using formulas:
a1 [K] =

dinlk = an «gln—2k]. @

Here, h n and g n represent the low-pass and high-
pass filter coefficients of the db2 wavelet and defined as

o @ o*h[n—2k]. Q)

ho =22 p1 =23 po =32 p31= 133
42 a2 42 42
1- 3 3— 3 3+ 3
90 =591 =""592=735 @
g3 =-22 (5)

4 2
Using these coefficients, several additional features
were calculated — energy of the detail coefficients E;, mean

of the approximation coefficients at the final level p,, and

variance of the approximation coefficients 2. The
calculation formulas related to these additional features are:

E] =1 kdjkz, (6)
l’la=; ka]k 1 (7)

1 2
o=y ok -m ®

The final enriched component-tractor model specific
subsets were formed by combining these DWT-derived
features stated in formulas (4)-(8) with the original
telemetry, maintenance history and GIS records.

After dataset integration and preprocessing, prediction
models using LSTM, FCNN and SVM were implemented.

To evaluate the model’s accuracy, Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE),
Root Mean Squared Error (RMSE) and Coefficient of
Determination (R-squared) metrics were used. These
metrics were calculated using the following input values: x;
— actual RUL values, y; — predicted RUL values, and
n — total number of samples.

MAE is a metric that measures the average magnitude
of errors in prediction, as an absolute difference between
predicted and actual values:

MAE = _i= MiTYi ) 9)

MAPE expresses the forecast error as a percentage of
the actual values, and is calculated using the formula:

n
Xi~Yi

MAPE = —=-——+100.  (10)

RMSE measures the square root of the average
squared differences between actual and predicted values:
RMSE = —i= X" (11)

R-squared gives a measure that represents how close
the data is to the fitted regression line, and is calculated
using the formula:

?=1(xi_3’i)2
02
where xis the mean of the actual RUL values that is
calculated using the formula:

R?=1-— (12)

= i;l"i, (13)

For MAE, MAPE and RMSE lower values indicate
better model performance. R? values range from 0 to 1,
where 1 means perfect prediction, and 0 means the model

explains no variance in the data.

V. RESULTS

A total of eighty models were developed for each
RUL prediction algorithm and used for training and testing.
Each model corresponded to a specific combination of
component and tractor model. The first 20 models included
only telemetry and maintenance history records, without
applying DWT. The next 20 models also used only
telemetry and maintenance history records, but with DWT
applied. The following 20 models incorporated telemetry,
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maintenance history, and GIS data, without applying DWT.
The final 20 models used the complete dataset, including
GIS data, with DWT applied. This setup allowed for a
thorough analysis of the effects of geospatial data and
DWT-derived features on the predictive accuracy of the
models.

Tables 4-7 present the performance results of each
prediction algorithm across the four components: Table 4
for Engine, Table 5 for Electric System, Table 6 for
Hydraulic System, and Table 7 for Transmission. The
reported values—MAE, MAPE, RMSE, and R>—represent
the averages observed across all tractor models.

All algorithms show lower MAE, MAPE and RMSE
and higher R? for RUL prediction with the help of GIS data
and DWT extracted features. Average MAE for models
across all algorithms that use complete dataset was reduced
by 29,37%, MAPE by 28,4% and RMSE 29,23%. R? was
increased by 5,92%. Models that are enriched with only one
additional type of data — GIS or DWT derived features, also
overperform models that leverage only telemetry and
maintenance history data. This supports the hypothesis that
integrating GIS factors, such as weather and terrain
characteristics, and applying DWT to extract additional
approximation and detail coefficients enhances the accuracy
of predictive maintenance models.

The LSTM network demonstrated the best owverall
performance among the RUL prediction algorithms. FCNN
performed slightly worse than LSTM, although for the
Transmission component, FCNN achieved the highest
accuracy. SVM consistently showed the lowest
performance.

Table 4

Algorithms Performance Comparison for Engine
RUL prediction

Metric LSTM | FCNN | SVM
MAE GIS NO DWT 8,25 8,84 9,58
MAE NO GIS NO DWT 10,76 11,31 12,48
MAE GIS DWT 7,52 8,03 8,71
MAE NO GIS DWT 9,60 10,09 11,21
MAPE GIS NO DWT 2,54 2,72 2,95
MAPE NO GIS NO DWT 3,12 3,28 3,62
MAPE GIS DWT 2,21 2,36 2,56
MAPE NO GIS DWT 2,76 2,91 3,23
RMSE GIS NO DWT 11,47 12,39 13,42
RMSE NO GIS NO DWT 15,18 15,91 17,53
RMSE GIS DWT 10,47 11,29 12,20
RMSE NO GIS DWT 13,62 14,11 15,91
R>GISNO DWT 0,9253 0,9109 0,8757
R?>NO GIS NO DWT 0,8857 0,8704 0,8452
R> GIS DWT 0,9357 0,9207 0,8883
R>NO GIS DWT 0,9029 0,8876 0,8627
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Table 5

Algorithms Performance Comparison for Electric
System RUL prediction

Metric LSTM | FCNN | SVM
MAE GIS NO DWT 8,45 8,71 9,68
MAE NO GISNODWT | 10,96 11,55 12,34
MAE GIS DWT 7,82 8,03 8,84
MAE NO GIS DWT 9,80 10,62 11,09
MAPE GIS NO DWT 2,6 2,68 2,98
MAPE NO GISNODWT | 3,18 3,35 3,58
MAPE GIS DWT 2,30 2,36 2,60
MAPE NO GIS DWT 2,82 3,06 3,19
RMSE GIS NO DWT 11,71 12,24 13,42
RMSE NO GISNODWT | 15,57 15,99 17,16
RMSE GIS DWT 11,08 11,14 12,37
RMSE NO GIS DWT 13,66 14,88 15,68
R?GISNO DWT 0,9201 0,9155 0,8808
R2NO GIS NO DWT 0,8807 | 0,8754 | 0,8506
R? GIS DWT 0,9297 0,9306 0,8944
R2NO GIS DWT 0,8940 0,8925 0,8633
Table 6

Algorithms Performance Comparison for Hydraulic
System RUL prediction

Metric LSTM |FCNN [SVM
MAE GIS NO DWT 8,12 8,61 9,42
MAE NO GIS NO DWT 10,86 11,10 12,58
MAE GIS DWT 7,44 7,96 8,61
MAE NO GIS DWT 9,78 9,97 11,15

MAPE GIS NO DWT 25 2,65 29
MAPE NO GIS NO DWT 3,15 3,22 3,65
MAPE GIS DWT 2,19 2,34 2,53
MAPE NO GIS DWT 2,82 2,87 3,21
RMSE GIS NO DWT 11,28 12,15 13,02
RMSE NO GIS NO DWT 15,39 15,33 17,81
RMSE GIS DWT 10,52 11,30 11,93
RMSE NO GIS DWT 13,73 13,95 15,51
Rz GIS NO DWT 0,9284 0,9153 | 0,868
R?>NO GIS NO DWT 0,8904 0,8751 0,8740
R? GISDWT 0,9498 0,9242 | 0,890
R>NO GIS DWT 0,9014 0,8856 | 0,852

Additionally, the RUL prediction performance for
Electric and Hydraulic System components was consistent
with that observed for Engine and Transmission. This
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indicates that the telemetry and maintenance datasets used
in this study provide sufficient information to accurately
predict RUL for these components, improving upon the
limitations of the dataset in our previous research [3].

Table 7

Algorithms Performance Comparison for
Transmission RUL prediction

Metric LSTM FCNN | SVM
MAE GIS NO DWT 9,03 8,93 9,91
MAE NO GIS NO DWT 11,45 11,20 12,48
MAE GIS DWT 8,19 8,05 9,00
MAE NO GIS DWT 10,55 10,39 11,15
MAPE GIS NO DWT 2,78 2,75 3,05
MAPE NO GIS NO DWT 3,32 3,25 3,62
MAPE GIS DWT 2,41 2,37 2,65
MAPE NO GIS DWT 3,04 2,99 3,21
RMSE GIS NO DWT 12,60 12,34 13,86
RMSE NO GIS NO DWT 15,97 15,72 17,23
RMSE GIS DWT 11,48 11,28 12,78
RMSE NO GIS DWT 14,88 14,61 15,52
R? GISNO DWT 0,9259 0,9151 | 0,875
R2NO GIS NO DWT 0,8659 0,8758 | 0,845
R2GIS DWT 0,9405 0,9274 | 0,886
R?>NO GIS DWT 0,8774 0,8857 | 0,864

These results offer valuable insights for future
predictive maintenance applications, particularly regarding
the integration of RUL prediction models with Internet of
Things (loT) platforms for remote monitoring of
agricultural machinery.

VI.CONCLUSION

Our previous study highlighted the importance of
incorporating GIS data into agricultural vehicle RUL
prediction models using the LSTM algorithm. However,
high prediction accuracy was not achieved for the Electric
and Hydraulic systems [3].

In this study we advanced our prior research by
obtaining a new dataset, enriching it with additional
approximation and detail coefficients extracted using DWT,
and evaluating not only LSTM, but also FCNN and SVM
algorithms. The results highlight that predictive models can
be significantly improved, by integrating telemetry,
maintenance history, weather, terrain, and DWT-extracted
features. Pearson correlation and Random Forest helped to
identify what features should be used prediction models for
each component. This allowed to create models for
previously underexplored Electric and Hydraulic systems. It
was identified that average MAE for models across all
algorithms that use complete dataset was reduced by
29,37%, MAPE by 28,4% and RMSE 29,23%. R? was
increased by 5,92%.

Future research should focus on developing prediction
models for additional vehicle components and integrating
these models into loT frameworks for real-time monitoring.
Such systems would enable predictive maintenance alerts,
helping farmers prevent failures, optimize maintenance
schedules, and reduce operational costs.
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