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Abstract: This study extends previous research on 

Remaining Useful Life (RUL) prediction for agricultural 

vehicles by utilizing an enriched dataset to overcome earlier 

limitations in forecasting RUL for electric and hydraulic 

system components. Influential features have been identified 

through Pearson correlation and Random Forest feature 

importance analysis. Discrete Wavelet Transform (DWT) 

has been applied to extract additional approximation and 

detail coefficients, enhancing the feature set. Prediction 

algorithms—LSTM, FCNN, and SVM—have been evaluated 

using Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Root Mean Squared Error 

(RMSE), and Coefficient of Determination (R²) metrics. 

Results indicate that LSTM models demonstrate superior 

performance, particularly those incorporating DWT-

extracted features and geospatial factors such as weather and 

terrain conditions. The findings suggest that the developed 

RUL prediction models can be integrated into future 

Internet of Things (IoT) systems for remote monitoring and 

predictive maintenance of agricultural machinery. 

Index Terms: Agriculture vehicles, GIS, RNN. LSTM, 

FCNN, SVM, Predictive Maintenance, RUL, DWT 

I. INTRODUCTION 

To enhance efficiency and meet the demands of a 

growing population, modern agriculture increasingly 

depends on various machinery, including tractors, 

harvesters, and other vehicles [1,2]. These machines play 

a vital role during seasonal operations such as planting 

and harvesting, where any malfunction can disrupt 

workflows and cause significant economic losses [3]. To 

help farmers proactively address issues, optimize 

maintenance schedules, and extend machinery lifespan, 

predictive maintenance with Remaining Useful Life 

(RUL) estimation is employed. 

In our previous study [4], we introduced an approach 

for RUL prediction by integrating telemetry data from 

agricultural vehicles, maintenance records, and 

Geographic Information System (GIS) data—such as 

weather and terrain conditions—to train a Long Short-

Term Memory (LSTM) model. Our results demonstrated 

that models incorporating GIS data achieved higher 

accuracy compared to those without it. However, RUL 

prediction performance for electrical and hydraulic 

components did not meet expectations due to insufficient 

data. Additionally, that study focused solely on evaluating 

the LSTM algorithm for RUL prediction. 

This study extends our earlier work [4] with three 
main objectives. First, we examine the influence of GIS 
data on other machine learning algorithms, including 
Fully Connected Neural Networks (FCNN) and Support 
Vector Machines (SVM). By comparing each model’s 
performance with and without GIS data, we aim to assess 
how these variables affect RUL prediction accuracy across 
different computational approaches. Second, we seek to 
enhance RUL prediction for electrical and hydraulic 
systems by addressing the data limitations identified 
previously. To achieve this, the LSTM model will be 
reconstructed and re-evaluated using an expanded dataset. 
Third, we apply Discrete Wavelet Transform (DWT) to 
telemetry features to extract temporal and frequency-
domain characteristics, investigating whether these 
wavelet-based features further improve prediction 
accuracy. 

This research offers practical insights for agricultural 
operations adopting predictive maintenance systems 
tailored to their equipment’s unique characteristics. Our 
findings on the comparative performance of different 
algorithms across machinery components contribute to 
more resilient, efficient, and cost-effective farming 
practices. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

RUL prediction is not a new challenge, and several 
established methods have been developed to address it. 
A review of the literature shows that Recurrent Neural 
Networks (RNNs) are highly suitable for analyzing time-
series telemetry data to predict potential equipment 
failures, as they perform well with sequential data [5]. 
Temporal dependencies are crucial for accurate RUL 
estimation, and RNNs capture these dependencies by 
feeding the output of one step into the next. This is 
achieved through hidden layers that retain information 
about previous inputs. Long Short-Term Memory (LSTM) 
networks are an advanced form of RNNs that overcome 
the limitations of traditional RNNs, particularly in 
handling long-term dependencies. LSTM networks use 
three gates, nput, output, and forget, which act like 
switches that can be turned on (1) or off (0) [6]. This 
mechanism enables LSTMs to retain only relevant 
information over extended periods while discarding 
unnecessary details. Consequently, LSTMs are well-suited 
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for predicting the RUL of agricultural machinery, as they 
can process large datasets combining telemetry data, 
maintenance records, and GIS information. 

FCNN presents another approach used in predictive 
maintenance. These networks process input data 
sequentially through an input layer, hidden layers, and an 
output layer, without feedback loops. Unlike RNNs, 
FCNNs do not retain memory of past data, and their 
connections have distinct weights that are not shared 
across layers [7]. Despite this limitation, FCNNs can still 
effectively analyze sensor data, maintenance histories, and 
geographic context information. 

Both neural network types discussed above are 
forms of deep learning models that can automatically 
detect patterns without explicit supervision. However, 
traditional supervised learning algorithms are also applied 
to RUL prediction, with SVMs being a notable example. 
As noted in [8], SVMs perform well for RUL estimation 
due to their ability to handle high-dimensional data 
efficiently. Their capacity to determine optimal separating 
boundaries, known as hyperplanes, makes them 
particularly effective for binary classification tasks—such 
as distinguishing between machinery operating normally 
and machinery nearing failure. 

The prediction of agricultural vehicle RUL remains 
an underexplored research area, with relatively few studies 
dedicated to it. Recent works [9-11] indicate a growing 
interest in applying advanced machine learning techniques 
to predict equipment lifespan. However, most of these 
studies rely solely on onboard sensor data, overlooking 
environmental and operational conditions that 
significantly affect machinery longevity. Moreover, there 
is a lack of research evaluating RUL prediction algorithms 
using consistent datasets and standardized performance 
metrics. The integration of geospatial data into RUL 
prediction for agricultural machinery also remains largely 
unexplored. As highlighted in our previous work [3], 
accurately predicting RUL for electrical and hydraulic 
systems in agricultural vehicles is still a challenging 
problem that demands further investigation. 

The study in [12] proposes an enhanced prediction 
approach utilizing the Discrete Wavelet Transform 
(DWT) and demonstrates that LSTM, RNN, and Back 
Propagation (BP) models achieve higher accuracy when 
DWT-extracted features are applied to wind power 
prediction. Similar improvements were observed in RUL 
prediction for lithium batteries, as shown in [13]. 
However, it remains uncertain whether these algorithms 
will exhibit comparable performance in agricultural 
machinery RUL prediction, particularly when telemetry 
data is combined with GIS information. 

III. SCOPE OF WORK AND OBJECTIVES 

In this study, we aim to assess the performance of 
LSTM, FCNN, and SVM algorithms for predicting the 
RUL of agricultural vehicles. Our objective is to 
determine how GIS data and DWT-extracted features 
influence prediction accuracy. To achieve this, four 
groups of models will be implemented, and their 
performance metrics are compared: a dataset without GIS 

and DWT-extracted features, a dataset with GIS but 
without DWT-extracted features, a dataset without GIS 
but with DWT-extracted features, and a dataset including 
both GIS and DWT-extracted features. These comparisons 
will help identify the most suitable algorithm for 
agricultural vehicle RUL prediction. 

Furthermore, this research emphasizes the 
integration of telemetry, maintenance, and geospatial data 
to create a comprehensive dataset, addressing the specific 
challenge of predicting failures in electrical and hydraulic 
systems of agricultural machinery. The results are 
expected to support the development of more robust 
predictive maintenance models, improving remote health 
monitoring of agricultural vehicles and enabling 
optimized operations while reducing maintenance costs. 

IV. MATERIALS AND METHODS 

The proposed RUL prediction workflow follows the 
same procedure as in our previous study [3]. It starts with 
data collection, including telemetry, maintenance records, 
weather conditions, and terrain information, followed by 
dataset integration and preprocessing. Subsequently, 
predictive models are developed for each vehicle 
component using machine learning techniques such as 
LSTM, FCNN, or SVM. The final step involves applying 
these models to generate RUL predictions. In our prior 
research [3], the dataset was insufficient for accurately 
predicting the RUL of electric and hydraulic components. 
To address this limitation, a new dataset was obtained 
from a US-based cereal farming operation, comprising 
telemetry and maintenance records. The dataset includes 
records collected in 2023 from 50 tractors across 5 
different tractor models, operating on 2 farms located in 
distinct regions. Relevant features, that were extracted 
from maintenance records, are presented in Table 1. 

The telemetry dataset includes several features. 
Timestamp represents the exact date and time when the 
telemetry data was recorded. Tractor ID is a unique 
identifier for each tractor in the fleet. Mileage indicates 
the total distance traveled by the tractor from the 
beginning of its operational life in kilometers. Engine 
RPM shows how fast the engine is spinning. Fuel 
Productivity refers to the rate of fuel consumption in liters 
per hour. Engine Load represents the current engine load 
as a percentage of maximum capacity. Current Speed 
indicates the current speed of the tractor in kilometers per 
hour. Power Take Off Load refers to the amount of power 
being transferred through the Power Take Off (PTO) 
system to operate attached implements, measured in 
kilowatts. Transmission Load shows the current stress on 
the transmission system as a percentage. Lub Oil 
Temperature is the temperature of the engine’s lubricating 
oil in degrees Celsius. Coolant Temperature represents the 
temperature of the engine cooling system in degrees 
Celsius. Battery Voltage indicates the main battery voltage 
level in volts. Alternator Output Voltage is the voltage 
output from the alternator in volts. Alternator Current 
represents the current output from the alternator in 
amperes. Battery Current shows the battery charge or 
discharge current in amperes. Starter Motor Current 
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indicates the current draw during engine start in amperes. 
ECU Voltage represents the voltage at the Electronic 
Control Unit in volts. Power Consumption Total refers to 
the total electrical load on the system in watts. Battery 
Temperature is the temperature of the main battery in 
degrees Celsius. Alternator Temperature represents the 
operating temperature of the alternator in degrees Celsius. 
Battery State of Charge indicates the estimated battery 
charge level as a percentage. Battery State of Health 
represents the estimated battery condition as a percentage. 
Generator RPM shows the rotational speed of the 
generator or alternator. Circuit Load Distribution 
represents the load distribution across electrical circuits as 
a percentage. Charging System Status refers to the status 
codes for the charging system. Electrical Fault Codes are 
the diagnostic trouble codes for electrical systems. 
Hydraulic Oil Pressure indicates the main system pressure 
in bar or PSI. Hydraulic Oil Temperature shows the oil 
temperature in degrees Celsius. Hydraulic Oil Level 
represents the fluid level in the reservoir as a percentage. 
Hydraulic Pump Speed indicates the rotational speed of 
the main pump in revolutions per minute. Hydraulic Flow 
Rate refers to the system flow rate in liters per minute. 
Hydraulic Filter Differential Pressure represents the 
pressure difference across the hydraulic filter in bar. 
Hydraulic Actuator Position indicates the position of 
hydraulic cylinders as a percentage. Hydraulic Valve 
Position represents the position of control valves as a 
percentage. Hydraulic System Leakage refers to the 
calculated leak rate in liters per minute. PTO Hydraulic 
Pressure indicates the Power Take-Off hydraulic pressure 
in bar. Steering Hydraulic Pressure shows the steering 
system pressure in bar. Implement Hydraulic Pressure 
represents the implement circuit pressure in bar. Hydraulic 
Pump Efficiency indicates the calculated pump efficiency 
as a percentage. Hydraulic Cooler Efficiency represents 
the heat exchanger effectiveness as a percentage. 
Hydraulic System Load refers to the load on the hydraulic 
system as a percentage. Hydraulic Fault Codes are the 
diagnostic trouble codes for hydraulic systems. 

Geospatial information including weather and terrain 
data for regions in provided datasets was manually 
collected. For this purpose, VisualCrossing  (https://www. 
visualcrossing.com)  solution was used to obtain weather 
records, and ArcGIS (https://www.arcgis.com/) solution 
was used to identify terrain characteristics. This process 
was done for each field's geographical boundaries in 
obtained dataset.  Table 2 represents extracted weather 
data features, and Table 3 – extracted terrain data features. 

The dataset preparation workflow began with 
preprocessing and integrating the collected data to support 
predictive maintenance analysis. Integration started by 
joining telemetry and maintenance records using the 
TractorID field. This combined dataset was then enriched 
with corresponding weather and terrain records using the 
Region and Timestamp fieldsю telemetry data were 
recorded every minute, while weather information was 
collected daily, resulting in uniform weather parameters 
across all same-day telemetry records within each region.  

 

Table 1 

Maintenance Data Features 

Name Description 
Timestamp The exact date and time when the 

maintenance entry was recorded 

TractorID A unique identifier for each tractor in 

the fleet 

Model The specific make and model of the 

tractor. 

Region The geographical area where the 

tractor is operating 

Age The number of years since the tractor 

was manufactured or put into service 

Mileage The total distance traveled by the 

tractor from the beginning of its 

operational life till the maintenance 

date (km) 

ComponentFailure Indicates which specific part or 

system of the tractor failed 

Table 2 

Weather Data Features 

Name Description 
Year The calendar year during which the 

weather data was recorded 

Month The calendar month during which the 

weather data was recorded 

Day The calendar day during which the 

weather data was recorded 

AvgTemperature The average temperature that day (C) 

MinTemperature The minimum temperature that day (C) 

MaxTemperature The maximum temperature that day (C) 

Precipitation The total amount of precipitation that 

day (mm) 

Wind The average wind speed (Km/h) 

Region The geographical area for which data is 

collected 

Table 3 

Terrain Data Features 

Name Description 

MeanElevation The average elevation of the terrain (m) 

MinElevation The minimum elevation of the terrain 

(m) 

MaxElevation The maximum elevation of the terrain 

(m) 

StdElevation The standard deviation of elevation of 

the terrain (m) 

MeanSlope The average slope within the region 

(degrees) 

MinSlope The minimum slope within the region 

(degrees) 

MaxSlope The maximum slope within the region 

(degrees) 

StdSlope The standard deviation of slope within 

the terrain (degrees) 

Region The geographical area for which data is 

collected 

https://www.arcgis.com/
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Next, highly correlated features were identified, as 
they could negatively impact model performance. Pearson 
correlation analysis was applied to the integrated 54-feature 
dataset to detect potential feature redundancies. The 
following features, with correlation coefficients near -1 or 1, 
were considered highly correlated and removed: ECU 
Voltage, Circuit Load Distribution, Charging System 
Status, Electrical Fault Codes, Hydraulic Actuator Position, 
Hydraulic Valve Position, Hydraulic System Leakage, PTO 
Hydraulic Pressure, Steering Hydraulic Pressure, 
Implement Hydraulic Pressure, Hydraulic Pump Efficiency, 
Hydraulic Cooler Efficiency, Hydraulic Fault Codes, 
MinTemperature, MaxTemperature, MinElevation, 
MaxElevation, StdElevation, MinSlope, MaxSlope, 
StdSlope. A total of 21 features were removed, leaving 33 
features for further modeling. 

The combined dataset was further enhanced by 

calculating RUL values for each component based on 

maintenance history analysis. These values represented the 

intervals between consecutive failures in the maintenance 

records. Consequently, four new fields were added: 

EngineRUL, ElectricSystemRUL, HydraulicSystemRUL, 

and TransmissionRUL. With five tractor models and four 

components under study, the main dataset was partitioned 

into 20 distinct subsets, each focusing on a specific 

component-tractor model combination while excluding 

irrelevant features associated with other components or 

models. Random Forest was then employed to identify the 

most influential features for predicting each specific 

component’s RUL.  

After that, for each subset of the dataset, DWT was 

applied specifically to the telemetry features within that 

subset to extract additional features, namely the 

approximation and detail coefficients. The transformation 

was implemented using the Daubechies wavelet of order 2 

(db2). Compared to higher-order Daubechies wavelets 

(db4, db6, etc.), db2 is less sensitive to noise and less prone 

to excessive approximation, making it more stable for 

practical telemetry data processing tasks where signals may 

contain a significant level of noise. In addition, db2 

provides a better trade-off between signal reconstruction 

accuracy and computational complexity, which is important 

when working with large datasets. Daubechies wavelet 

shows higher classification accuracy, comparing to Haar 

wavelet [14]. The approximation coefficients  and 

detail coefficients  are calculated using formulas:  

 .                (1) 

 .                (2) 

Here,  and represent the low-pass and high-
pass filter coefficients of the db2 wavelet and defined as 

(3)  

        (4) 

                                        (5) 

Using these coefficients, several additional features 
were calculated – energy of the detail coefficients , mean 

of the approximation coefficients at the final level , and 

variance of the approximation coefficients . The 
calculation formulas related to these additional features are: 

 ,                               (6) 

 ,                               (7) 

  ,                   (8) 

The final enriched component-tractor model specific 

subsets were formed by combining these DWT-derived 

features stated in formulas (4)-(8) with the original 

telemetry, maintenance history and GIS records. 

After dataset integration and preprocessing, prediction 

models using LSTM, FCNN and SVM were implemented. 

To evaluate the model’s accuracy, Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), 

Root Mean Squared Error (RMSE) and Coefficient of 

Determination (R-squared) metrics were used. These 

metrics were calculated using the following input values:  

– actual RUL values,  – predicted RUL values, and  
 – total number of samples.  

MAE is a metric that measures the average magnitude 

of errors in prediction, as an absolute difference between 

predicted and actual values: 

 .                      (9) 

MAPE expresses the forecast error as a percentage of 

the actual values, and is calculated using the formula: 

.   (10) 

RMSE measures the square root of the average 

squared differences between actual and predicted values: 

 .                (11) 

R-squared gives a measure that represents how close 

the data is to the fitted regression line, and is calculated 

using the formula: 

.         (12) 

where  is the mean of the actual RUL values that is 

calculated using the formula: 

.        (13) 

For MAE, MAPE and RMSE lower values indicate 

better model performance.  values range from 0 to 1, 

where 1 means perfect prediction, and 0 means the model 

explains no variance in the data. 

V. RESULTS 

A total of eighty models were developed for each 

RUL prediction algorithm and used for training and testing. 

Each model corresponded to a specific combination of 

component and tractor model. The first 20 models included 

only telemetry and maintenance history records, without 

applying DWT. The next 20 models also used only 

telemetry and maintenance history records, but with DWT 

applied. The following 20 models incorporated telemetry, 
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maintenance history, and GIS data, without applying DWT. 

The final 20 models used the complete dataset, including 

GIS data, with DWT applied. This setup allowed for a 

thorough analysis of the effects of geospatial data and 

DWT-derived features on the predictive accuracy of the 

models.  

Tables 4–7 present the performance results of each 

prediction algorithm across the four components: Table 4 

for Engine, Table 5 for Electric System, Table 6 for 

Hydraulic System, and Table 7 for Transmission. The 

reported values—MAE, MAPE, RMSE, and R²—represent 

the averages observed across all tractor models. 

All algorithms show lower MAE, MAPE and RMSE 

and higher  for RUL prediction with the help of GIS data 

and DWT extracted features. Average MAE for models 

across all algorithms that use complete dataset was reduced 

by 29,37%, MAPE by 28,4% and RMSE 29,23%.  was 

increased by 5,92%. Models that are enriched with only one 

additional type of data – GIS or DWT derived features, also 

overperform models that leverage only telemetry and 

maintenance history data. This supports the hypothesis that 

integrating GIS factors, such as weather and terrain 

characteristics, and applying DWT to extract additional 

approximation and detail coefficients enhances the accuracy 

of predictive maintenance models.  

The LSTM network demonstrated the best overall 

performance among the RUL prediction algorithms. FCNN 

performed slightly worse than LSTM, although for the 

Transmission component, FCNN achieved the highest 

accuracy. SVM consistently showed the lowest 

performance. 

Table 4 

Algorithms Performance Comparison for Engine 

RUL prediction 

Metric LSTM FCNN SVM 

MAE GIS NO DWT 8,25 8,84 9,58 

MAE NO GIS NO DWT 10,76 11,31 12,48 

MAE GIS DWT 7,52 8,03 8,71 

MAE NO GIS DWT 9,60 10,09 11,21 

MAPE GIS NO DWT 2,54 2,72 2,95 

MAPE NO GIS NO DWT 3,12 3,28 3,62 

MAPE GIS DWT 2,21 2,36 2,56 

MAPE NO GIS DWT 2,76 2,91 3,23 

RMSE GIS NO DWT 11,47 12,39 13,42 

RMSE NO GIS NO DWT 15,18 15,91 17,53 

RMSE GIS DWT 10,47 11,29 12,20 

RMSE NO GIS DWT 13,62 14,11 15,91 

R² GIS NO DWT 0,9253 0,9109 0,8757 

R² NO GIS NO DWT 0,8857 0,8704 0,8452 

R² GIS DWT 0,9357 0,9207 0,8883 

R² NO GIS DWT 0,9029 0,8876 0,8627 

Table 5 

Algorithms Performance Comparison for Electric 

System RUL prediction 

Metric LSTM FCNN SVM 

MAE GIS NO DWT 8,45 8,71 9,68 

MAE NO GIS NO DWT 10,96 11,55 12,34 

MAE GIS DWT 7,82 8,03 8,84 

MAE NO GIS DWT 9,80 10,62 11,09 

MAPE GIS NO DWT 2,6 2,68 2,98 

MAPE NO GIS NO DWT 3,18 3,35 3,58 

MAPE GIS DWT 2,30 2,36 2,60 

MAPE NO GIS DWT 2,82 3,06 3,19 

RMSE GIS NO DWT 11,71 12,24 13,42 

RMSE NO GIS NO DWT 15,57 15,99 17,16 

RMSE GIS DWT 11,08 11,14 12,37 

RMSE NO GIS DWT 13,66 14,88 15,68 

R² GIS NO DWT 0,9201 0,9155 0,8808 

R² NO GIS NO DWT 0,8807 0,8754 0,8506 

R² GIS DWT 0,9297 0,9306 0,8944 

R² NO GIS DWT 0,8940 0,8925 0,8633 

Table 6 

Algorithms Performance Comparison for Hydraulic 

System RUL prediction 

Metric LSTM FCNN SVM 

MAE GIS NO DWT 8,12 8,61 9,42 

MAE NO GIS NO DWT 10,86 11,10 12,58 

MAE GIS DWT 7,44 7,96 8,61 

MAE NO GIS DWT 9,78 9,97 11,15 

MAPE GIS NO DWT 2,5 2,65 2,9 

MAPE NO GIS NO DWT 3,15 3,22 3,65 

MAPE GIS DWT 2,19 2,34 2,53 

MAPE NO GIS DWT 2,82 2,87 3,21 

RMSE GIS NO DWT 11,28 12,15 13,02 

RMSE NO GIS NO DWT 15,39 15,33 17,81 

RMSE GIS DWT 10,52 11,30 11,93 

RMSE NO GIS DWT 13,73 13,95 15,51 

R² GIS NO DWT 0,9284 0,9153 0,868

7 

R² NO GIS NO DWT 0,8904 0,8751 0,840 

R² GIS DWT 0,9498 0,9242 0,890 

R² NO GIS DWT 0,9014 0,8856 0,852 

Additionally, the RUL prediction performance for 
Electric and Hydraulic System components was consistent 
with that observed for Engine and Transmission. This 
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indicates that the telemetry and maintenance datasets used 
in this study provide sufficient information to accurately 
predict RUL for these components, improving upon the 
limitations of the dataset in our previous research [3]. 

Table 7 

Algorithms Performance Comparison for 

Transmission RUL prediction 

Metric LSTM FCNN SVM 

MAE GIS NO DWT 9,03 8,93 9,91 

MAE NO GIS NO DWT 11,45 11,20 12,48 

MAE GIS DWT 8,19 8,05 9,00 

MAE NO GIS DWT 10,55 10,39 11,15 

MAPE GIS NO DWT 2,78 2,75 3,05 

MAPE NO GIS NO DWT 3,32 3,25 3,62 

MAPE GIS DWT 2,41 2,37 2,65 

MAPE NO GIS DWT 3,04 2,99 3,21 

RMSE GIS NO DWT 12,60 12,34 13,86 

RMSE NO GIS NO DWT 15,97 15,72 17,23 

RMSE GIS DWT 11,48 11,28 12,78 

RMSE NO GIS DWT 14,88 14,61 15,52 

R² GIS NO DWT 0,9259 0,9151 0,875 

R² NO GIS NO DWT 0,8659 0,8758 0,845 

R² GIS DWT 0,9405 0,9274 0,886 

R² NO GIS DWT 0,8774 0,8857 0,864 

 
These results offer valuable insights for future 

predictive maintenance applications, particularly regarding 
the integration of RUL prediction models with Internet of 
Things (IoT) platforms for remote monitoring of 
agricultural machinery. 

VI. CONCLUSION 

Our previous study highlighted the importance of 
incorporating GIS data into agricultural vehicle RUL 
prediction models using the LSTM algorithm. However, 
high prediction accuracy was not achieved for the Electric 
and Hydraulic systems [3].  

In this study we advanced our prior research by 
obtaining a new dataset, enriching it with additional 
approximation and detail coefficients extracted using DWT, 
and evaluating not only LSTM, but also FCNN and SVM 
algorithms. The results highlight that predictive models can 
be significantly improved, by integrating telemetry, 
maintenance history, weather, terrain, and DWT-extracted 
features. Pearson correlation and Random Forest helped to 
identify what features should be used prediction models for 
each component. This allowed to create models for 
previously underexplored Electric and Hydraulic systems. It 
was identified that average MAE for models across all 
algorithms that use complete dataset was reduced by 

29,37%, MAPE by 28,4% and RMSE 29,23%.  was 
increased by 5,92%. 

Future research should focus on developing prediction 
models for additional vehicle components and integrating 
these models into IoT frameworks for real-time monitoring. 
Such systems would enable predictive maintenance alerts, 
helping farmers prevent failures, optimize maintenance 
schedules, and reduce operational costs. 
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