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Abstract: This paper presents an approach to modeling the 
movement of a multi-agent system in a two-dimensional 
space using a modified Particle Swarm Optimization (PSO) 
algorithm, adapted to account for the physical properties of 
the agents. The standard PSO, originally designed for solving 
optimization problems through swarm behavior, has been 
extended to simulate the motion of physical objects with 
defined mass, velocity, and inter-agent interactions. To 
ensure physically plausible motion and prevent collisions 
between agents, hybrid methods have been proposed that 
combine classical PSO with inter-particle potential functions. 
Trajectory planning and control over the direction and speed 
of agent movement have been governed by the modified 
PSOs, while collision avoidance is achieved through the 
influence of repulsive potential fields. Numerical simulations 
have been conducted to analyze the collective behavior of the 
swarm.  

Index terms: particle swarm optimization, collision-aware 
motion, swarm intelligence, robotics. 

I. INTRODUCTION 
A collision-aware motion of swarm objects is among 

important research directions in fields like safe 
pathfinding, navigation, and robotics. While the individual 
motion of physical objects has been widely studied, safe 
and collision-free multi-agent movement is still active in 
engineering design. The integration of nature-inspired 
ideas with the stochastic elements into a robotic 
coordination effectively complements deterministic 
decisions, offering a perspective on the problem through 
the lens of coordination mechanics among collective 
living beings. The particle swarm optimization, first 
introduced in 1991 and overviewed in [1], is among 
nature-inspired metaphors applied to the variety of 
optimization [2], pathfinding [3] and robots pathplanning 
[4] problems. As it primarily serves as the basis for 
abstract formulations, it has rarely been extended into 
terms grounded in the physical world. To address this gap 
and explore the potential of transforming the PSO concept 
into a physically accurate motion engine for real-world 
objects, we propose a modified version. This modification 
serves as the foundation for a collision-aware swarm 
navigation algorithm. The most significant. changes to the 
standard PSO in our approach include the changes to the 

standard PSO in our approach include the incorporation of 
particle masses, and repulsive forces. These are modeled 
using a power-law potential function with varying 
exponent parameters; these functions define the repulsive 
force between particles, which is proportional to the 
distance between them and accounted for the physical size 
of the particles.  

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

The integration of physical-based concepts with 
standard PSO is not new. For example, in [5] the authors 
incorporated a bi-matrix game theory model and a novel 
RPQPSO algorithm to optimize multi-AUV target 
allocation in non-cooperative environments by computing 
Nash equilibria based on situational factors. In [6] the 
improved version of repulsive PSO algorithm to solve 

this inverse scattering problem was developed; in [7] the new 
PSO modification with repellent and attraction forces for 
the numerical optimization was proposed; the additional 
research in this area is outlined in [8]. Unfortunately, the 
main limitation of these concepts lies in their lack of 
swarm robotics applicability. The research in these papers 
is primarily focused on numerical optimization problems, 
where particle collisions are irrelevant to the outcome. 
Incorporating PSO for robotic path planning is shown in 
[9], where PSO is used as a navigator for one agent. The 
authors of [10] introduced a PSO algorithm that 
incorporates a Gaussian repulsion force, enabling its 
application to multiple interacting swarms. Although [11] 
introduced a repulsion-based modification to PSO for 
drones in 3D space, the work was limited by an 
insufficient study of the algorithm's parameters and the 
physics behind the proposed model. In [12] and [13] PSO 
is mostly used as optimizational routine mixed with the 
RRT* algorithm for multi-UAV path planning [12] and 
game-based model [13]. 

An analysis of the existing literature reveals that 
while PSO is predominantly employed as an advanced 
numerical optimization algorithm, there is a notable 
scarcity of results concerning its direct application as a 
motion model for multi-agent systems. 
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The problem statement for this research is defined as 
follows: to design and formalize a multi-agent motion 
model based on PSO mechanics that satisfies the two 
primary constraints: 

a) it must ensure collision-free navigation among 
all agents; 

b) it must successfully guide the swarm to a 
predefined target. 

The central challenge lies in effectively balancing 
the behavioral parameters to meet both constraints 
simultaneously. 

III. SCOPE OF WORK AND OBJECTIVES 
We consider a motion model of a multi-agent system 

consisting of particles  with a certain radius r in a two-
dimensional space. To ensure safe navigation within a 
bounded map of size H x W free of obstacles, the 
following are necessary: a) an objective function that 
‘attracts’ agents toward the target, simulating their goal-
directed movement; b) a collision avoidance mechanism 
between agents. To realize the first point and coordinate 
agent’s movement a modified PSO algorithm is employed, 
providing simple and efficient navigation by minimizing 
Euclidean distance functions ( ) 2, || ||i j i jF x x x x= − . For 
collision avoidance, an extension to the PSO algorithm 
based on a power potential function is proposed, 
effectively modeling repulsive interactions among agents.  

Thus, the scope of this work is to develop an 
efficient control method for multi-agent system movement 
that simultaneously achieves target convergence and 
collision avoidance within a constrained environment. The 
main objectives of the. study include formulating a 
mathematical motion model for agents, developing the 
modified PSO algorithm to incorporate repulsive forces, 
and conducting numerical experiments to evaluate the 
effectiveness of the proposed approach. 

A. SWARM MOVEMENT 
Given a two-dimensional map of pre-defined size H 

x W, a swarm of agents is initially distributed at random 
within a radius ri around an initial position Ip. The 
collective goal of the swarm is to reach a target located at 
position Tp = (xt, yt) through coordinated, collision-free 
motion while maintaining swarm cohesion. Agents are 
capable of communicating either within a local 
neighborhood or across the entire swarm to obtain the 
positions of neighboring agents.     

Following the PSO paradigm, the motion of each 
agent is governed by the components of its velocity 
vector: 

         ( )1 1 best
i ic c r p p= − ,                       (1) 

       ( )2 2  best
is c r l p= − ,                        (2) 

        d iv wv c s= + + ,                         (3) 

            n d iv v v= −  ,                            (4) 
where c is the cognitive component, representing the 
influence of the agent's own best-known position, s is the 

social component, representing the influence of the best-
known position among neighboring agents (or the entire 
swarm), w is the inertia coefficient, controlling the 
influence of the previous velocity, vi is the agent’s current 
velocity, vd is the desired velocity and vn is the velocity 
adjustment needed to achieve the desired state, c1 is the 
cognitive weight, c2 is the social weight, r1 and r2 are 
random values from range (0, 1]. The incorporation of 
random values serves to inject stochasticity into the 
algorithm, thereby facilitating escape from local minima. 
In the context of this paper, where obstacles are not 
considered, these stochastic elements can be 
conceptualized as inherent noise in the agents' motion. 
Agent position is defined as pi personal best position by 
far is best

ip , swarm best position is bestl  
To ensure physically plausible motion based on the 

agent's mass, the velocity change is constrained by a 
maximum allowable acceleration: 

  * /max max pv t a m=V ,                                 (5) 
where t∆ → ∞  is the time difference, amax is the 
maximum acceleration, mp is the mass of the agent.  

If || ||n maxv v> the velocity change is scaled down to 
respect the acceleration limit. The agent's updated velocity 
is then given by. PSO i nv v v= + . 

B. REPULSIVE FORCES 
To prevent collisions between agents, we propose 

the incorporation of repulsive potential forces, which 
influence agent behavior based on their relative proximity 
and direction of approach.  

Let’s define the potential function 
( ), (| | 2 )n n

i j i jU r r p p R− −= = − − .          (6) 

Here  is the surface-to-surface distance between 
agents, n ≥ 1 is the positive exponent controlling the 
strength of the repulsion, ||pi-pj|| is the distance between 
the centers of the agents, 2R accounts for the radius of 
both agents (assuming equal radii). The repulsive force 
between these two agents is given as 

( ) ( ), ,i

n
i j p i j

dF U r r
dr

−= −∇ = −  which turns into: 

( ) ( )1/ n
i i j i j

j i

F n p p r p p+

≠

= − −∑ .          (7) 

For computational efficiency and numerical stability, 
we approximate the analytical repulsive force expression 
(7) with a numerically stable formulation: 

1 ,
|| ||

i closest
doundary n

i closest

p pnF
p pgap ε+

−
=

− +
              (8)  

where ε is a small positive constant added to avoid 
division by zero. This approximation avoids explicit 
normalization of the direction vector and merges its into 
the scalar coefficient, while preserving the qualitative 
behavior of the original force function. 

C. COLLISION-FREE PSO ALGORITHM 
The combination of the swarm motion concept and 

the repulsive forces results in the following framework: 
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1. Swarm initialization: n agents of radii R are 
generated within a radius ri around an initial position Ip 
given the target Tp = (xt, yt); maximum velocity (the upper 
bound on how fast the agent is allowed to move), 
communication distance, mass, maximum acceleration 
and ∆t for the simulation are initialized. 

2. If two or more particles collide or tunnel through 
each other, they are discarded from the simulation by 
being removed as broken physical agents. The rest of the 
particles are tagged as ‘survived’. 

3. Stopping criteria: simulation is considered 
complete when the all ‘survived’ agents have arrived 
within a predefined tolerance distance (goal radius) RG 
from the target position. 

4. Swarm movement calculation: during each 
iteration, agent’s velocity is calculated via (1)-(5) 
formulas. For each agent the repulsion acceleration is 
calculated as (8) multiplied by wr*Fi/mp, where wr is the 
repulsion weight. Here, Fi consists of repulsion from the 
boundaries   Fi = Fi + Fboundary, where  

  
1 i closest

boundary n
i closest

p pnF
gap p p ε+

−
=

− +
,        (9)           

gap=||pi-pclosest|| – R is the surface-to-wall distance and 
pclosest is the nearest point on the boundary. The power-law 
formulation provides tunable repulsion characteristics: 
higher values create more localized, stronger repulsion 
near contact, while lower values produce gentler, longer-
range repulsion fields.  

5. .Hence repulsion velocity change via 
acceleration  ar = (wr*Fi*∆t)/mp, then we need to convert 
PSO velocity into acceleration as 

( ) /pso pso ia v v t= − ∆ ,                        (10) 

total pso ra a a= + ,                         (11) 

i i totalv v a t= + ∆ .                        (12) 

6. If the computed velocity exceeds the maximum 
allowed speed, the velocity vector should be rescaled to 
the maximum magnitude while preserving its direction.  

7. Based on these formulas, position update is given 
as 

*i i ip p v t= + ∆ .                        (13) 

8. In the simulation framework, agents are designed 
to move sequentially in discrete time steps. Nevertheless, 
as the time increments ∆t → 0, the updates of all agents’ 
positions occur nearly simultaneously, thereby 
approximating parallel motion dynamics 

To study algorithm performance we propose the 
following metrics: number of broken and survived agents, 
total overlap time, convergence time, success flag, total 
energy used as 20.5* c

steps
pm v∑ , where prev

c i iv v v= − , 

swarm cohesion as the mean distance to the center of the 
swarm, path efficiency which is calculated as the average 
ratio of straight-line distance from initial to target position 
over total path length traveled by each agent, capped at 

1.0, average speed, and energy efficiency as the ratio of 
total energy used and number of active agents.   

IV. NUMERIC SIMULATION 
For the numeric experiments, we generated a 2D 

map with dimensions of 300×300 units. All agents had 
identical properties, with a radius R=1 and mass parameter 
mp=1, and were capable of global communication across 
the entire swarm. This global communication was 
required for two purposes: (a) determining the global best 
position, and (b) calculating the repulsive influence of 
other agents on a given iii-th agent. During initialization, 
the agents were randomly distributed around the point 
Ip =(10, 10) within a radius of 30 units. The target was at 
Tp = (290, 296) and the tolerance distance around the 
target is RG = 15.     

For all the experiments maximum acceleration has 
been set to 3 units /s2, maximum allowed velocity is set 
vmax = 5 units /s and ∆t ∈ {0.1s, 0.05s}.  

An example of agent movement visualization on the 
map is shown in Fig. 1. For this simulation ∆t = 0.05, 
number of agents equals 10, w=1, c1 = c2 =2, wr =3, n = 6. 
The result of this simulation is as follows: all ten survived 
particles reached target at time 89.8s, total steps are 1797, 
path efficiency equals 0.87, average agents’ speed is 4.94 
and swarm cohesion is 3.79. 

The obtained results demonstrate that, under the 
selected swarm and algorithmic parameters, all agents 
successfully reached the designated target without 
collisions or mutual tunneling. However, it should be 
noted that this represents a single simulation run; due to 
the stochastic nature of the algorithm, variations in 
outcomes are expected across multiple trials. A more 
comprehensive statistical analysis of these variations will 
be presented in the following section.  

Conversely, in the absence of the proposed repulsion 
method, the agent movement simulation terminates after 
an average of 5.1 seconds due to complete inter-agent 
collision occurring within a few iterations. 

To analyze the influence of combining PSO and 
potential-based repulsion parameters, namely the inertia 
coefficient: inertia w, cognitive c1 and social  c2 
coefficients, repulsion weight wr and power n on the 
swarm’s ability to successfully reach the target and 
maintain agent survival, we conducted 300 numerical 
experiments and collected metrics describing the swarm 
dynamics. 

The first experiment was conducted with a time step 
of ∆t = 0.05. For the remaining parameters, we defined the 
following ranges we chose the range of their change as: w: 
(0.3, 0.9),  c1: (1, 2.5), c2: (1.5, 3), wr: (0.5, 3), n: (1, 6). A 
Latin hypercube sampling method was then used to ensure 
an even coverage of the parameter space. Based on these 
parameter combinations, 299 out of 300 simulations 
(99%) were successful, with only one unsuccessful run. In 
283 of the experiments, all 10 agents reached the target 
area; in 9 cases, 8 agents reached it; in 6 cases, 6 agents 
reached it; in 1 case, 4 agents reached it; and in 1 case, no 
agents reached the target. 
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Fig. 1. Visualization of agents’ movement, ∆t = 0.05 

The experimental evaluation yielded the following 
performance characteristics: mean total energy 
consumption was 240.1 (range: 47.1–1647.1), with an 
average agent speed of 4.6, mean swarm cohesion of 3.75, 
mean path efficiency The second experiment, where 
∆t = 0.1 showed slightly worse results. Out of 300 
simulation runs, 295 were successful, with an average of 
eight surviving agents. The mean total energy 
consumption was 509.8 (range: 68.7–2531), while the 
average agent speed was 4.45, consistent with the results 
of the first experiment. The mean swarm cohesion was 
3.75, the mean path efficiency was 0.90, and the mean 
energy efficiency was 72.05. The average convergence 
time across all simulations was 172.2 seconds. The 
parameter–metric correlation analysis revealed moderate 
associations only between the repulsive power n and total 
energy consumption (0.44), as well as between n and 
swarm cohesion (0.46). 

The example of agents’ movement for ∆t = 0.1 is 
provided in fig. 2. Here one can see that all the agents 
survived as well as all of them reached the target area. 
Here, the convergence time is 89.8s, swarm cohesion is 
3.2, total steps are 862, and path efficiency equals 0.95. 

Based on the obtained results, we can draw three 
important conclusions: 

a) ∆t is the crucial parameter for preventing 
collisions/tunneling in a multi-agent simulation. Smaller 
∆t reduces overlap and tunneling because agents move 
smaller distances per step, making discrete updates a 
better approximation of continuous motion; 

b) repulsive power n has a likely moderate, but 
tangible impact on agents’ energy consumption and 
swarm cohesion, which is important to keep the swarm 
formation solid; 

c) the proposed approach significantly reduces 
collisions and tunneling effects among particles (or 

agents) when their navigation and swarm behavior are 
driven by the PSO concept.  
 

 
Fig. 2. Visualization of agents’ movement, ∆t = 0.1 

V. CONCLUSION 
This paper presented a novel approach to collision 

avoidance in the motion of multi-agent systems. The 
proposed method was based on the Particle Swarm 
Optimization (PSO) algorithm, which ensured efficient 
swarm navigation toward a target and incorporates 
mechanisms for inter-agent interaction. Since the standard 
PSO algorithm lacked inherent collision avoidance 
capabilities, the authors proposed its modification through 
the introduction of a potential function. The 
implementation of this function enabled the modeling of 
inter-agent repulsion. The repulsive force was governed 
by two parameters: a weighting coefficient and an 
exponent in the denominator of the potential function. The 
study examined the influence of various algorithm 
configurations on the swarm’s motion toward the target 
and the number of potential collisions between agents, 
depending on the method’s parameters. The obtained 
results demonstrated the effectiveness and potential of the 
proposed approach for addressing safe motion problems in 
multi-agent systems. 
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