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Abstract: This paper presents an approach to modeling the
movement of a multi-agent system in a two-dimensional
space using a modified Particle Swarm Optimization (PSO)
algorithm, adapted to account for the physical properties of
the agents. The standard PSO, originally designed for solving
optimization problems through swarm behavior, has been
extended to simulate the motion of physical objects with
defined mass, velocity, and inter-agent interactions. To
ensure physically plausible motion and prevent collisions
between agents, hybrid methods have been proposed that
combine classical PSO with inter-particle potential functions.
Trajectory planning and control over the direction and speed
of agent movement have been governed by the modified
PSOs, while collision avoidance is achieved through the
influence of repulsive potential fields. Numerical simulations
have been conducted to analyze the collective behavior of the
swarm.

Index terms: particle swarm optimization, collision-aware
motion, swarm intelligence, robotics.

I. INTRODUCTION

A collision-aware motion of swarm objects is among
important research directions in fields like safe
pathfinding, navigation, and robotics. While the individual
motion of physical objects has been widely studied, safe
and collision-free multi-agent movement is still active in
engineering design. The integration of nature-inspired
ideas with the stochastic elements into a robotic
coordination  effectively complements deterministic
decisions, offering a perspective on the problem through
the lens of coordination mechanics among collective
living beings. The particle swarm optimization, first
introduced in 1991 and overviewed in [1], is among
nature-inspired metaphors applied to the wvariety of
optimization [2], pathfinding [3] and robots pathplanning
[4] problems. As it primarily serves as the basis for
abstract formulations, it has rarely been extended into
terms grounded in the physical world. To address this gap
and explore the potential of transforming the PSO concept
into a physically accurate motion engine for real-world
objects, we propose a modified version. This modification
serves as the foundation for a collision-aware swarm
navigation algorithm. The most significant. changes to the
standard PSO in our approach include the changes to the

standard PSO in our approach include the incorporation of
particle masses, and repulsive forces. These are modeled
using a power-law potential function with varying
exponent parameters; these functions define the repulsive
force between particles, which is proportional to the
distance between them and accounted for the physical size
of the particles.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The integration of physical-based concepts with
standard PSO is not new. For example, in [5] the authors
incorporated a bi-matrix game theory model and a novel
RPQPSO algorithm to optimize multi-AUV target
allocation in non-cooperative environments by computing
Nash equilibria based on situational factors. In [6] the
improved version of repulsive PSO algorithm to solve
this inverse scattering problem was developed; in [7] the new
PSO modification with repellent and attraction forces for
the numerical optimization was proposed; the additional
research in this area is outlined in [8]. Unfortunately, the
main limitation of these concepts lies in their lack of
swarm robotics applicability. The research in these papers
is primarily focused on numerical optimization problems,
where particle collisions are irrelevant to the outcome.
Incorporating PSO for robotic path planning is shown in
[9], where PSO is used as a navigator for one agent. The
authors of [10] introduced a PSO algorithm that
incorporates a Gaussian repulsion force, enabling its
application to multiple interacting swarms. Although [11]
introduced a repulsion-based modification to PSO for
drones in 3D space, the work was limited by an
insufficient study of the algorithm's parameters and the
physics behind the proposed model. In [12] and [13] PSO
is mostly used as optimizational routine mixed with the
RRT* algorithm for multi-UAV path planning [12] and
game-based model [13].

An analysis of the existing literature reveals that
while PSO is predominantly employed as an advanced
numerical optimization algorithm, there is a notable
scarcity of results concerning its direct application as a
motion model for multi-agent systems.
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The problem statement for this research is defined as
follows: to design and formalize a multi-agent motion
model based on PSO mechanics that satisfies the two
primary constraints:

a) it must ensure collision-free navigation among
all agents;

b) it must successfully guide the swarm to a
predefined target.

The central challenge lies in effectively balancing
the behavioral parameters to meet both constraints
simultaneously.

III. SCOPE OF WORK AND OBJECTIVES

We consider a motion model of a multi-agent system
consisting of particles p; with a certain radius 7 in a two-
dimensional space. To ensure safe navigation within a
bounded map of size H x W free of obstacles, the
following are necessary: a) an objective function that
‘attracts’ agents toward the target, simulating their goal-
directed movement; b) a collision avoidance mechanism
between agents. To realize the first point and coordinate
agent’s movement a modified PSO algorithm is employed,
providing simple and efficient navigation by minimizing
Euclidean distance functions F(x,x )=/ x —x, [P - For

collision avoidance, an extension to the PSO algorithm
based on a power potential function is proposed,
effectively modeling repulsive interactions among agents.

Thus, the scope of this work is to develop an
efficient control method for multi-agent system movement
that simultaneously achieves target convergence and
collision avoidance within a constrained environment. The
main objectives of the. study include formulating a
mathematical motion model for agents, developing the
modified PSO algorithm to incorporate repulsive forces,
and conducting numerical experiments to evaluate the
effectiveness of the proposed approach.

A. SWARM MOVEMENT

Given a two-dimensional map of pre-defined size H
x W, a swarm of agents is initially distributed at random
within a radius »; around an initial position /,. The
collective goal of the swarm is to reach a target located at
position 7, = (x, y;) through coordinated, collision-free
motion while maintaining swarm cohesion. Agents are
capable of communicating either within a local
neighborhood or across the entire swarm to obtain the
positions of neighboring agents.

Following the PSO paradigm, the motion of each
agent is governed by the components of its velocity

vector:
c=qr, (pl.be”—pl,)a (1)
s=c,r, (lbm - pl.) , 2)
v, =WV, +c+s, (3)
vn = vd _vi > (4)

where ¢ is the cognitive component, representing the
influence of the agent's own best-known position, s is the

social component, representing the influence of the best-
known position among neighboring agents (or the entire
swarm), w is the inertia coefficient, controlling the
influence of the previous velocity, v; is the agent’s current
velocity, v, is the desired velocity and v, is the velocity
adjustment needed to achieve the desired state, ¢; is the
cognitive weight, ¢, is the social weight, 7 and r, are
random values from range (0, 1]. The incorporation of
random values serves to inject stochasticity into the
algorithm, thereby facilitating escape from local minima.
In the context of this paper, where obstacles are not
considered, these stochastic elements can be
conceptualized as inherent noise in the agents' motion.
Agent position is defined as p; personal best position by

betswarm best position is /%’

faris p,
To ensure physically plausible motion based on the
agent's mass, the velocity change is constrained by a
maximum allowable acceleration:
— *

Vyar =8*a,, /m,, 5
where At - oo is the time difference, a,, 1S the
maximum acceleration, m, is the mass of the agent.

If ||v, ||>v,.. the velocity change is scaled down to

respect the acceleration limit. The agent's updated velocity
isthen given by. v,g, =v, +v,.

B. REPULSIVE FORCES

To prevent collisions between agents, we propose
the incorporation of repulsive potential forces, which
influence agent behavior based on their relative proximity
and direction of approach.

Let’s define the potential function

U, (r)=r"=p-plI20".  (©®

Here is the surface-to-surface distance between
agents, n > 1 is the positive exponent controlling the
strength of the repulsion, |jp-p/| is the distance between
the centers of the agents, 2R accounts for the radius of

both agents (assuming equal radii). The repulsive force
between  these two  agents is  given  as

F,=-V,U,, (r)= _%(f“ ) which turns into:

F = nZ(pl. —pj)/(r”+l ) (7

For computational efficiency and numerical stability,
we approximate the analytical repulsive force expression
(7) with a numerically stable formulation:

Fdowldwy _ ”Ml Pi = Peiosest , (8)
gap" " |1 i = Pugen || +€
where € is a small positive constant added to avoid
division by zero. This approximation avoids explicit
normalization of the direction vector and merges its into
the scalar coefficient, while preserving the qualitative
behavior of the original force function.

C. COLLISION-FREE PSO ALGORITHM

The combination of the swarm motion concept and
the repulsive forces results in the following framework:

b; _pj|
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1. Swarm initialization: »n agents of radii R are
generated within a radius 7; around an initial position /,
given the target 7, = (x, y,); maximum velocity (the upper
bound on how fast the agent is allowed to move),
communication distance, mass, maximum acceleration
and At for the simulation are initialized.

2. If two or more particles collide or tunnel through
each other, they are discarded from the simulation by
being removed as broken physical agents. The rest of the
particles are tagged as ‘survived’.

3. Stopping criteria: simulation is considered
complete when the all ‘survived’ agents have arrived
within a predefined tolerance distance (goal radius) Rg
from the target position.

4. Swarm movement calculation: during each
iteration, agent’s velocity is calculated via (1)-(5)
formulas. For each agent the repulsion acceleration is
calculated as (8) multiplied by w;,«Fi/m,, where w, is the
repulsion weight. Here, F; consists of repulsion from the
boundaries F; = F; + Fpoundary, Where

_ n pi B pclnsest (9)

boundary ~ n+l ’
|p i P closest

gap +&

8ap=|piPetosesd| — R 1s the surface-to-wall distance and
Peloses: 18 the nearest point on the boundary. The power-law
formulation provides tunable repulsion characteristics:
higher values create more localized, stronger repulsion
near contact, while lower values produce gentler, longer-
range repulsion fields.

5. .Hence repulsion velocity change via
acceleration a, = (w,«F;=Af)/m,, then we need to convert
PSO velocity into acceleration as

a,, =,, —v)/At, (10)
atutal = apsu + ar 4 (1 l)
v, =v,+a,, At. (12)

6. If the computed velocity exceeds the maximum
allowed speed, the velocity vector should be rescaled to
the maximum magnitude while preserving its direction.

7. Based on these formulas, position update is given
as

(13)

8. In the simulation framework, agents are designed
to move sequentially in discrete time steps. Nevertheless,
as the time increments At — 0, the updates of all agents’
positions  occur nearly  simultaneously, thereby
approximating parallel motion dynamics

To study algorithm performance we propose the
following metrics: number of broken and survived agents,
total overlap time, convergence time, success flag, total

D, =p,+v, *AL.

energy used as)’ 0.5*m,v’ , where v, = ||vl. v,
steps

swarm cohesion as the mean distance to the center of the

swarm, path efficiency which is calculated as the average

ratio of straight-line distance from initial to target position

over total path length traveled by each agent, capped at

1.0, average speed, and energy efficiency as the ratio of
total energy used and number of active agents.

IV.NUMERIC SIMULATION

For the numeric experiments, we generated a 2D
map with dimensions of 300x300 units. All agents had
identical properties, with a radius R=1 and mass parameter
m,=1, and were capable of global communication across
the entire swarm. This global communication was
required for two purposes: (a) determining the global best
position, and (b) calculating the repulsive influence of
other agents on a given iii-th agent. During initialization,
the agents were randomly distributed around the point
1,=(10, 10) within a radius of 30 units. The target was at
T,=(290, 296) and the tolerance distance around the
target is Rg = 15.

For all the experiments maximum acceleration has
been set to 3 units /s°, maximum allowed velocity is set
Vinax = 5 units /s and At € {0.1s, 0.05s}.

An example of agent movement visualization on the
map is shown in Fig. 1. For this simulation At=0.05,
number of agents equals 10, w=1, ¢; = ¢, =2, w; =3, n=06.
The result of this simulation is as follows: all ten survived
particles reached target at time 89.8s, total steps are 1797,
path efficiency equals 0.87, average agents’ speed is 4.94
and swarm cohesion is 3.79.

The obtained results demonstrate that, under the
selected swarm and algorithmic parameters, all agents
successfully reached the designated target without
collisions or mutual tunneling. However, it should be
noted that this represents a single simulation run; due to
the stochastic nature of the algorithm, variations in
outcomes are expected across multiple trials. A more
comprehensive statistical analysis of these variations will
be presented in the following section.

Conversely, in the absence of the proposed repulsion
method, the agent movement simulation terminates after
an average of 5.1 seconds due to complete inter-agent
collision occurring within a few iterations.

To analyze the influence of combining PSO and
potential-based repulsion parameters, namely the inertia
coefficient: inertia w, cognitive ¢; and social ¢
coefficients, repulsion weight w, and power n on the
swarm’s ability to successfully reach the target and
maintain agent survival, we conducted 300 numerical
experiments and collected metrics describing the swarm
dynamics.

The first experiment was conducted with a time step
of At=0.05. For the remaining parameters, we defined the
following ranges we chose the range of their change as: w:
(0.3, 0.9), ci: (1, 2.5), cp: (1.5, 3), w2 (0.5, 3), n: (1, 6). A
Latin hypercube sampling method was then used to ensure
an even coverage of the parameter space. Based on these
parameter combinations, 299 out of 300 simulations
(99%) were successful, with only one unsuccessful run. In
283 of the experiments, all 10 agents reached the target
area; in 9 cases, 8 agents reached it; in 6 cases, 6 agents
reached it; in 1 case, 4 agents reached it; and in 1 case, no
agents reached the target.
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Fig. 1. Visualization of agents’ movement, At = 0.05
The experimental evaluation yielded the following
performance  characteristics: mean total energy

consumption was 240.1 (range: 47.1-1647.1), with an
average agent speed of 4.6, mean swarm cohesion of 3.75,
mean path efficiency The second experiment, where
At=0.1 showed slightly worse results. Out of 300
simulation runs, 295 were successful, with an average of
eight surviving agents. The mean total energy
consumption was 509.8 (range: 68.7-2531), while the
average agent speed was 4.45, consistent with the results
of the first experiment. The mean swarm cohesion was
3.75, the mean path efficiency was 0.90, and the mean
energy efficiency was 72.05. The average convergence
time across all simulations was 172.2 seconds. The
parameter—metric correlation analysis revealed moderate
associations only between the repulsive power n and total
energy consumption (0.44), as well as between n and
swarm cohesion (0.46).

The example of agents’ movement for Ar=0.1 is
provided in fig. 2. Here one can see that all the agents
survived as well as all of them reached the target area.
Here, the convergence time is 89.8s, swarm cohesion is
3.2, total steps are 862, and path efficiency equals 0.95.

Based on the obtained results, we can draw three
important conclusions:

a) At is the crucial parameter for preventing
collisions/tunneling in a multi-agent simulation. Smaller
At reduces overlap and tunneling because agents move
smaller distances per step, making discrete updates a
better approximation of continuous motion;

b) repulsive power n has a likely moderate, but
tangible impact on agents’ energy consumption and
swarm cohesion, which is important to keep the swarm
formation solid;

¢) the proposed approach significantly reduces
collisions and tunneling effects among particles (or

Physics-Informed Particle Swarm Optimization for Collision-Aware Swarm Navigation

agents) when their navigation and swarm behavior are
driven by the PSO concept.
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Fig. 2. Visualization of agents” movement, At = 0.1

V. CONCLUSION

This paper presented a novel approach to collision
avoidance in the motion of multi-agent systems. The
proposed method was based on the Particle Swarm
Optimization (PSO) algorithm, which ensured efficient
swarm navigation toward a target and incorporates
mechanisms for inter-agent interaction. Since the standard
PSO algorithm lacked inherent collision avoidance
capabilities, the authors proposed its modification through
the introduction of a potential function. The
implementation of this function enabled the modeling of
inter-agent repulsion. The repulsive force was governed
by two parameters: a weighting coefficient and an
exponent in the denominator of the potential function. The
study examined the influence of various algorithm
configurations on the swarm’s motion toward the target
and the number of potential collisions between agents,
depending on the method’s parameters. The obtained
results demonstrated the effectiveness and potential of the
proposed approach for addressing safe motion problems in
multi-agent systems.
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