ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 10, No. 2, 2025

EDGE-READY SPEECH SEPARATION WITH SUDO-TASNET

Andrii Tsemko®?, Ivan Karbovnyk®

'lvan Franko National University of Lviv, 50, Drahomanov Str, Lviv, 79005, Ukraine,
2Infineon Technologies, 20, Luhanska Str, Lviv, 79000, Ukraine.
Authors’ e-mails: andrii.tsemko@Inu.edu.ua, ivan.karbovnyk@Inu.edu.ua

https://doi.org/10.23939/acps2025.02.202
Submitted on 11.09.2025
© Tsemko A., Karbovnyk I., 2025

Abstract: This article presents a hybrid speech separation
model designed for efficient deployment on edge devices,
focusing on optimizing both performance and computational
resources. This study proposes a novel hybrid architecture
that combines the strengths of Conv-TasNet and SuDoRM-
RF models, leveraging their fully-convolutional structures to
achieve efficient separation with minimal resource usage.
The proposed model has obtained a separation performance
of 10.59 db in SI-SDRi for clean Libri2Mix dataset for only
1.17 M parameters with only 0.92 GMACs/s.

Index terms: Speech Separation, Audio Processing, Neural
Networks

I.  INTRODUCTION

Today’s state-of-the-art headphones offer real-time
synchronous translation of the speaker and often deliver
impressive results that help erase the language barrier. The
speech enhancement component of this pipeline improves
automatic speech recognition (ASR) performance, making
translation more accurate; however, reliable operation also
requires speech separation, which should primarily extract
the main speaker and feed that signal to the ASR system.
Speech  separation must handle situations  with
simultaneous speech from your conversation partner and
nearby bystanders, as well as other overlapping voices. A
speech separation module is designed to separate multiple
talkers into distinct channels, which can then be analyzed
by ASR systems to select the correct speaker for
downstream translation.

Recent investigations in neural networks for speech
separation demonstrate a remarkable level of performance
that would have been unimaginable a decade ago in
single-channel experimental setups. Usually, speech
separation models can be trained for both clean and noisy
conditions. This is typically enabled by datasets such as
LibriMix [1] and WSJ0-2mix [2], which contain two-
speaker mixtures augmented with an additional noise
source at SNRs ranging from -10 to 10 db. Even under
such noisy conditions—closely aligned with the cocktail
party problem-these models separate two speakers (often
with  different energy levels) while suppressing
background noise, making them suitable not only for
extending existing speech enhancement pipelines but also
for replacing the enhancement stage when separation is
required. More complex, real-world scenarios also include
speech reverberation. In this setting, models are trained to

perform dereverberation, denoising and separation by
processing the mixture with a neural network and
targeting fully clean speech. One state-of-the-art dataset
for such training is the WHAMR! dataset [3].

While end-to-end speech separation systems already
exist — designed to replace the entire speech enhancement
pipeline by training n datasets such as WHAMR! — it is
still recommended to maintain a pipeline-based design, as
such systems generally demonstrate higher performance
with ASR and make it possible to keep models relatively
small and fast in terms of parameter count and MAC
operations [4]. In our investigation, we focus on the pure
speech separation task without speech enhancement.

Different attention-based model architectures have
demonstrated breakthrough performance in challenging
two-speaker conditions with noise. Such studies typically
fall within the domain of speech enhancement, which is an
important component of automated speech recognition
(ASR) systems. Although state-of-the-art models achieve
high levels of separation and denoising, they often rely on
complex architectures. The main drawback of these
models is their size and the number of MAC operations,
which makes them too heavy to run on edge devices. For
example, MossFormer2 [5] and SFSRNet [6] both deliver
a similar level of separation of about 24 dB SI-SDR [7] on
the WSJ0-2mix dataset, but require approximately 55
million parameters (=220 MB). Other models, such as
TF-GridNet [8] and SPMamba [9], use only 14 million
and 6 million parameters, respectively, yet require 445 and
238 GMAC/s, making them not real-time friendly for
edge devices. Model sizes and MAC/s demands in state-
of-the-art systems are currently the main reason why
speech separation models are not edge-friendly.

Our investigation focuses on small or tiny speech
separation models with approximately 1 million
parameters and about 1 GMAC/s of compute, which
should deliver sufficient performance to be useful and
deployable on edge devices such as microcontrollers.

Il. LITERATURE REVIEW AND PROBLEM
STATEMENT

Speech separation, where several talkers speak si-
multaneously, is distinct from automatic speech recog-
nition (ASR) systems, which usually rely on a speech
enhancement pipeline aimed at improving intelligibility


https://doi.org/%2010.23939/acps2022.

Andrii Tsemko, Ivan Karbovnyk

by removing non-speech components from the audio
signal. However, speech separation differs from conven-
tional denoising tasks such as noise suppression, since it
must separate multiple instances of the same speech class,
even when talkers have highly similar acoustic charac-
teristics. Although multi-channel  (multi-microphone)
setups are also common in ASR systems, our investigation
focuses solely on the single-channel case. While multi-
channel setups enable algorithmic approaches such as
beamforming for speech separation, the single-micro-
phone problem remained unsolved for a long time, with
major progress achieved only through machine learning.
Over the past decade, neural network architectures for
speech separation have rapidly advanced, delivering high-
quality results that were previously unimaginable.

However, most models that achieve high-quality
separation and top performance require large memory
capacity, substantial RAM, and a high number of
operations, which makes them impractical for real-time
systems on edge devices. Our investigation focuses on
delivering an optimal model with appropriate performance
while keeping resource usage and latency low, making it
edge-friendly.

The first breakthrough model that demonstrated an
interesting approach was Conv-TasNet [10], which has
been widely used as a baseline for the speech separation
task. This model popularized an encoder—decoder-based
architecture for speech separation that uses ConvlD and
TransposedConvlD layers for feature extraction,
converting the time-domain signal into STFT-like feature
matrices and then back to the time domain after applying
the system’s estimated masks. It uses a relatively small
number of parameter, bout 5.1 million, with
approximately 7.19 GMACI/s, achieving a separation
performance of 15.30 dB SI-SDR. The model is fully
convolutional and supports causal convolution layers,
enabling online operation and making it feasible to run on
microcontrollers with sufficient available memory.

Another fully convolutional model we investigate is
the SuDORM-RF [11], which proposes a more optimal
architecture and even improves separation performance to
17 dB SI-SDR on WSJO0-2mix. This model uses the same
encoder—decoder topology with U-Net-like separation
blocks in the separator, instead of the TCN dilated-
convolution blocks used by Conv-TasNet, making the
model smaller at 2.7M parameters with only 3.85
GMAC/s. We prepare a comparative table for different
separation models with their architectural specifications,
parameter counts, and MAC operations.

We use information from the article Advances in
Speech Separation [12], and extend their analysis with
additional details about the number of operations per
model, because we focus on relatively fast and small
models that can be easily deployed on edge devices with
limited resources and implemented in a real-time speech
enhancement pipeline. SUDORM-RF and Conv-TasNet are
the only models presented in this article, because the latest
models mostly focus on transformer-based and/or
attention-based architectures.
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For example, the SPMamba model demonstrates the
highest performance of 22.50 dB SI-SDRi among models
with fewer than 10M parameters and uses only 1 million
parameters more than Conv-TasNet; however, it requires
238 GMACs, which is almost 40 times more than Conv-
TasNet and 61 times more than SUDORM-RF. This makes
the SPMamba model impractical for edge devices and
real-time systems.

As a recurrent-based model, we present DPRNN
[13] with 2.9M parameters and 42.2 GMACSs, achieving
18.30 dB SI-SDR. While this model is similar to
SuDoRM-RF in terms of parameter count, it requires 21
times more operations that cannot be parallelized due to
its recurrent layers. For an attention-based model, we
chose TFPSNet [14], which is the same size as SUDORM-
RF and requires 29.6 GMAC/s, achieving 21.10 dB SI-
SDRI.

The smallest state-of-the-art model, TIGER [15], has
only 0.8 million parameters and a compute cost of 7.65
MACs/s. This model uses multi-scale selective attention
layers and a recursive path that makes it possible to reuse
the same parameters multiple times, thereby improving
separation performance and achieving 18 dB SI-SDRi on
the Libri2Mix dataset. Although this model is the
smallest, it still requires almost twice the operations, and
its recursive blocks complicate parallelization on the NPU
cores of edge devices.

We aim to demonstrate the efficiency of fully
convolutional models for speech separation and present a
hybrid architecture that combines Conv-TasNet and
SuDoRM-RF, which should deliver efficient separation
with an optimal model size of slightly more than 1 million
parameters. In our investigation, we focus exclusively on
fully convolutional models because they require fewer
operations and can be effectively accelerated by the NPU
cores of edge devices.

I1l. SCOPE OF WORK AND OBJECTIVES

In this work we propose an efficient hybrid
architecture neural network model for speech separation
task focusing on efficient deployable for edge devices
model. Investigated models are focused to be less then 1.5
million parameters and less than 1 GMACSs/s.

The primary objective of this work is to design a
hybrid speech separation model that achieves state-ofOthe-
art separation performance with significantly reduced
computational calculations compared to purely deep
learning-based approaches.

IV. HYBRID MODEL CONV-TASNET
AND SUDORM-RF

The core structure inherits the Conv-TasNet archi-
tecture, which comprises three processing stages:
Encoding, Separation, and Decoding. This model is
designed to process a single-channel, time-domain audio
signal.
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Table 1
Performance, parameters and MAC/s comparison
of speech separation on the WSJO0-2Mix and Libri2Mix datasets
Model Encodt:)r//pzecoder Separator type P%:\%ns GMAC/s SVIV ggJRZI'\(/(I;S) SII_IgBZR'Y(I(Ij)t()) Year
SuDoRM-RF Convolution CNN-based 2.7 3.85 17.0 135 2020
DPTNet Convolution Mixture-based 2.7 6.00 20.2 16.7 2022
Conv-TasNet Convolution CNN-based 5.1 7.19 15.3 12.2 2019
TIGER STFT Mixture-based 0.8 7.65 N\A 18.0 2025
S4aM Convolution Mixture-based 3.6 8.00 20.5 16.9 2023
TDANet Convolution Mixture-based 2.3 9.19 18.6 174 2023
TFPSNet STFT Attention-based 2.7 29.60 21.1 19.7 2022
DPRNN Convolution RNN-based 2.9 42.20 18.8 14.1 2020
SepFormer Convolution Attention-based 26.0 59.50 22.3 16.5 2021
A-FRCNN Convolution Mixture-based 6.1 81.28 18.3 16.7 2021
TF-GridNet STFT Mixture-based 145 231.00 235 19.2 2023
SPMambda STFT Mixture-based 6.1 238.00 22.5 19.9 2024
MossFormer2 Convolution Attention-based 55.7 331.44 24.1 21.7 2024
SFSRNet Convolution Attention-based 59.0 488.10 24.0 16.4 2022
The speech separation task, the input mixture is Xpn = PWCONVLD (Xenc). ®)

denoted x(t), which is the sum of speech sources s(t),
SN(t):

xt = Nost. @)
The model processes the mixture Xx(t) to estimate
s 1(t), ..., s N(). The objective is to minimize the

discrepancy between these estimates and the ground-truth
sources S(t), ... sn(t).

For a fully convolutional model, the key idea of the
encoder—decoder is to transform the time-domain signal
vector into an STFT-like feature matrix. Conv-TasNet,
SuDoRM-RF, and our implementation all use a 1D
convolution (Conv1D) for this operation. Analogous to
the STFT, we use overlapping segments of length L with a
stride of L/2. The resulting feature matrix is then
processed with layer normalization (LN), as shown next:

Xene = LN(Conv1Dc 1 1(X(1))). @)

The input vector is encoded as a matrix of shape (TF,
ENC_N), where TF denotes the number of time frames
and ENC_N denotes the number of Conv1D kernels. This
matrix is analogous to a classical STFT representation, but
unlike the traditional STFT—where frequencies are fixed
on a uniform grid—the Conv1D layer employs trainable
kernel weights. This approach has shown improvements in
related signal-processing domains, such as BLE
communication systems [16], where using different
trainable kernels instead of merely tuning the granular
frequency bins of the STFT can yield superior
performance. In our implementation, however, we use a
single ConvlD layer rather than separate real and
imaginary components, which simplifies the encoding.

The main component of the model is the separation
module. It is designed to estimate masks that are applied
to the encoder output via element-wise multiplication. In
our setup, this module estimates a fixed number of masks
corresponding to two talkers. First, the encoder output is
passed through a bottleneck layer implemented as a
pointwise convolution (PWConv1D):

We retain the main design principle of the Separator
by implementing it as a stack of sub-layers. Whereas
Conv-TasNet and SuDoRM-RF employ architecture-
specific nested blocks, we combine their respective
modules—Conv-block from Conv-TasNet and UConv-
block from SuDoRm-

RF—arranged alternately, starting with a Conv-
block and then placing a UConv-block after it R times.

In Conv-TasNet, the Conv-block is formulated as a
temporal convolutional network composed of stacked 1-D
dilated convolutional blocks. This block comprises D
stacked 1-D dilated convolutional layers, with the dilation
steps defined according to a predetermined schedule:

dilation = 2°. (4)

where d is defined from 1 to D.

The overall Conv-block consists of pointwise
(PWConv1D) and depthwise (DWConv1D) convolutions.
This block processes the input sequence x_inp with a
pointwise convolution followed by layer normalization
and a LeakyReLU activation:

y = LeakyReLU(LN(PWConv1D(x_inp))).  (5)
This output is then passed through a DWConv1D
layer with dilation rate d, computed by Eq. (4) from the
block index. The dilated convolution output is then passed
through a LeakyReL U activation:
y = LeakyReLU(DWConv1D(y)). (6)
Next, a bottleneck pointwise convolution followed
by layer normalization is applied:
y = LN(PWConv1D(y)). (7)
The block output is then computed as the sum of the
bottleneck output y and a skip connection from the model
input x:
conv_block _out=x+Yy. (8)
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Fig. 1. A. SuDo-TasNet architecture. B. Conv-block architecture.
C. UConv-block architecture.

The whole Conv-block consists of D such sub-
blocks implementing the operations defined by formulas
(5)—(8). This Conv-block is designed as an optimized,
fully convolutional separation module that leverages the
TCN paradigm to replace recurrent layers, enabling the
convolutional stack to capture both local feature relations
and long-term dependencies, which enhances processing
of time-sequenced data and supports efficient deployment
on NPUs and microcontrollers. After the Conv-block, the
sequence is processed by the UConv-block, which we
define in the next section.

The UConv-block is a fully convolutional module
patterned after a U-Net architecture. Its purpose is to
capture information across multiple temporal resolutions
via mirrored, structured sequences of downsampling and
upsampling operations. At the beginning of the UConv-
block, a pointwise 1D convolution followed by layer
normalization acts as a bottleneck:

y_0=LN(PWConv1D(x)). 9)

Next, a depthwise 1D convolution is applied,
followed by layer normalization, and the output of each
stage is stored to serve as skip connections in the
subsequent upsampling path. The downsampling path
comprises U successive blocks defined as:

y_i=LN(DWConv1D(y_i-1)), (10)

where the i-th convolution operates on the output of
the (i—1)-th stage, followed by layer normalization.

After the downsampling path, we use an
UpSamplelD operation that upsamples by a factor of 2
and adds the result to the corresponding i-th skip
connection:

y_i=y i+ UpSamplelD(y_i). (11)
At the end, the model applies layer normalization

with a shared-axis PReLU activation, followed by an
output pointwise convolution, overall defined as:
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y = PWConv1D(PReLU(LN(y_U))). (12)

Similar to the Conv-block, the UConv-block
employs a residual connection by adding the input skip-
connected feature to the block output:

uconv_block_out=x +y. (13)

In our implementation, the model consists of R
Conv-blocks and R UConv-blocks, arranged alternately as
illustrated.

V. EXPERIMENTAL SETUP

A. Dataset

We focus on the pure speech separation task,
excluding noise suppression, and train and evaluate the
model on data of this type. For training, we implement a
data generator that uses LibriSpeech [17] train-360 as a
source of clean speech fragments and mixes them with
uniformly random amplitude scaling, producing mixtures
with signal-to-noise ratios (SNR) between -20 dB and 20
dB for 90% of the samples. For evaluation, we use the
pre-generated Libri2Mix test subset. Both training and
testing are conducted on audio with an 8 kHz sampling
rate.

B. Experiment configurations

The networks are trained for 600 epochs on 4-second
audio segments. Training starts with an initial learning
rate of 1e, which is reduced by a factor of 1.1 every 40
epochs. The Adam optimizer [18] is used for training. The
batch size is 16, and each epoch comprises 2,000 batches
of generator-produced training pairs.

C. Training and evaluation

The training objective is to maximize the scale-
invariant signal-to-distortion ratio (SI-SDR), which is
commonly used as both the loss function and the
evaluation metric for speech separation tasks. To address
the permutation problem, utterance-level permutation-
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invariant training (uPIT) is applied. The SI-SDR is
calculated as:

sTs
a=-— (14)
as 2
SI—SDR 5,5 = 10log;, — 7 (15)

where s is a target signal, and s is estimated speech.
N

LSS =-maxty
i=1
where S is the list of N target sources, S is the list of
N estimated sources, and the max operation ensures the
optimal assignment.

For evaluation, we use the SI-SDRi metric, which
measures the improvement in separation quality relative to
the baseline—the original mixed signal (mix). The
formula for SI-SDRi is:

SI-SDRi(s,s,mix)=SI-SDR(s,s)-SI-SDR(miX,s).
D. Results and discussion
In Table 2, we demonstrate the separation
performance of our proposed model versus Conv-TasNet
and SuDoRM-RF models with the same number of
parameters.

SI — SDR(s;, Snqy)),  (16)

17)

Table 2

Comparison of small models for Libri2Mix test

Models SI-SDRi | Params | GMAC
(db) . (M) S/s
Conv-TasNet 9.52 1.20 0.96
SuDORM-RF 9.24 121 0.90
SuDo-TasNet (our) 10.59 1.17 0.92

The table additionally includes the size of the
models in terms of parameters and computational
requirements. All presented results are computed on the
Libri2Mix test subset for the clean case (no noise). Our
SuDo-TasNet model demonstrates improvement over 1 db
for SI-SDRi compared to the Conv-TasNet model, while
remaining a similar number of parameters and GMACS/s.

The SuDo-TasNet implementation is a fully
convolutional model, which can be efficiently accelerated
on lightweight NPUs such as the Ethos-U55 [19]. In
contrast, the TIGER model relies on attention-based layers
that are not widely supported by most NPUs, making our
approach more suitable for deployment on edge devices.

VI. CONCLUSION

In this study, we introduced a hybrid speech
separation network that combines Conv-TasNet and
SuDoRM-RF layers. Our proposed model achieves an
SI-SDRi of 10.59 db, providing an improvement of
approximately 1 db compared to the original Conv-TasNet
and SuDoRM-RF models, while maintaining the same
number of trainable parameters and computational cycles.

Edge-Ready Speech Separation with SuDo-TasNet

Although the smallest state-of-the-art model,
TIGER, uses only 0.8 M parameters, its computational
cost is 8 times higher than that of our proposed model. It
should also be noted that our experiments were conducted
on 8 kHz audio samples, while TIGER operates on 16
kHz data. For 16 kHz, the SuDo-TasNet model can retain
a similar number of parameters, but the required
GMACS/s would approximately double, making our
model about 4 times faster than TIGER.
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