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Abstract: This article presents a hybrid speech separation 

model designed for efficient deployment on edge devices, 

focusing on optimizing both performance and computational 

resources. This study proposes a novel hybrid architecture 

that combines the strengths of Conv-TasNet and SuDoRM-

RF models, leveraging their fully-convolutional structures to 

achieve efficient separation with minimal resource usage. 

The proposed model has obtained a separation performance 

of 10.59 db in SI-SDRi for clean Libri2Mix dataset for only 

1.17 M parameters with only 0.92 GMACs/s. 

Index terms: Speech Separation, Audio Processing, Neural 

Networks 

I. INTRODUCTION 

Today’s state-of-the-art headphones offer real-time 

synchronous translation of the speaker and often deliver 

impressive results that help erase the language barrier. The 

speech enhancement component of this pipeline improves 

automatic speech recognition (ASR) performance, making 

translation more accurate; however, reliable operation also 

requires speech separation, which should primarily extract 

the main speaker and feed that signal to the ASR system. 

Speech separation must handle situations with 

simultaneous speech from your conversation partner and 

nearby bystanders, as well as other overlapping voices. A 

speech separation module is designed to separate multiple 

talkers into distinct channels, which can then be analyzed 

by ASR systems to select the correct speaker for 

downstream translation.  

Recent investigations in neural networks for speech 

separation demonstrate a remarkable level of performance 

that would have been unimaginable a decade ago in 

single-channel experimental setups. Usually, speech 

separation models can be trained for both clean and noisy 

conditions. This is typically enabled by datasets such as 

LibriMix [1] and WSJ0-2mix [2], which contain two-

speaker mixtures augmented with an additional noise 

source at SNRs ranging from -10 to 10 db. Even under 

such noisy conditions–closely aligned with the cocktail 

party problem–these models separate two speakers (often 

with different energy levels) while suppressing 

background noise, making them suitable not only for 

extending existing speech enhancement pipelines but also 

for replacing the enhancement stage when separation is 

required. More complex, real-world scenarios also include 

speech reverberation. In this setting, models are trained to 

perform dereverberation, denoising and separation by 

processing the mixture with a neural network and 

targeting fully clean speech. One state-of-the-art dataset 

for such training is the WHAMR! dataset [3]. 

While end-to-end speech separation systems already 

exist – designed to replace the entire speech enhancement 

pipeline by training n datasets such as WHAMR! – it is 

still recommended to maintain a pipeline-based design, as 

such systems generally demonstrate higher performance 

with ASR and make it possible to keep models relatively 

small and fast in terms of parameter count and MAC 

operations [4]. In our investigation, we focus on the pure 

speech separation task without speech enhancement.  

Different attention-based model architectures have 

demonstrated breakthrough performance in challenging 

two-speaker conditions with noise. Such studies typically 

fall within the domain of speech enhancement, which is an 

important component of automated speech recognition 

(ASR) systems. Although state-of-the-art models achieve 

high levels of separation and denoising, they often rely on 

complex architectures. The main drawback of these 

models is their size and the number of MAC operations, 

which makes them too heavy to run on edge devices. For 

example, MossFormer2 [5] and SFSRNet [6] both deliver 

a similar level of separation of about 24 dB SI-SDR [7] on 

the WSJ0-2mix dataset, but require approximately 55 

million parameters (≈220 MB). Other models, such as  

TF-GridNet [8] and SPMamba [9], use only 14 million 

and 6 million parameters, respectively, yet require 445 and 

238 GMAC/s, making them not real-time friendly for 

edge devices. Model sizes and MAC/s demands in state-

of-the-art systems are currently the main reason why 

speech separation models are not edge-friendly. 

Our investigation focuses on small or tiny speech 

separation models with approximately 1 million 

parameters and about 1 GMAC/s of compute, which 

should deliver sufficient performance to be useful and 

deployable on edge devices such as microcontrollers.  

II. LITERATURE REVIEW AND PROBLEM 

STATEMENT 

Speech separation, where several talkers speak si-

multaneously, is distinct from automatic speech recog-

nition (ASR) systems, which usually rely on a speech 

enhancement pipeline aimed at improving intelligibility 
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by removing non-speech components from the audio 

signal. However, speech separation differs from conven-

tional denoising tasks such as noise suppression, since it 

must separate multiple instances of the same speech class, 

even when talkers have highly similar acoustic charac-

teristics. Although multi-channel (multi-microphone) 

setups are also common in ASR systems, our investigation 

focuses solely on the single-channel case. While multi-

channel setups enable algorithmic approaches such as 

beamforming for speech separation, the single-micro-

phone problem remained unsolved for a long time, with 

major progress achieved only through machine learning. 

Over the past decade, neural network architectures for 

speech separation have rapidly advanced, delivering high-

quality results that were previously unimaginable. 

However, most models that achieve high-quality 

separation and top performance require large memory 

capacity, substantial RAM, and a high number of 

operations, which makes them impractical for real-time 

systems on edge devices. Our investigation focuses on 

delivering an optimal model with appropriate performance 

while keeping resource usage and latency low, making it 

edge-friendly. 

The first breakthrough model that demonstrated an 

interesting approach was Conv-TasNet [10], which has 

been widely used as a baseline for the speech separation 

task. This model popularized an encoder–decoder-based 

architecture for speech separation that uses Conv1D and 

TransposedConv1D layers for feature extraction, 

converting the time-domain signal into STFT-like feature 

matrices and then back to the time domain after applying 

the system’s estimated masks. It uses a relatively small 

number of parameter, bout 5.1 million, with 

approximately 7.19 GMAC/s, achieving a separation 

performance of 15.30 dB SI-SDR. The model is fully 

convolutional and supports causal convolution layers, 

enabling online operation and making it feasible to run on 

microcontrollers with sufficient available memory. 

Another fully convolutional model we investigate is 

the SuDoRM-RF [11], which proposes a more optimal 

architecture and even improves separation performance to 

17 dB SI-SDR on WSJ0-2mix. This model uses the same 

encoder–decoder topology with U-Net-like separation 

blocks in the separator, instead of the TCN dilated-

convolution blocks used by Conv-TasNet, making the 

model smaller at 2.7M parameters with only 3.85 

GMAC/s. We prepare a comparative table for different 

separation models with their architectural specifications, 

parameter counts, and MAC operations. 

We use information from the article Advances in 

Speech Separation [12], and extend their analysis with 

additional details about the number of operations per 

model, because we focus on relatively fast and small 

models that can be easily deployed on edge devices with 

limited resources and implemented in a real-time speech 

enhancement pipeline. SuDoRM-RF and Conv-TasNet are 

the only models presented in this article, because the latest 

models mostly focus on transformer-based and/or 

attention-based architectures. 

For example, the SPMamba model demonstrates the 

highest performance of 22.50 dB SI-SDRi among models 

with fewer than 10M parameters and uses only 1 million 

parameters more than Conv-TasNet; however, it requires 

238 GMACs, which is almost 40 times more than Conv-

TasNet and 61 times more than SuDoRM-RF. This makes 

the SPMamba model impractical for edge devices and 

real-time systems. 

As a recurrent-based model, we present DPRNN 

[13] with 2.9M parameters and 42.2 GMACs, achieving 

18.30 dB SI-SDR. While this model is similar to 

SuDoRM-RF in terms of parameter count, it requires 21 

times more operations that cannot be parallelized due to 

its recurrent layers. For an attention-based model, we 

chose TFPSNet [14], which is the same size as SuDoRM-

RF and requires 29.6 GMAC/s, achieving 21.10 dB SI-

SDRi. 

The smallest state-of-the-art model, TIGER [15], has 

only 0.8 million parameters and a compute cost of 7.65 

MACs/s. This model uses multi-scale selective attention 

layers and a recursive path that makes it possible to reuse 

the same parameters multiple times, thereby improving 

separation performance and achieving 18 dB SI-SDRi on 

the Libri2Mix dataset. Although this model is the 

smallest, it still requires almost twice the operations, and 

its recursive blocks complicate parallelization on the NPU 

cores of edge devices. 

We aim to demonstrate the efficiency of fully 

convolutional models for speech separation and present a 

hybrid architecture that combines Conv-TasNet and 

SuDoRM-RF, which should deliver efficient separation 

with an optimal model size of slightly more than 1 million 

parameters. In our investigation, we focus exclusively on 

fully convolutional models because they require fewer 

operations and can be effectively accelerated by the NPU 

cores of edge devices. 

III. SCOPE OF WORK AND OBJECTIVES 

In this work we propose an efficient hybrid 

architecture neural network model for speech separation 

task focusing on efficient deployable for edge devices 

model. Investigated models are focused to be less then 1.5 

million parameters and less than 1 GMACs/s. 

The primary objective of this work is to design a 

hybrid speech separation model that achieves state-of0the-

art separation performance with significantly reduced 

computational calculations compared to purely deep 

learning-based approaches.  

IV. HYBRID MODEL CONV-TASNET  

AND SUDORM-RF 

The core structure inherits the Conv-TasNet archi-

tecture, which comprises three processing stages: 

Encoding, Separation, and Decoding. This model is 

designed to process a single-channel, time-domain audio 

signal. 
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Table 1 

Performance, parameters and MAC/s comparison  
of speech separation on the WSJ0-2Mix and Libri2Mix datasets 

Model 
Encoder/Decoder 

type 
Separator type 

Params 
(M) 

GMAC/s 
WSJ0-2Mix 
SI-SDRi (db) 

Libri2Mix  
SI-SDRi(db) 

Year 

SuDoRM-RF Convolution CNN-based 2.7 3.85 17.0 13.5 2020 

DPTNet Convolution Mixture-based 2.7 6.00 20.2 16.7 2022 

Conv-TasNet Convolution CNN-based 5.1 7.19 15.3 12.2 2019 

TIGER STFT Mixture-based 0.8 7.65 N\A 18.0 2025 

S4M Convolution Mixture-based 3.6 8.00 20.5 16.9 2023 

TDANet Convolution Mixture-based 2.3 9.19 18.6 17.4 2023 

TFPSNet STFT Attention-based 2.7 29.60 21.1 19.7 2022 

DPRNN Convolution RNN-based 2.9 42.20 18.8 14.1 2020 

SepFormer Convolution Attention-based 26.0 59.50 22.3 16.5 2021 

A-FRCNN Convolution Mixture-based 6.1 81.28 18.3 16.7 2021 

TF-GridNet STFT Mixture-based 14.5 231.00 23.5 19.2 2023 

SPMambda STFT Mixture-based 6.1 238.00 22.5 19.9 2024 

MossFormer2 Convolution Attention-based 55.7 331.44 24.1 21.7 2024 

SFSRNet Convolution Attention-based 59.0 488.10 24.0 16.4 2022 

 
The speech separation task, the input mixture is 

denoted x(t), which is the sum of speech sources s1(t), 
sN(t): 

. (1) 

The model processes the mixture x(t) to estimate 

s 1(t), …, s N(t). The objective is to minimize the 
discrepancy between these estimates and the ground-truth 
sources s1(t), … sN(t).  

For a fully convolutional model, the key idea of the 
encoder–decoder is to transform the time-domain signal 
vector into an STFT-like feature matrix. Conv-TasNet, 
SuDoRM-RF, and our implementation all use a 1D 
convolution (Conv1D) for this operation. Analogous to 
the STFT, we use overlapping segments of length L with a 
stride of L/2. The resulting feature matrix is then 
processed with layer normalization (LN), as shown next: 

xenc = LN(Conv1DC,1,1(x(t))). (2) 

The input vector is encoded as a matrix of shape (TF, 
ENC_N), where TF denotes the number of time frames 
and ENC_N denotes the number of Conv1D kernels. This 
matrix is analogous to a classical STFT representation, but 
unlike the traditional STFT—where frequencies are fixed 
on a uniform grid—the Conv1D layer employs trainable 
kernel weights. This approach has shown improvements in 
related signal-processing domains, such as BLE 
communication systems [16], where using different 
trainable kernels instead of merely tuning the granular 
frequency bins of the STFT can yield superior 
performance. In our implementation, however, we use a 
single Conv1D layer rather than separate real and 
imaginary components, which simplifies the encoding. 

The main component of the model is the separation 
module. It is designed to estimate masks that are applied 
to the encoder output via element-wise multiplication. In 
our setup, this module estimates a fixed number of masks 
corresponding to two talkers. First, the encoder output is  
passed through a bottleneck layer implemented as a 
pointwise convolution (PWConv1D): 

xbn = PWConv1D(xenc). (3) 

We retain the main design principle of the Separator 

by implementing it as a stack of sub-layers. Whereas 

Conv-TasNet and SuDoRM-RF employ architecture-

specific nested blocks, we combine their respective 

modules—Conv-block from Conv-TasNet and UConv-

block from SuDoRm- 

RF—arranged alternately, starting with a Conv-

block and then placing a UConv-block after it R times. 

In Conv-TasNet, the Conv-block is formulated as a 

temporal convolutional network composed of stacked 1-D 

dilated convolutional blocks. This block comprises D 

stacked 1-D dilated convolutional layers, with the dilation 

steps defined according to a predetermined schedule: 

dilation = 2d. (4) 

where d is defined from 1 to D. 

The overall Conv-block consists of pointwise 

(PWConv1D) and depthwise (DWConv1D) convolutions. 

This block processes the input sequence x_inp with a 

pointwise convolution followed by layer normalization 

and a LeakyReLU activation: 

y = LeakyReLU(LN(PWConv1D(x_inp))). (5) 

This output is then passed through a DWConv1D 

layer with dilation rate d, computed by Eq. (4) from the 

block index. The dilated convolution output is then passed 

through a LeakyReLU activation: 

y = LeakyReLU(DWConv1D(y)). (6) 

Next, a bottleneck pointwise convolution followed 

by layer normalization is applied: 

y = LN(PWConv1D(y)). (7) 

The block output is then computed as the sum of the 

bottleneck output y and a skip connection from the model 

input x: 

conv_block_out = x + y. (8) 
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Fig. 1. A. SuDo-TasNet architecture. B. Conv-block architecture. 

C. UConv-block architecture. 

The whole Conv-block consists of D such sub-

blocks implementing the operations defined by formulas 

(5)–(8). This Conv-block is designed as an optimized, 

fully convolutional separation module that leverages the 

TCN paradigm to replace recurrent layers, enabling the 

convolutional stack to capture both local feature relations 

and long-term dependencies, which enhances processing 

of time-sequenced data and supports efficient deployment 

on NPUs and microcontrollers. After the Conv-block, the 

sequence is processed by the UConv-block, which we 

define in the next section. 

The UConv-block is a fully convolutional module 

patterned after a U-Net architecture. Its purpose is to 

capture information across multiple temporal resolutions 

via mirrored, structured sequences of downsampling and 

upsampling operations. At the beginning of the UConv-

block, a pointwise 1D convolution followed by layer 

normalization acts as a bottleneck: 

y_0 = LN(PWConv1D(x)). (9) 

Next, a depthwise 1D convolution is applied, 

followed by layer normalization, and the output of each 

stage is stored to serve as skip connections in the 

subsequent upsampling path. The downsampling path 

comprises U successive blocks defined as: 

y_i = LN(DWConv1D(y_i-1)), (10) 

where the i-th convolution operates on the output of 

the (i−1)-th stage, followed by layer normalization. 

After the downsampling path, we use an 

UpSample1D operation that upsamples by a factor of 2 

and adds the result to the corresponding i-th skip 

connection: 

y_i = y_i + UpSample1D(y_i). (11) 

At the end, the model applies layer normalization 

with a shared-axis PReLU activation, followed by an 

output pointwise convolution, overall defined as: 

y = PWConv1D(PReLU(LN(y_U))). (12) 

Similar to the Conv-block, the UConv-block 

employs a residual connection by adding the input skip-

connected feature to the block output: 

uconv_block_out = x  + y. (13) 

In our implementation, the model consists of R 

Conv-blocks and R UConv-blocks, arranged alternately as 

illustrated. 

V. EXPERIMENTAL SETUP 

A. Dataset 

We focus on the pure speech separation task, 

excluding noise suppression, and train and evaluate the 

model on data of this type.  For training, we implement a 

data generator that uses LibriSpeech [17] train-360 as a 

source of clean speech fragments and mixes them with 

uniformly random amplitude scaling, producing mixtures 

with signal-to-noise ratios (SNR) between -20 dB and 20 

dB for 90% of the samples. For evaluation, we use the 

pre-generated Libri2Mix test subset. Both training and 

testing are conducted on audio with an 8 kHz sampling 

rate. 

B.  Experiment configurations 

The networks are trained for 600 epochs on 4-second 

audio segments. Training starts with an initial learning 

rate of 1e-3, which is reduced by a factor of 1.1 every 40 

epochs. The Adam optimizer [18] is used for training. The 

batch size is 16, and each epoch comprises 2,000 batches 

of generator-produced training pairs. 

C.  Training and evaluation 

The training objective is to maximize the scale-

invariant signal-to-distortion ratio (SI-SDR), which is 

commonly used as both the loss function and the 

evaluation metric for speech separation tasks. To address 

the permutation problem, utterance-level permutation-
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invariant training (uPIT) is applied. The SI-SDR is 

calculated as: 

 (14) 

 (15) 

where s is a target signal, and  is estimated speech. 

 (16) 

where S is the list of N target sources,  is the list of 

N estimated sources, and the max operation ensures the 

optimal assignment. 

For evaluation, we use the SI-SDRi metric, which 

measures the improvement in separation quality relative to 

the baseline—the original mixed signal (mix). The 

formula for SI-SDRi is: 

SI-SDRi(s, ,mix)=SI-SDR(s, )–SI-SDR(mix, ). (17) 

D. Results and discussion 

In Table 2, we demonstrate the separation 

performance of our proposed model versus Conv-TasNet 

and SuDoRM-RF models with the same number of 

parameters. 

Table 2 

Comparison of small models for Libri2Mix test 

Models 
SI-SDRi 

(db) 

Params

. (M) 

GMAC

S/s 

Conv-TasNet 9.52 1.20 0.96 

SuDORM-RF 9.24 1.21 0.90 

SuDo-TasNet (our) 10.59 1.17 0.92 

  

The table additionally includes the size of the 

models in terms of parameters and computational 

requirements. All presented results are computed on the 

Libri2Mix test subset for the clean case (no noise). Our 

SuDo-TasNet model demonstrates improvement over 1 db 

for SI-SDRi compared to the Conv-TasNet model, while 

remaining a similar number of parameters and GMACS/s. 

The SuDo-TasNet implementation is a fully 

convolutional model, which can be efficiently accelerated 

on lightweight NPUs such as the Ethos-U55 [19]. In 

contrast, the TIGER model relies on attention-based layers 

that are not widely supported by most NPUs, making our 

approach more suitable for deployment on edge devices. 

VI. CONCLUSION 

In this study, we introduced a hybrid speech 

separation network that combines Conv-TasNet and 

SuDoRM-RF layers. Our proposed model achieves an  

SI-SDRi of 10.59 db, providing an improvement of 

approximately 1 db compared to the original Conv-TasNet 

and SuDoRM-RF models, while maintaining the same 

number of trainable parameters and computational cycles. 

Although the smallest state-of-the-art model, 

TIGER, uses only 0.8 M parameters, its computational 

cost is 8 times higher than that of our proposed model. It 

should also be noted that our experiments were conducted 

on 8 kHz audio samples, while TIGER operates on 16 

kHz data. For 16 kHz, the SuDo-TasNet model can retain 

a similar number of parameters, but the required 

GMACS/s would approximately double, making our 

model about 4 times faster than TIGER. 
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