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Abstract: This paper proposes a data encryption method
based on a modified McEliece cryptosystem, in which
classic Goppa codes are replaced by error-correcting codes
from the Redundant Residue Number System (RRNS). The
construction of the RRNS code's generator matrix and the
formation of the public key as a composition of the G
matrix, a scrambling matrix S, and a permutation matrix P
have been described. An approach has been developed for
selecting the RRNS moduli system, ensuring the necessary
code parameters and the highest possible rank of the
generator matrix. A study of the statistical and structural
properties of the public key (entropy of elements, value
distribution, density, rank), as well as their impact on the
cryptosystem's resistance to ISD-type attacks, has been
conducted. A software implementation of key generation
and the encryption/decryption processes has been
presented, along with experimental results from attack
simulations for various RRNS code parameters. Based on
the analysis, recommendations have been formulated
regarding the choice of moduli, the structure of scrambling
matrices, and code parameters to achieve a post-quantum
security level with an acceptable public key size.

Index terms: McEliece cryptosystem, Redundant Residue
Number System (RRNS), error-correcting codes, public key,
post-quantum cryptography, ISD attacks.

I. INTRODUCTION

Ensuring data confidentiality and integrity is a
fundamental task of modern information security. The
development of quantum computing poses an existential
threat to widely used asymmetric cryptosystems, as
Shor's algorithm allows them to be broken in polynomial
time. This vulnerability stimulates active research in the
field of post-quantum cryptography (PQC) — the
development of algorithms resistant to attacks by both
classical and quantum computers.

One of the PQC candidates is the McEliece
cryptosystem, proposed back in 1978. Its security is
based on the hardness of the decoding problem in a
general linear code, which remains NP-complete. The
advantages of the McEliece system are high-speed
encryption (which reduces to vector-matrix multi-
plication) and proven resistance. However, its practical
application is limited by two significant drawbacks: a
large public key size and considerable computational
complexity of the decryption process, which requires
efficient decoding algorithms for linear codes (such as

Goppa codes). The relevance of this direction is
confirmed by the NIST roadmap for standardizing post-
quantum KEM schemes, where the Classic McEliece
family is being considered among the next wave of
candidates, in addition to the lattice-based algorithm
standards already approved in 2024 [1].

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Analysis of scientific literature, especially in the
context of the NIST PQC competition, allows us to
identify three key research directions:

1. Optimization of key representation and
reduction of their size.

2. Performance optimization and reduction of
computational costs.

3. Hardware implementations and acceleration
(FPGA, embedded systems).

The McEliece cryptosystem remains one of the
most reliable post-quantum encryption schemes due to
its resistance to known attacks; however, its practical
application is complicated by the enormous size of the
public key and significant computational costs. Over the
last 5-7 years, researchers have been actively working
on optimizing key representation, reducing their sizes,
improving performance, and lowering computational
costs, as well as on the development of efficient
hardware implementations (FPGA, embedded systems,
etc.).

In paper [2], a construction of the public key based
on automorphisms of Goppa codes is proposed, which
allows giving the matrix a special block structure. Using
subgroups of additive and multiplicative automorphisms,
the authors construct variants of Goppa codes with a
structure suitable for compression and demonstrate the
possibility of significantly reducing the public key size
without loss of security. This research was the first to
show the promise of using non-trivial automorphisms for
key compression in the McEliece cryptosystem.

In paper [3], the authors proposed a new variant of
the McEliece cryptosystem based on a non-binary code
of orthogonal Latin squares (OLSC). Such a code has
simpler encoding/decoding algorithms, which facilitates
hardware implementation, and allows processing long
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messages with smaller matrices, significantly reducing
the key size. A parameterized coprocessor (FPGA) was
developed that implements encryption and decryption;
compared to the classic McEliece variant, it provides an
approximately 3.3-fold speedup in operation [2]. This
work demonstrates the possibility of reducing both keys
and computational complexity by switching to a
different class of codes.

A lightweight key agreement protocol based on the
McEliece cryptosystem, optimized for resource-
constrained devices (e.g., IoT), is presented in paper [4].
The proposed improvements made it possible to reduce
the public key by approximately 80% (from ~1000 KB
to ~200 KB) and cut computational costs by 66%
(latency reduced from ~15 ms to ~5 ms). About 60%
energy savings during crypto operations was also achie-
ved, which is critically important for autonomous
devices. This work confirms that even without compro-
mising security, it is possible to significantly improve
McEliece's metrics by optimizing the scheme and
parameters for specific applications.

Optimization of performance and reduction of
computational costs were achieved in paper [5]. The new
implementation uses bitwise operations and FFT
algorithms to accelerate calculations. Instead of parallel
execution of many decodings, the author engaged
internal parallelism within a single decoding, which
allowed for improved decryption throughput at a higher
security level. This result showed that significant
acceleration of McEliece's operation can be achieved at a
high security level even with purely software-based
methods.

In paper [6], the possibility of implementing
McEliece on constrained microcontrollers was de-
monstrated. The authors performed a constant-time
implementation for the 32-bit ARM Cortex-M4, storing
the large public key in the STM32 board's flash memory.
For the smallest parameters (security level 1), a time of
~582 thousand cycles for encapsulation and 2.7 million
cycles for decapsulation was achieved, which is 80 times
faster for encryption and 17 times faster for decryption
than the equivalent metric for the FrodoKEM scheme on
the same platform. The implementation is also capable
of performing key generation (for level 1) and
decryption for the highest security level on this device.
This work proved the practicality of Classic McEliece
for IoT devices with limited memory, provided that
memory usage and computations are optimized.

In [7], the first complete FPGA implementation of
the Classic McEliece cryptosystem, compliant with the
NIST specification, is presented. The design covers all
stages: key generation (with expansion from a seed),
encapsulation, and decapsulation, and is parameterized
for different security levels. On a Xilinx Artix-7 FPGA,
the following performance metrics were obtained: key
generation in ~5.2-20 ms, encapsulation in 0.1-0.5 ms,
and decapsulation in 0.7-1.5 ms (depending on the
security level). By increasing parallelism, the design can
be further accelerated at the cost of using more hardware
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area. These results are an order of magnitude better than
previous implementations, demonstrating McEliece's
suitability for high-performance applications with
hardware acceleration.

Paper [8] focuses on accelerating one of the 'bott-
lenecks' of the McEliece algorithm — slow key
generation. An algorithm and hardware co-design is
proposed: specifically, a compact implementation of
large-scale GF(2)-Gaussian elimination (with early sin-
gularity detection and memory-friendly task scheduling)
and an optimized constant-time sorter for element
permutation. As a result, the FPGA implementation
achieved more than a 4-fold higher key generation
throughput while simultaneously reducing the memory-
time resource consumption by 9-14 times compared to
previous FPGA solutions. This approach significantly
mitigates the problems of slow key generation and large
memory requirements that previously hindered the
practical use of McEliece.

In [9], a universal hardware accelerator for Classic
McEliece encapsulation, designed using High-Level
Synthesis (HLS), is presented. The main innovation is
the streaming processing of the public key directly from
memory, which eliminates the need to store the 1 MB
key in internal FPGA buffers. The accelerator performs
encryption functions (encoder) and generates random
errors, allowing the most demanding part of the
algorithm (encapsulation) to be fully offloaded to the
FPGA. Two design variants with different resource
trade-offs are proposed. Record-breaking performance
was achieved: depending on the parameters, the
encryption time was reduced by 3.5-7.7 times compared
to previous FPGA solutions. In conjunction with an
embedded processor (Zynq SoC), this accelerator pro-
vided an approximately 2.2-fold faster protocol opera-
tion than an optimized 64-bit software implementation
on a CPU. Thus, the work demonstrates the advantages
of using CPU+FPGA co-design and HLS approaches to
achieve a flexible yet high-performance solution.

A hybrid hardware-software implementation of
McEliece was proposed in paper [10]. The public key is
processed on the FPGA, while some parts of the
algorithm run on an embedded processor. The solution
complies with European security recommendations
(ETSI). For a code length of 8192 bits, the authors
achieved a decryption time of about 47.4 ms, which is a
good result for FPGAs of that generation. This work
became one of the first practical confirmations that a
combined HW/SW solution can provide acceptable
performance for the McEliece cryptosystem on modern
hardware platforms.

The analysis of research showed that the main
efforts were directed at improving the performance of
the McEliece cryptosystem. New methods for public key
compression have been proposed (structuring codes
using automorphisms, using alternative code families),
which allow for a multiple reduction in key size.
Concurrently, optimization of software implementations
has made it possible to speed up the cipher's operation
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without loss of security. Significant results have been
achieved in the field of hardware acceleration: modern
FPGA implementations ensure all McEliece operations
are performed in milliseconds, and specialized solutions
for key generation and decryption eliminate the most
critical bottlenecks. Embedded systems and micro-
controllers are now capable of working with McEliece in
real time thanks to memory and computation
optimization. Thus, the shortcomings of the classic
scheme (large keys, slow generation) are gradually being
smoothed out, and the McEliece cryptosystem is
becoming more attractive for practical implementation in
post-quantum data protection protocols.

The analysis also showed a lack of fundamentally
new approaches to improving the McEliece crypto-
system, particularly the use of redundant residue number
system codes, which have high error-correcting capa-
bilities but whose use requires a deep investigation of
cryptographic resistance.

III. SCOPE OF WORK AND OBJECTIVES

The aim of this work is the development and
analysis of a modified McEliece cryptosystem, in which
traditional Goppa codes are replaced by error-correcting
codes based on the Redundant Residue Number System.
The research objective was to propose a complete
cryptographic algorithm, including a key generation me-
thodology (using generator, scrambling, and permutation
matrices), as well as to demonstrate its practical
implementation on a numerical example of encryption
and decryption. Significant attention was paid to the
analysis of cryptographic resistance; the work quanti-
tatively assesses the complexity of Information Set
Decoding (ISD) attacks against the proposed crypto-
system and determines the code parameters (number of
moduli, information symbols, and errors) necessary to
achieve modern levels of post-quantum security.

IV. DATA ENCRYPTION METHOD BASED ON
THE MCELIECE-RRNS CRYPTOSYSTEM

A. RESIDUE NUMBER SYSTEM (RNS)

Let us consider a set of pairwise mutually prime
positive modules [11]

M ={m;, my, ..., m,}, (1)
ged(m, my) =1, 1 #j, m;> 2. (2)

The product of the moduli:
M= Hl,:l m; - A3)

For every integer x €/0,M -1] is matched with the
vector of residues

r(x) = (e, = xmodm, . (4),

Pair (M, r(-)) defines a residual number system with
a dynamic range [O,M -1].

According to the Chinese remainder theorem
(CRT), the mapping

¢:x—>r(x), ©)
is a bijection between {0, ..., M-1} and the Cartesian

product:
11z, - (6)

A redundant residual number system is constructed
by adding additional n-k modules to % information
modules.

Let
M; = {m,, m,, ..., m;} — information modules,
My = {my,, ..., m,} —redundant modules,
where all modules are collectively pairwise
mutually prime.
Accordingly, the information range is:
Ml = ji] m; (7)
verification range is:
M, :H[:k+l m; - ®)
Fool range is:
M = M; -My.

Then, an RRNS code will be defined as the
encoding of a number that belongs to the range

xeX=[0,M,-1], 9)

in the form of a vector of all residues:
F(X)=(Fyees By Fyg s 1) 5 (10)
1, =xmodm, (11

In this case:

the k£ first (r;, ..., ry) components define the
information vector in the RNS;

the remaining n-k components (74, ..., r,) form
the redundancy, which is used for error detection and
correction.

B. THE DISTANCE AND CORRECTING
CAPABILITY OF THE CPR CODE

In RRNS, a modular metric based on the number of
positions in which the residues differ is usually
considered. For two codewords

r(xX)=(#,esr) s 7(¥)=(S8,,8,) s
determine the distance
d(r(x),r(y)) =l{ie{l,..,n}:r, =S (modm,)}|. (13)
The minimum distance of the RRNS code:
= mind((3),7()

Assuming that each error manifests as an arbitrary
change in one of the residues r;, then a code with a
minimum distance d,,;, can detect up to d,,;,.; errors and

correct:
dmin _1
t=|———|»
2

errors in the residuals.

(12)

(14)

(15)
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For an RRNS with an information range
[0, M; -1] and using the full set of moduli M,
dynin=n-k+1 can be achieved under certain conditions
(with a proper choice of moduli and range). In practice,
for a given n-k it is often considered that the maximum
number of errors the code corrects [11] is:

5

V.THE ENCRYPTION ALGORITHM

(16)

The proposed asymmetric encryption algorithm
consists of three stages [12]:

— private and public key generation;

— encryption;

— decryption.

Let us consider these stages in detail.

A. PRIVATE AND PUBLIC KEY
GENERATION

Private key generation is performed according to
the following algorithm.

1. Parameter selection: k - number of information
bits, n - total code length, ¢ - number of errors;

2. Selection of n prime moduli: m;;

3. Matrix creation:

— A generator matrix G of size (k x n);

— A scrambling matrix S (and its inverse S™) (k x k);

A permutation matrix P (and its inverse P') (nxn));

Accordingly, the private key is defined by the
matrices: S, G, P.

Public key generation:
G'=SGP
Public key: G', ¢.
B. ENCRYPTION ALGORITHM

encryption is

(17)

Message
formula:

performed using the

c=x-G' +e
where x — is the message; e — is the error vector.
C. THE DECRYPTION ALGORITHM

The decryption algorithm consists of the following
steps:

1. We eliminate the influence of the permutation
matrix P by multiplying the encrypted message by P:

c'=c-P. (19)

2. Error detection and correction.

To detect and correct errors, we use the Xiao
algorithm [13]. The Xiao algorithm is a probabilistic
method for identifying error positions in a Redundant
Residue Number System (RRNS). Its main idea is to find
a majority subset of error-free residues and, based on
this, "discard" the positions containing errors. The
algorithm consists of the following steps.

2.1. Initialization and Setup.

At this stage, the basic system parameters required
for the algorithm's operation are set:

(18)
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— data reading. The full list of moduli and the
received list of residues (with errors) are loaded;

— code parameter definition: %, ¢;

— Information range calculation: My, the algorithm
calculates Mj — the product of the first / moduli.

Since any uncorrupted number reconstructed from a
subset of residues must necessarily be less than

M, = Hi:l m;

2.2. Random sampling of "consistent" subsets:

— Sampling launch. The algorithm executes a loop a
certain number of times;

— [ - subset formation. In each iteration, it randomly
selects [ ndices (positions) from the full set of » moduli.

2.3. Consistency check:

For this randomly selected / — subset (consisting of
| — residues and / — moduli) the algorithm attempts to
solve the system of equations using the Chinese
Remainder Theorem (CRT);

If the CRT finds a unique solution x, the algorithm
performs the main check: x < Mg,

If the solution x exists and it is less than the
information range Mpy, this / — subset is considered
"consistent".

2.4. Statistics collection.

The algorithm maintains a list of indices for all /
subsets that successfully passed the consistency check.
In this case, if a random / — subset contains no erroneous
positions, it will be consistent (yielding x < Mp).
However, if it contains at least one error, it will, with
high probability, be inconsistent (either the CRT will not
find a solution, or x >M;.

2.5. Frequency analysis of positions.

At this stage, the statistics collected in step 2 are
analyzed.

1. Frequency counting. The algorithm creates a
counter to track how many times each position (index
from 0 to n-1) was part of "consistent" / — subsets.

2. Building the histogram. The algorithm iterates
through the entire list of found consistent subsets and
increments the counter for each index within them. In
this process, uncorrupted positions will frequently form
consistent subsets, so their counter will have a high
value. Erroneous positions, conversely, will "break" the
consistency, so they will rarely (or never) appear in this
list, and their counter will have a low value.

2.6. Error determination by threshold value.

1. Finding the maximum. The algorithm finds the
maximum counter value (i.e., the frequency with which
the "most popular," likely "correct," position occurred).

2. Calculating the threshold. A threshold is set, for
example, 50% of the maximum frequency.

3. Error identification. The algorithm iterates
through all positions (indices). If the counter for a
specific position is less than this threshold, it is marked
as an error position.

The list of indices that failed the threshold check is
the result of the algorithm's operation.

(20)
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D. ERROR CORRECTION

We solve the system of equations in the field of
integers:
y=x"-G,
where y — is the known vector;
G is the generator matrix (k x n);
x" is the unknown vector of length k.

It is necessary to find an integer solution x such
that

21)

(22)
(23)

x'-G=y,

Zm J’J 1

E. REMOVING THE INFLUENCE OF THE
SCRAMBLING MATRIX S.

To do this, we multiply the vector m by the inverse
matrix S:

1
x=x"-5".

VI. EXAMPLE DEMONSTRATION OF THE
CRYPTOSYSTEM'S OPERATION

A. PUBLIC KEY GENERATION

Public key generation is performed according to the
following algorithm.

1.1 Selection of public key parameters. Let, the
number of information bits & = 16; total code length
n=24, number of errors (=4, message
x=1010101110101011.

1.2 We select n coprime moduli: m; [2, 3, 5, 7, 11,
13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73,79, 83, 97].

1.3 Matrix Creation

Generator matrix G. The matrix G has the size
(k x n), each row corresponds to one bit of information,
and the columns are separated by moduli. Each row of
the matrix G can be viewed as a set of residue vectors for
the basis vectors in the message space.

Thus, the columns of the matrix G will be filled
with the residues from the division of the numbers 2°, 2",
2%, ..., 2" by each of the moduli m; [12].

(2°mod my) (2°mod my) (2°mod my,,)

G= (21mod my) (21m0d my) (2t mod m,) (24)

2k 1mod my) (2% 1mod my) (2%~ 1mod my) (2K~ 1mod my)

An example of the generator matrix G is shown in
Fig. 1.

[ XX ) ° matrix_g24_1.txt v

6=[[1, 1, 1,1,1,1,1,1,111,11,11,1,1,1,1,1,1,1, 1, 1],
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2],

444444444444,4,44,4,4,4,4],

8, 8, 8, 8, i 8, 8,8, 8,8,

8, 8,

8, 8,8, 8 8l,
3, 16, 16, 16, 16, 16, 16, 16, 16 16 16, 16, 16, 16, 16, 16, 16, 16, 161,
e, 6, 15, 13, 9, 3, 1, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 321,
,'12, 13, 7, 18, 6, 2, 27, 23, 21, 17, 11, 5, 3, 64, 64, 64, 64, 64, 641,
7,11, 9, 14, 13, 12, 4, 17, 5, 42, 34, 22, 10, 6, 61, 57, 55, 49, 45, 31],
9,'1,"9, 3, 24, 8, 34, 10, 41, 21, M 20, 12, 55, 43, 37, 19, 7, 621,
6, 5, 2, 18, 6, 19, 16, 31, 20, 39, 42, 35, 40, 24, 43, 15, 1, 38, 14, 271,
1, 10, 4, 17, 12, 9, 1, 25, 40, 35, 37 17, 21, 48, 19, 30, 2, 76, 28, 54,
2,7,'8,'15,'1, 18, 2, 13, 39, 27, 27, 34, 42,35, 38, 60, 4, 73, 56, 111,
4,1, 16, 11, 2, 7, 4, 26, 37, 11, 7, 15, 25, 9, 9, 49, 8, 67, 29, 221,
8, 2, 15, 3, 4, 14, 8, 15, 33, 22, 14, 30, 50, 18, 18, 27, 16, 55, 58, 441,
s, 4, 13, 6, 8, 28, 16, 30, 25, 1, 28, 7, 41, 36, 36, 54, 32, 31, 33, 88],
10, 8, 9, 12, 16, 27, 1, 23, 9, 2, 9, 14, 23, 11, 5, 37, 64, 62, 66, 791]

ORURAN

s
NENRNRENRNRBNEN

ANPWANPWANRPWAN
PANRANRANRANRAN
w

Fig. 1. The generator matrix G

Scrambling matrix S (and its inverse S”). To find
the scrambling matrix, a program was developed that
implements a random search method to find binary (0-1)
unimodular matrices of a given size k x k. A feature of
the search is that the program only finds those matrices
S, whose determinant equals +1, and whose inverse
matrix S is also integer-valued.

To ensure precise arithmetic calculations (compu-
tation of the determinant and inverse matrix without
rounding errors), the SymPy symbolic computation
library is used.

The algorithm operates according to the following
steps.

The program initializes parameters: size k, mini-
mum (min_ones), and maximum (max_ones) number of
ones.

In an infinite loop, a random binary matrix S of size
k x kis generated.

Each generated matrix undergoes
filtering:

— density check. It is verified that the total number of
ones in the matrix w (S) is within the specified
range [min_ones, max_ones];

— determinant check: det (S) is calculated. he search
continues only if | det (S) | =1;

— inverse matrix check: S is calculated and checked
to ensure all its elements are integers.

If the matrix satisfies all three conditions, it is
considered found, and the forward and inverse matrices
are saved to the corresponding files S1i 5.

The loop terminates when a matrix satisfying the
given conditions is found.

The forward scrambling matrix for the given
parameters is shown in Fig. 2, and the inverse in Fig. 3.

sequential

([ ] O matrix_s16.txt

b=

1, 1, o, 1, 1, e, o, 1, 1, @, 0, 0, 1, 1, @, 0],
(e, o, 0, 0, 1, 0, ©, 1, 1, 1, 1, @, 0, 1, @, 0],
[0, ¢, 1, 0, 1, ©, 1, 1, 0, @, 1, 1, 0, 1, @, 0],
(1, e, ¢, 1, o, 1, 1, 0, 1, @, 0, 0, 1, 0, 1, 0],
(1, e, ¢, 1, 0, 1, o, 1, 0, 1, 0, 0, 0, 0, 0, 0],
[e, ¢, 1, 0, 1, 1, 1, 1, o0, @, @0, 0, 1, 0, 0, O],
(1, 1, e, 1, 1, 1, o, 0, 1, 1, 1, 0, 0, 1, 0, 1],
(e, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1],
[0, @, 1, 1, 0, 1, @, 0, 1, @, 1, @, 0, 0, 1, 0],
(1, 1, 1, o, o, 1, 1, 1, 1, 1, o, 1, 1, 0, 0, 1],
(¢, 1, ¢, 0, 1, 1, 1, 1, o, 0, 1, @, 0, 1, 1, 1],
1, 1, 1, o, o, @, 1, 0, 0, 8, 0, 1, 1, 1, @, 1],
(e, 1, ¢, ¢, 1, 1, 1, 1, o, 1, 1, @, 0, 1, 0, 1],
(e, 1, 1, o, 1, 1, 1, 1, o, 0, 0, 0, 1, 1, 1, 1],
[, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1],
(1, e, ¢, o, ¢, 0, 1, 1, 1, 8, 0, 1, 1, 1, 1, 0]]

Fig. 2. Forward scrambling matrix

S_inv=[

[e, 22, 15, 25, -9, -18, -6, -14, -1, 23, 17, 2, -24, 8, -6, -34],
[1, 33, 24, 39, -15, -29, -10, -22, -15, 36, 25, 2, -35, 13, -9, -53],
[o, 14, 10, 16, -6, -12, -4, -9, -6, 15, 10, 1, -15, 6, -4, -22],

[e, -29, -20, -33, 13, 24, 8, 19, 13, -31, -22, -2, 31, -11, 8, 45],
[e, 5, 4, 6, -2, -4, -1, -3, -3, 5, 4, 0, -6, 2, -1, -81,

e, 9, 7, 11, -5, -8, -2, -7, -4, 11, 7, o, -10, 4, -3, -15],

e, 6, 5, 8, -3, -6, -2, -4, -3, 7, 4, 0, -6, 3, -2, -10],

e, -15, -11, -18, 7, 13, 4, 10, 7, -16, -11, -1, 16, -6, 4, 24],

e, -2, -1, -2, 0,1, 1, 1, 1, -1, -2, -1, 2, 0, 0, 3

o, 13, 9, 15, -5, -11, -4, -8, -6, 13, 9, 1, -13, 5, -3, -20],

[e, -5, -5, -7, 3, 6, 1, 4, 3, -7, -3, 1, 6, -4, 2, 9],

e, -10, -6, -11, 4, 8, 3, 6, 4, -10, -7, -1, 10, -4, 3, 15],

e, -19, -15, -23, 9, 18, 5, 13, 9, -22, -14, @, 21, -9, 6, 31],

le, 5, 4, 6, -3, -5, -1, -4, -2, 6, 3, 0, -5, 3, -2, -8],

le, 13, 9, 15, -5, -11, -4, -8, -6, 13, 10, 1, -14, 5, -3, -20],

[-1, -51, -37, -60, 23, 44, 15, 34, 23, -55, -38, -3, 54, -20, 14, 81]

Fig. 3. Inverse scrambling matrix
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The matrix S must be a square matrix of size k x £,
where & is the number of information symbols (or the
dimension of the information space). The matrix S must
also be an invertible matrix in the field where the
encryption is performed. This means that there exists an
matrix S’ such that S-S'= I, where I is the identity
matrix. Usually, the elements of matrix S are chosen
from some finite field, for example, F, for binary codes
or from a larger field for non-binary codes, depending on
the chosen code. It is necessary that the choice of
elements ensures invertibility.

The matrix S should be random to make the
encryption more resistant to attacks based on knowledge
of the code's structure. Randomness helps to hide the
structure of the generator matrix G from attackers.

Permutation matrix P. The matrix P must be a
square matrix of size n x n, where n is the length of the
codeword. In each row and each column, there must be
exactly one /, and the rest of the elements must be 0.
This ensures that each element of the original vector's
position is permuted to a unique new position. In other
words, P is a unitary matrix in the context of
permutations. A permutation matrix is always invertible,
as its inverse matrix is the matrix that corresponds to the
reverse permutation.

The calculated permutation matrix is shown in Fig. 4.

[ XX ) = matrix_p24.txt
P=[
[0, , 0, 0, @, 0, 0, 0, @0, 0, 0, 0, 0, 0, 1, @, 0, @, 0, @, 0, 0, O, O],
[1, 0, 0,00, 0,0 0,0 0,000 0,000,000 20, 0,0, 0],
[0, ¢, 0, 0, 0, 1, 0, 0, @, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, O],
[0, , 0, 1, 0, 0, ©, 0, @, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, O],
le, 1, 0, 0,0, 0,0 0,0, 0000 0,00,0,0, 0,028, 0,0, 0],
[e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, @],
[0, ¢, 0, 0, 0, 0, 1, 0, @, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, O],
[0, 0, 0, 0, @, 0, 0, 0, @, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, 1],
[0, 0,0, 0000,020,0200,20001,0020,0 000, e,
[e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, O, 0, O, O, @],
[0, ¢, 0, 0, 0, 0, ©, 0, @, 0, 0, 0, 0, 0, 0, @, 0, 1, 0, @, 0, 0, O, O],
[, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, O, @],
[e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, O, 0, O, O, @],
[0, ¢, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, O],
[0, 0, 0, 0, @, 0, ©, 1, 0, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, O],
fe, o, 1, 0,0, 0,0 0,0 0,000 0,000 0,00,20, 0,0, 0],
[0, ©, 0, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 1, O, O],
[0, ¢, 0, 0, 0, 0, 0, 0, @0, 0, 1, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, O, O],
[e, 0, 0, 0,0, 0,000, 000,0,0,000,0 1,020, 0,0, 0],
[e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, @, @],
[0, ©, 0, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, @, 1, 0, O, O],
[0, 0, 0, 0, @, 0, 0, 0, @, 0, 0, 0, 0, 0, 0, @, 0, @, 0, @, 0, 0, 1, O],
[e, 0, 0, 0, 1, 0, 0, @, 0, 0, 0, 0, @, 0, @, 0, @, 0, @, O, @, O, @, O],
[e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, O, 0, O, O, @]]
Fig. 4. Permutation matrix P
B. PUBLIC KEY CREATION:
G'=S-G-P (25)
An example of the public key is shown in Fig. 5.
X X ) " pub_key_SGP.txt

pub_key=[
[12, 38, 138, 15, 166, 14, 68, 103, 143, 119, 72, 37, 166, 102, 1, 4o, 84, 51, 106, 203, 13, 132, 217, 6al,

19, 3 , 128, 541,

18, 39 m 14 19» 15 73, 11a 125 122, 70, 37, 16¢, 117 4, 62, 48, 31, 186, 223, 179, 93, 232, 651,
(16, 54, 198, 20, 232, 21, 73, 182, 198, 187, 172, 54, 325, 171, 1, 77, 123, 62, 199, 211, 179, 213, 309, 991,
[9, 34, 108, 16, 187, 19, 49, 166, 121, 131, 9, 48, 281, 104, @, 71, 88, 34, 165, 196, 189, 91, 243, 67,

(8, 31, 112, 19, 112, 18, 45, 139, 121, 133, 140, 41, 248, 119, O, 44, 76, 38, 154, 171, 115, 126, 170, 57,
117, 58, 214, 25, 320, 26, 80, 196, 222, 210, 139, 66, 335, 182, 1, 75, 123, 45, 314, 364, 272, 204, 411, 1061,
[14, 57, 151, 2@, 344, 25, 96, 1B9, 173, 187, 172, 58, 418, 1B5, @, 98, 117, 51, 253, 319, 283, 20@, 387, 90],
[12, 40, 111, 16, 280, 20, 68, 81, 99, 111, 83, 37, 227, 148, 1, 48, 79, 24, 141, 244, 163, 152, 328, 551,
[15, 58, 179, 17, 325, 23, 85, 203, 211, 188, 169, 59, 49, 180, O, 96, 108, 51, 260, 280, 252, 199, 394, 102,
[15, 64, 153, 23, 349, 26, 112, 163, 153, 192, 137, 53, 382, 186, 8, 92, 119, 58, 247, 342, 293, 288, 382, 88],
[4, 46, 187, 25, 243, 22, 70, 172, 159, 195, 165, 46, 327, 178, 0, 51, 132, 54, 224, 206, 184, 229, 328, 901,
[11, 39, 164, 19, 203, 19, 76, 149, 166, 163, 120, 47, 323, 173, 1, 50, 110, 45, 282, 355, 217, 194, 359, 66]]

Fig. 5. Public key G’
C. PUBLIC KEY PARAMETER TESTING

Let us test the statistical characteristics of the
public key: matrix rank, entropy, > - test for uniformity.
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Public key test results:

Matrix size: 16 x 24.

Matrix rank:16.

The matrix has full rank (no linear dependencies
were found).

Public key entropy: 7.4493 bits per symbol.

Maximum possible entropy for 204 unique values
out of 360 elements: 7.6724 bits.

Total number of elements N = 384;

Number of unique values f'=211.

Results of the y? -test for uniformity:

— 2 statistic: 147.8958;

— degrees of freedom df: 210;

— p-value: 0.999612.

As can be seen from Fig. 6, there are no obvious
biases in the values of the public key elements
(> =147.8958).

Freguency
-

0 100 200 300 400
\Value

Fig. 6. Distribution of public key element values

The entropy is high (H = 7.4493 bits/symbol)
compared to the maximum possible entropy for 204
unique values out of 360 elements: Hy,,,x ~7.6724 GiTiB.

D. ENCRYPTION
c=x-G'+e (26)

Using the public key obtained in the previous step,
we get the encrypted message c:

c = [118, 425, 1470, 177, 2273, 193, 666, 1500,
1581, 1509, 1298, 470, 2772, 1448, 4, 641, 960, 453,
2072, 2402, 1820, 1623, 2872, 765].

We add the error vector:

e=10,0,29,0,0,31,0,0,0,0,0,0,37,0,0,0, 0,
0,0,0,0,96,0, 0].

We add errors at random positions (zero-indexed)
[5,2,12,21]:

position 5: +31 (was 193) -> 224;

position 2: +29 (was 1470) -> 1499;

position 12: +37 (was 2772) -> 2809;

position 21: +96 (was 1623) -> 1719.

The encrypted message with errors:

c = [118, 425, 1499, 177, 2273, 224, 666, 1500,
1581, 1509, 1298, 470, 2809, 1448, 4, 641, 960, 453,
2072, 2402, 1820, 1719, 2872, 765].

E. DECRYPTION

1. We eliminate the influence of the permutation
matrix P, by multiplying the encrypted message ¢ by the
matrix P':
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c'=c-P'=[4,118, 224, 177, 425, 470, 666, 765,
641, 960, 453, 1509, 1448, 1581, 1500, 1499, 1719,
1298, 2072, 2402, 1820, 2872, 2273, 2809].

2. Using the Xiao algorithm, we find the error
positions: error = [2, 15, 16, 23] and remove the columns
from the matrix G, that correspond to the error positions.
We write the new matrix to the variable G,.,.

3. We remove the positions with errors from the file
obtained in step 6.1.

y=1[4, 118, 177, 425, 470, 666, 765, 641, 960, 453,
1509, 1448, 1581, 1500, 1298, 2072, 2402, 1820, 2872,
2273].

The next step is to solve the system of equations in
the field of integers:

y= x' 'Gnew 5 (27)

where x'is the unknown vector of size k x 1.

As a result of the calculations, we obtain the integer
solutionx: [4644665664633645].

Check: y =x" - Gy = [4 118 177 425 470 666
765 641 960 453 1509 1448 1581 1500 1298 2072
2402 1820 2872 2273].

The difference between the vector (y) and the
resulting product (x" - G,,,): [000000000000000
00000].

We remove the influence of the scrambling matrix
S. To do this, we multiply the vector x’ by the inverse
matrix S, As a result, we obtain the decrypted message:

x=[1010101110101011].

For the McEliece-RRNS cryptosystem, besides the
statistics of the elements, it is also important to conduct
the following checks:

— matrix rank and structure;

— code properties (minimum distance, parameters
k, n, t);

— structure of S, P;

— resistance to ISD/algebraic attacks, not just the
statistics of the elements.

An ISD attack attempts to find & coordinates of the
ciphertext ¢ that do not contain errors and solve the
system x - G’ =y for these positions.

The probability that there are no errors in &
randomly selected symbols among »n symbols with ¢
errors is ((n-t)}k)/(nlk). Thus, the total number of
attempts for this attack is [12]:

o

To investigate the resistance of the developed
McEliece-RRNS cryptosystem to Information Set
Decoding attacks, specialized software was developed.
The program simulates the complete cryptographic cycle
(key generation, encryption, error addition) and conducts
a statistical experiment by repeatedly launching an ISD
attack for given code parameters. The software allows
changing the code parameters (n, &, f). Based on the
program's results, estimates of the attack's computational
complexity (number of iterations, execution time,
number of operations on vectors/matrices) are

(28)

automatically calculated. This made it possible to
quantitatively assess the level of cryptographic resistance
of the proposed cryptosystem for different sets of
parameters [ 14].

The following code parameters were used in the
cryptographic resistance calculation: m; — prime
numbers, n =376, k=256 (Fig. 7).

@ © @ ISD attack complexity (log. attempts)
n (Codeword length): 376
k (Message length): 256

t (Number of errors): | 56|

a (Coefficient): 1

Calculate Build a graph

log.(attempts) = 132.35
~2"132.35
I Weakly (< 2~256)

Fig. 7. Calculation of the number
of errors for cryptographic resistance 2'%

In Fig. 8, the number of errors for cryptographic
resistance 2'*is calculated with the same parameters.

@ © @ ISD attack complexity (log, attempts)

n (Codeword length): 376

k (Message length): 256

t (Number of errors): |80|

a (Coefficient): 1

Calculate Build a graph

log.(attempts) = 193.96
= 27193.96
1. Weakly (< 2°256)

Fig. 8. Calculation of the number
of errors for cryptographic resistance 2'*°

In Fig. 9, the number of errors for cryptographic
resistance 2is calculated with the same parameters.

@ ® @ ISD attack complexity (log. attempts)

n (Codeword length): 376

k (Message length): 256

t (Number of errors): ‘101|

a (Coefficient): 1

Calculate Build a graph

log,(attempts) = 262.91
= 27262.91
Safely (> 2°256)

Fig. 9. Calculation of the number
of errors for cryptographic resistance 2°°°
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Fig. 10 shows the dependence of the ISD attack
complexity on the number of errors ¢ for given
parameters n = 376, k = 256.

Dependence of the complexity of the ISD attack on t

T
T — n=376, k=256, a=1.0
--- Level: 27256
----- Level: 24192
309 Level:2*128 | |

log:(attempts)

50 - /

o 20 40 60 80 100 120
t (Number of errors)

Fig. 10. Dependence of the ISD attack complexity
on the number of errors t for given
parameters n =376, k=256

The graph (Fig. 10) shows the required number of
errors that must be introduced during encryption to
ensure a given level of cryptographic resistance.

VII. CONCLUSION

This work proposed a modification of the McEliece
cryptosystem based on error-correcting codes over a
Redundant Residue Number System (RRNS), employing
the standard scrambling — permutation public-key
construction (G, S, P). We showed that this substitution
enables the use of integer entries in the relevant matrices
and naturally integrates the parameters (n, &, ) through
the choice of the modulus set, while preserving the fun-
damental  security  principles of  code-based
cryptosystems.

An experimental assessment of statistical and
structural properties of the generated public key
indicated: full rank in the tested instance (no linear
dependencies detected); high elementwise entropy (=
7.449 bits/symbol versus a maximum of =~ 7.672
bits/symbol); and no statistically significant deviation
from uniformity under the y2 test (p-value = 0.9996).
These metrics mitigate the risk of trivial, pattern-based
structural leakage; however, they are not, by themselves,
sufficient to guarantee cryptographic security — decisive
factors remain the code parameters and resistance to
Information Set Decoding (ISD) and algebraic attacks.

We simulated ISD resistance while varying the
number of errors ¢ and the redundancy r=n—k. The
resulting complexity curves confirm parameter regions
in which the ISD cost reaches target post-quantum levels
(e.g., >2"*® operations) for acceptable public-key sizes.

Overall, the results support the viability of the
McEliece-RRNS  approach and outline practical
parameter-selection guidelines that achieve post-
quantum security levels with moderate memory and
runtime overheads. Future work will focus on analyzing
algebraic attacks targeting RRNS-based error-correcting
codes and on optimizing the decryption algorithm.
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