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Abstract: This paper proposes a data encryption method 
based on a modified McEliece cryptosystem, in which 
classic Goppa codes are replaced by error-correcting codes 
from the Redundant Residue Number System (RRNS). The 
construction of the RRNS code's generator matrix and the 
formation of the public key as a composition of the G 
matrix, a scrambling matrix S, and a permutation matrix P 
have been described. An approach has been developed for 
selecting the RRNS moduli system, ensuring the necessary 
code parameters and the highest possible rank of the 
generator matrix. A study of the statistical and structural 
properties of the public key (entropy of elements, value 
distribution, density, rank), as well as their impact on the 
cryptosystem's resistance to ISD-type attacks, has been 
conducted. A software implementation of key generation 
and the encryption/decryption processes has been 
presented, along with experimental results from attack 
simulations for various RRNS code parameters. Based on 
the analysis, recommendations have been formulated 
regarding the choice of moduli, the structure of scrambling 
matrices, and code parameters to achieve a post-quantum 
security level with an acceptable public key size.  

Index terms: McEliece cryptosystem, Redundant Residue 
Number System (RRNS), error-correcting codes, public key, 
post-quantum cryptography, ISD attacks. 

I. INTRODUCTION 
Ensuring data confidentiality and integrity is a 

fundamental task of modern information security. The 
development of quantum computing poses an existential 
threat to widely used asymmetric cryptosystems, as 
Shor's algorithm allows them to be broken in polynomial 
time. This vulnerability stimulates active research in the 
field of post-quantum cryptography (PQC) – the 
development of algorithms resistant to attacks by both 
classical and quantum computers.  

One of the PQC candidates is the McEliece 
cryptosystem, proposed back in 1978. Its security is 
based on the hardness of the decoding problem in a 
general linear code, which remains NP-complete. The 
advantages of the McEliece system are high-speed 
encryption (which reduces to vector-matrix multi-
plication) and proven resistance. However, its practical 
application is limited by two significant drawbacks: a 
large public key size and considerable computational 
complexity of the decryption process, which requires 
efficient decoding algorithms for linear codes (such as 

Goppa codes). The relevance of this direction is 
confirmed by the NIST roadmap for standardizing post-
quantum KEM schemes, where the Classic McEliece 
family is being considered among the next wave of 
candidates, in addition to the lattice-based algorithm 
standards already approved in 2024 [1]. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Analysis of scientific literature, especially in the 
context of the NIST PQC competition, allows us to 
identify three key research directions: 

1. Optimization of key representation and 
reduction of their size. 

2. Performance optimization and reduction of 
computational costs. 

3. Hardware implementations and acceleration 
(FPGA, embedded systems). 

The McEliece cryptosystem remains one of the 
most reliable post-quantum encryption schemes due to 
its resistance to known attacks; however, its practical 
application is complicated by the enormous size of the 
public key and significant computational costs. Over the 
last 5–7 years, researchers have been actively working 
on optimizing key representation, reducing their sizes, 
improving performance, and lowering computational 
costs, as well as on the development of efficient 
hardware implementations (FPGA, embedded systems, 
etc.). 

In paper [2], a construction of the public key based 
on automorphisms of Goppa codes is proposed, which 
allows giving the matrix a special block structure. Using 
subgroups of additive and multiplicative automorphisms, 
the authors construct variants of Goppa codes with a 
structure suitable for compression and demonstrate the 
possibility of significantly reducing the public key size 
without loss of security. This research was the first to 
show the promise of using non-trivial automorphisms for 
key compression in the McEliece cryptosystem. 

In paper [3], the authors proposed a new variant of 
the McEliece cryptosystem based on a non-binary code 
of orthogonal Latin squares (OLSC). Such a code has 
simpler encoding/decoding algorithms, which facilitates 
hardware implementation, and allows processing long 
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messages with smaller matrices, significantly reducing 
the key size. A parameterized coprocessor (FPGA) was 
developed that implements encryption and decryption; 
compared to the classic McEliece variant, it provides an 
approximately 3.3-fold speedup in operation [2]. This 
work demonstrates the possibility of reducing both keys 
and computational complexity by switching to a 
different class of codes. 

A lightweight key agreement protocol based on the 
McEliece cryptosystem, optimized for resource-
constrained devices (e.g., IoT), is presented in paper [4]. 
The proposed improvements made it possible to reduce 
the public key by approximately 80% (from ~1000 KB 
to ~200 KB) and cut computational costs by 66% 
(latency reduced from ~15 ms to ~5 ms). About 60% 
energy savings during crypto operations was also achie-
ved, which is critically important for autonomous 
devices. This work confirms that even without compro-
mising security, it is possible to significantly improve 
McEliece's metrics by optimizing the scheme and 
parameters for specific applications. 

Optimization of performance and reduction of 
computational costs were achieved in paper [5]. The new 
implementation uses bitwise operations and FFT 
algorithms to accelerate calculations. Instead of parallel 
execution of many decodings, the author engaged 
internal parallelism within a single decoding, which 
allowed for improved decryption throughput at a higher 
security level. This result showed that significant 
acceleration of McEliece's operation can be achieved at a 
high security level even with purely software-based 
methods. 

In paper [6], the possibility of implementing 
McEliece on constrained microcontrollers was de-
monstrated. The authors performed a constant-time 
implementation for the 32-bit ARM Cortex-M4, storing 
the large public key in the STM32 board's flash memory. 
For the smallest parameters (security level 1), a time of 
~582 thousand cycles for encapsulation and 2.7 million 
cycles for decapsulation was achieved, which is 80 times 
faster for encryption and 17 times faster for decryption 
than the equivalent metric for the FrodoKEM scheme on 
the same platform. The implementation is also capable 
of performing key generation (for level 1) and 
decryption for the highest security level on this device. 
This work proved the practicality of Classic McEliece 
for IoT devices with limited memory, provided that 
memory usage and computations are optimized. 

In [7], the first complete FPGA implementation of 
the Classic McEliece cryptosystem, compliant with the 
NIST specification, is presented. The design covers all 
stages: key generation (with expansion from a seed), 
encapsulation, and decapsulation, and is parameterized 
for different security levels. On a Xilinx Artix-7 FPGA, 
the following performance metrics were obtained: key 
generation in ~5.2–20 ms, encapsulation in 0.1–0.5 ms, 
and decapsulation in 0.7–1.5 ms (depending on the 
security level). By increasing parallelism, the design can 
be further accelerated at the cost of using more hardware 

area. These results are an order of magnitude better than 
previous implementations, demonstrating McEliece's 
suitability for high-performance applications with 
hardware acceleration. 

Paper [8] focuses on accelerating one of the 'bott-
lenecks' of the McEliece algorithm – slow key 
generation. An algorithm and hardware co-design is 
proposed: specifically, a compact implementation of 
large-scale GF(2)-Gaussian elimination (with early sin-
gularity detection and memory-friendly task scheduling) 
and an optimized constant-time sorter for element 
permutation. As a result, the FPGA implementation 
achieved more than a 4-fold higher key generation 
throughput while simultaneously reducing the memory-
time resource consumption by 9–14 times compared to 
previous FPGA solutions. This approach significantly 
mitigates the problems of slow key generation and large 
memory requirements that previously hindered the 
practical use of McEliece. 

In [9], a universal hardware accelerator for Classic 
McEliece encapsulation, designed using High-Level 
Synthesis (HLS), is presented. The main innovation is 
the streaming processing of the public key directly from 
memory, which eliminates the need to store the 1 MB 
key in internal FPGA buffers. The accelerator performs 
encryption functions (encoder) and generates random 
errors, allowing the most demanding part of the 
algorithm (encapsulation) to be fully offloaded to the 
FPGA. Two design variants with different resource 
trade-offs are proposed. Record-breaking performance 
was achieved: depending on the parameters, the 
encryption time was reduced by 3.5–7.7 times compared 
to previous FPGA solutions. In conjunction with an 
embedded processor (Zynq SoC), this accelerator pro-
vided an approximately 2.2-fold faster protocol opera-
tion than an optimized 64-bit software implementation 
on a CPU. Thus, the work demonstrates the advantages 
of using CPU+FPGA co-design and HLS approaches to 
achieve a flexible yet high-performance solution. 

A hybrid hardware-software implementation of 
McEliece was proposed in paper [10]. The public key is 
processed on the FPGA, while some parts of the 
algorithm run on an embedded processor. The solution 
complies with European security recommendations 
(ETSI). For a code length of 8192 bits, the authors 
achieved a decryption time of about 47.4 ms, which is a 
good result for FPGAs of that generation. This work 
became one of the first practical confirmations that a 
combined HW/SW solution can provide acceptable 
performance for the McEliece cryptosystem on modern 
hardware platforms. 

The analysis of research showed that the main 
efforts were directed at improving the performance of 
the McEliece cryptosystem. New methods for public key 
compression have been proposed (structuring codes 
using automorphisms, using alternative code families), 
which allow for a multiple reduction in key size. 
Concurrently, optimization of software implementations 
has made it possible to speed up the cipher's operation 
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without loss of security. Significant results have been 
achieved in the field of hardware acceleration: modern 
FPGA implementations ensure all McEliece operations 
are performed in milliseconds, and specialized solutions 
for key generation and decryption eliminate the most 
critical bottlenecks. Embedded systems and micro-
controllers are now capable of working with McEliece in 
real time thanks to memory and computation 
optimization. Thus, the shortcomings of the classic 
scheme (large keys, slow generation) are gradually being 
smoothed out, and the McEliece cryptosystem is 
becoming more attractive for practical implementation in 
post-quantum data protection protocols. 

The analysis also showed a lack of fundamentally 
new approaches to improving the McEliece crypto-
system, particularly the use of redundant residue number 
system codes, which have high error-correcting capa-
bilities but whose use requires a deep investigation of 
cryptographic resistance.  

III. SCOPE OF WORK AND OBJECTIVES 
The aim of this work is the development and 

analysis of a modified McEliece cryptosystem, in which 
traditional Goppa codes are replaced by error-correcting 
codes based on the Redundant Residue Number System. 
The research objective was to propose a complete 
cryptographic algorithm, including a key generation me-
thodology (using generator, scrambling, and permutation 
matrices), as well as to demonstrate its practical 
implementation on a numerical example of encryption 
and decryption. Significant attention was paid to the 
analysis of cryptographic resistance; the work quanti-
tatively assesses the complexity of Information Set 
Decoding (ISD) attacks against the proposed crypto-
system and determines the code parameters (number of 
moduli, information symbols, and errors) necessary to 
achieve modern levels of post-quantum security.  

IV. DATA ENCRYPTION METHOD BASED ON 
THE MCELIECE-RRNS CRYPTOSYSTEM 

A. RESIDUE NUMBER SYSTEM (RNS) 
Let us consider a set of pairwise mutually prime 

positive modules [11] 
M = {m1, m2, …, mn},                (1) 
gcd(mi, mj) = 1, I ≠ j, mi ≥ 2.  (2) 

The product of the moduli: 

1

n
ii

M m
=

= ∏ .                                (3) 

For every integer x €[0,M -1] is matched with the 
vector of residues 

1 2( ) ( , ,..., ), modn i ir x r r r r x m= = .             (4). 

Pair (M, r(⋅)) defines a residual number system with 
a dynamic range [0,M -1]. 

According to the Chinese remainder theorem 
(CRT), the mapping 

: ( )x r xφ → ,    (5) 

is a bijection between {0, …, M-1} and the Cartesian 
product:  

imZ∏ .                  (6) 

A redundant residual number system is constructed 
by adding additional n-k modules to k information 
modules.  

Let 
MI = {m1, m2, …, mk} – information modules, 
MR = {mk+1, …, mn} – redundant modules, 
where all modules are collectively pairwise 

mutually prime. 
Accordingly, the information range is: 

1

k
l ii

M m
−

= ∏ ,   (7) 

verification range is: 

1

n
R ii k

M m
= +

= ∏ .      (8) 

Fool range is: 
M = MI ⋅MR. 

Then, an RRNS code will be defined as the 
encoding of a number that belongs to the range 

[0, 1]lx X M∈ = − ,                        (9) 

in the form of a vector of all residues: 

1 1( ) ( ,..., , , ..., )k k nr x r r r r+= ,             (10) 

modi ir x m=        (11) 

In this case: 
the k first (r1, …, rk) components define the 

information vector in the RNS; 
the remaining n-k components (rk+1, …, rn) form 

the redundancy, which is used for error detection and 
correction. 

B. THE DISTANCE AND CORRECTING 
CAPABILITY OF THE CPR CODE 

In RRNS, a modular metric based on the number of 
positions in which the residues differ is usually 
considered. For two codewords 

1( ) ( ,..., )nr x r r= , 1( ) ( ,..., )kr y S S= ,          (12) 

determine the distance  
( ( ), ( )) |{ {1,.., } : (mod )} |i i id r x r y i n r S m= ∈ ≠ . (13) 

The minimum distance of the RRNS code: 

min min ( ( ), ( ))
x y

d d r x r y
≠

= .   (14) 

Assuming that each error manifests as an arbitrary 
change in one of the residues ri, then a code with a 
minimum distance dmin can detect up to dmin-1 errors and 
correct: 

min 1
2

dt − =   
,       (15) 

errors in the residuals. 
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For an RRNS with an information range  
[0, MI -1] and using the full set of moduli M,  
dmin=n-k+1 can be achieved under certain conditions 
(with a proper choice of moduli and range). In practice, 
for a given n-k it is often considered that the maximum 
number of errors the code corrects [11] is: 

2
n kt − =   

.   (16) 

V. THE ENCRYPTION ALGORITHM 

The proposed asymmetric encryption algorithm 
consists of three stages [12]: 

 – private and public key generation; 
 – encryption;  
– decryption. 
Let us consider these stages in detail. 

A. PRIVATE AND PUBLIC KEY 
GENERATION 

Private key generation is performed according to 
the following algorithm. 

1. Parameter selection: k - number of information 
bits, n - total code length, t - number of errors; 

2. Selection of n prime moduli: mi; 
3. Matrix creation: 
– A generator matrix G of size (k × n); 
– A scrambling matrix S (and its inverse S-1) (k × k);  
A permutation matrix P (and its inverse P-1) (n×n)); 
Accordingly, the private key is defined by the 

matrices: S, G, P. 
Public key generation: 

G′ = S⋅G⋅P.                              (17) 
Public key: G', t. 

B. ENCRYPTION ALGORITHM 
Message encryption is performed using the 

formula: 
с= x ⋅ G′ + e.   (18) 

where x – is the message; e – is the error vector. 
C. THE DECRYPTION ALGORITHM 

The decryption algorithm consists of the following 
steps: 

1. We eliminate the influence of the permutation 
matrix P by multiplying the encrypted message by P-1: 

c' = c ⋅ P-1.   (19) 
2. Error detection and correction. 
To detect and correct errors, we use the Xiao 

algorithm [13]. The Xiao algorithm is a probabilistic 
method for identifying error positions in a Redundant 
Residue Number System (RRNS). Its main idea is to find 
a majority subset of error-free residues and, based on 
this, "discard" the positions containing errors. The 
algorithm consists of the following steps. 

2.1. Initialization and Setup.  
At this stage, the basic system parameters required 

for the algorithm's operation are set: 

– data reading. The full list of moduli and the 
received list of residues (with errors) are loaded; 

– code parameter definition: k, t; 
– Information range calculation: MR, the algorithm 

calculates MR – the product of the first l moduli.  
Since any uncorrupted number reconstructed from a 

subset of residues must necessarily be less than 

1

l
R ii

M m
=

= ∏ .  (20) 

2.2. Random sampling of "consistent" subsets: 
– Sampling launch. The algorithm executes a loop a 

certain number of times; 
– l - subset formation. In each iteration, it randomly 

selects l ndices (positions) from the full set of n moduli. 
2.3. Consistency check: 
For this randomly selected l – subset (consisting of 

l – residues and l – moduli) the algorithm attempts to 
solve the system of equations using the Chinese 
Remainder Theorem (CRT); 

If the CRT finds a unique solution x, the algorithm 
performs the main check: x  < MR; 

If the solution x exists and it is less than the 
information range MR, this l – subset is considered 
"consistent". 

2.4. Statistics collection. 
 The algorithm maintains a list of indices for all l 

subsets that successfully passed the consistency check. 
In this case, if a random l – subset contains no erroneous 
positions, it will be consistent (yielding x < MR). 
However, if it contains at least one error, it will, with 
high probability, be inconsistent (either the CRT will not 
find a solution, or x  >MR. 

2.5. Frequency analysis of positions. 
At this stage, the statistics collected in step 2 are 

analyzed. 
1. Frequency counting. The algorithm creates a 

counter to track how many times each position (index 
from 0 to n-1) was part of "consistent" l – subsets. 

2. Building the histogram. The algorithm iterates 
through the entire list of found consistent subsets and 
increments the counter for each index within them. In 
this process, uncorrupted positions will frequently form 
consistent subsets, so their counter will have a high 
value. Erroneous positions, conversely, will "break" the 
consistency, so they will rarely (or never) appear in this 
list, and their counter will have a low value. 

2.6. Error determination by threshold value. 
1. Finding the maximum. The algorithm finds the 

maximum counter value (i.e., the frequency with which 
the "most popular," likely "correct," position occurred). 

2. Calculating the threshold. A threshold is set, for 
example, 50% of the maximum frequency. 

3. Error identification. The algorithm iterates 
through all positions (indices). If the counter for a 
specific position is less than this threshold, it is marked 
as an error position. 

The list of indices that failed the threshold check is 
the result of the algorithm's operation. 
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D. ERROR CORRECTION 
We solve the system of equations in the field of 

integers:  
y = x' ⋅ G,   (21) 

where y – is the known vector;  
G is the generator matrix (k × n); 

x'– is the unknown vector of length k. 
It is necessary to find an integer solution x’ such 

that 
x' ⋅ G = y,              (22) 

, 1,...,k
i i iji

y m G j n= ⋅ =∑ .          (23) 

E. REMOVING THE INFLUENCE OF THE 
SCRAMBLING MATRIX S. 

To do this, we multiply the vector m’ by the inverse 
matrix S-1: 

x = x' ⋅ S-1.  

VI. EXAMPLE DEMONSTRATION OF THE 
CRYPTOSYSTEM'S OPERATION 
A. PUBLIC KEY GENERATION 

Public key generation is performed according to the 
following algorithm. 

1.1 Selection of public key parameters. Let, the 
number of information bits k = 16; total code length 
n = 24, number of errors t = 4, message  
x = 1010101110101011. 

1.2 We select n coprime moduli: mi [2, 3, 5, 7, 11, 
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 
73, 79, 83, 97]. 

1.3 Matrix Creation 
Generator matrix G. The matrix G has the size  

(k × n), each row corresponds to one bit of information, 
and the columns are separated by moduli. Each row of 
the matrix G can be viewed as a set of residue vectors for 
the basis vectors in the message space.  

Thus, the columns of the matrix G will be filled 
with the residues from the division of the numbers 20, 21, 
22, …  , 2k-1 by each of the moduli mi [12]. 

(24)
 

An example of the generator matrix G is shown in 
Fig. 1. 

 
Fig. 1. The generator matrix G  

Scrambling matrix S (and its inverse S-1). To find 
the scrambling matrix, a program was developed that 
implements a random search method to find binary (0-1) 
unimodular matrices of a given size k × k. A feature of 
the search is that the program only finds those matrices 
S, whose determinant equals 1± , and whose inverse 
matrix S-1 is also integer-valued. 

To ensure precise arithmetic calculations (compu-
tation of the determinant and inverse matrix without 
rounding errors), the SymPy symbolic computation 
library is used. 

The algorithm operates according to the following 
steps.  

The program initializes parameters: size k, mini-
mum (min_ones), and maximum (max_ones) number of 
ones. 

In an infinite loop, a random binary matrix S of size 
k × kis generated. 

Each generated matrix undergoes sequential 
filtering: 
− density check. It is verified that the total number of 

ones in the matrix w (S) is within the specified 
range [min_ones, max_ones]; 

− determinant check: det (S) is calculated. he search 
continues only if | det (S) | =1; 

− inverse matrix check: S-1 is calculated and checked 
to ensure all its elements are integers. 
If the matrix satisfies all three conditions, it is 

considered found, and the forward and inverse matrices 
are saved to the corresponding files S і S-1. 

The loop terminates when a matrix satisfying the 
given conditions is found. 

The forward scrambling matrix for the given 
parameters is shown in Fig. 2, and the inverse in Fig. 3. 

 

 
Fig. 2. Forward scrambling matrix 

 
Fig. 3. Inverse scrambling matrix 



Vasyl Yatskiv, Serhii Kulyna, Stepan Ivasiev 

 

219

The matrix S must be a square matrix of size k × k, 
where k is the number of information symbols (or the 
dimension of the information space). The matrix S must 
also be an invertible matrix in the field where the 
encryption is performed. This means that there exists an 
matrix S-1 such that S⋅S-1= I, where I is the identity 
matrix. Usually, the elements of matrix S are chosen 
from some finite field, for example, F2 for binary codes 
or from a larger field for non-binary codes, depending on 
the chosen code. It is necessary that the choice of 
elements ensures invertibility. 

The matrix S should be random to make the 
encryption more resistant to attacks based on knowledge 
of the code's structure. Randomness helps to hide the 
structure of the generator matrix G from attackers. 

Permutation matrix P. The matrix P must be a 
square matrix of size n × n, where n is the length of the 
codeword. In each row and each column, there must be 
exactly one 1, and the rest of the elements must be 0. 
This ensures that each element of the original vector's 
position is permuted to a unique new position. In other 
words, P is a unitary matrix in the context of 
permutations. A permutation matrix is always invertible, 
as its inverse matrix is the matrix that corresponds to the 
reverse permutation. 

The calculated permutation matrix is shown in Fig. 4. 

 
Fig. 4. Permutation matrix P 

B. PUBLIC KEY CREATION: 
G' = S ⋅ G ⋅ P.       (25) 

An example of the public key is shown in Fig. 5. 

 
Fig. 5. Public key G' 

C. PUBLIC KEY PARAMETER TESTING 
Let us test the statistical characteristics of the 

public key: matrix rank, entropy, χ² - test for uniformity. 

Public key test results: 
Matrix size: 16 x 24. 
Matrix rank:16. 
The matrix has full rank (no linear dependencies 

were found). 
Public key entropy: 7.4493 bits per symbol. 
Maximum possible entropy for 204 unique values 

out of 360 elements: 7.6724 bits.  
Total number of elements N = 384; 
Number of unique values f = 211. 
Results of the χ² -test for uniformity:  
– χ² statistic: 147.8958; 
– degrees of freedom df: 210; 
– p-value: 0.999612. 
As can be seen from Fig. 6, there are no obvious 

biases in the values of the public key elements  
(χ² =147.8958).  

 
Fig. 6. Distribution of public key element values 

The entropy is high (H ≈ 7.4493 bits/symbol) 
compared to the maximum possible entropy for 204 
unique values out of 360 elements: Hmax ≈7.6724 бітів. 

D. ENCRYPTION 
с = x ⋅ G' + e.  (26) 

Using the public key obtained in the previous step, 
we get the encrypted message c: 

c = [118, 425, 1470, 177, 2273, 193, 666, 1500, 
1581, 1509, 1298, 470, 2772, 1448, 4, 641, 960, 453, 
2072, 2402, 1820, 1623, 2872, 765]. 

We add the error vector: 
e = [0, 0, 29, 0, 0, 31, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 

0, 0, 0, 0, 96, 0, 0]. 
We add errors at random positions (zero-indexed) 

[5, 2, 12, 21]: 
position 5: +31 (was 193) -> 224; 
position 2: +29 (was 1470) -> 1499; 
position 12: +37 (was 2772) -> 2809; 
position 21: +96 (was 1623) -> 1719. 
The encrypted message with errors: 
с = [118, 425, 1499, 177, 2273, 224, 666, 1500, 

1581, 1509, 1298, 470, 2809, 1448, 4, 641, 960, 453, 
2072, 2402, 1820, 1719, 2872, 765]. 

E. DECRYPTION 
1. We eliminate the influence of the permutation 

matrix P, by multiplying the encrypted message c by the 
matrix P-1: 
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c' = c ⋅ P-1 = [4,118, 224, 177, 425, 470, 666, 765, 
641, 960, 453, 1509, 1448, 1581, 1500, 1499, 1719, 
1298, 2072, 2402, 1820, 2872, 2273, 2809]. 

2. Using the Xiao algorithm, we find the error 
positions: error = [2, 15, 16, 23] and remove the columns 
from the matrix G, that correspond to the error positions. 
We write the new matrix to the variable Gnew.  

3. We remove the positions with errors from the file 
obtained in step 6.1. 

y = [4, 118, 177, 425, 470, 666, 765, 641, 960, 453, 
1509, 1448, 1581, 1500, 1298, 2072, 2402, 1820, 2872, 
2273]. 

The next step is to solve the system of equations in 
the field of integers:  

y = x' ⋅Gnew ,  (27) 
where x' is the unknown vector of size k × 1. 

As a result of the calculations, we obtain the integer 
solution x': [4 6 4 4 6 6 5 6 6 4 6 3 3 6 4 5]. 

Check: y = x' ⋅ Gnew = [4  118  177  425  470  666  
765  641  960  453 1509 1448 1581 1500 1298 2072 
2402 1820 2872 2273]. 

The difference between the vector (y) and the 
resulting product (x' ⋅ Gnew): [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0]. 

We remove the influence of the scrambling matrix 
S. To do this, we multiply the vector x' by the inverse 
matrix S-1. As a result, we obtain the decrypted message: 

x = [1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1]. 
For the McEliece-RRNS cryptosystem, besides the 

statistics of the elements, it is also important to conduct 
the following checks: 

− matrix rank and structure; 
− code properties (minimum distance, parameters 

k, n, t); 
− structure of S, P; 
− resistance to ISD/algebraic attacks, not just the 

statistics of the elements. 
An ISD attack attempts to find k coordinates of the 

ciphertext c that do not contain errors and solve the 
system x ⋅ G′ = y   for these positions. 

The probability that there are no errors in k 
randomly selected symbols among n symbols with t 
errors is ((n-t)¦k)/(n¦k). Thus, the total number of 
attempts for this attack is [12]:  

3/ .
n n t

W k
k k

−   
= ⋅ ⋅   

   
α .        (28) 

To investigate the resistance of the developed 
McEliece-RRNS cryptosystem to Information Set 
Decoding attacks, specialized software was developed. 
The program simulates the complete cryptographic cycle 
(key generation, encryption, error addition) and conducts 
a statistical experiment by repeatedly launching an ISD 
attack for given code parameters. The software allows 
changing the code parameters (n, k, t). Based on the 
program's results, estimates of the attack's computational 
complexity (number of iterations, execution time, 
number of operations on vectors/matrices) are 

automatically calculated. This made it possible to 
quantitatively assess the level of cryptographic resistance 
of the proposed cryptosystem for different sets of 
parameters [14].  

The following code parameters were used in the 
cryptographic resistance calculation: mi – prime 
numbers, n = 376, k = 256 (Fig. 7). 

 
Fig. 7. Calculation of the number  

of errors for cryptographic resistance 2128 

In Fig. 8, the number of errors for cryptographic 
resistance 2196 is calculated with the same parameters. 

 
Fig. 8. Calculation of the number  

of errors for cryptographic resistance 2196 

In Fig. 9, the number of errors for cryptographic 
resistance 2256 is calculated with the same parameters. 

 
Fig. 9. Calculation of the number  

of errors for cryptographic resistance 2256 
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Fig. 10 shows the dependence of the ISD attack 
complexity on the number of errors t for given 
parameters n = 376, k = 256.  

 
Fig. 10. Dependence of the ISD attack complexity  

on the number of errors t for given  
parameters n = 376, k = 256 

The graph (Fig. 10) shows the required number of 
errors that must be introduced during encryption to 
ensure a given level of cryptographic resistance. 

VII. CONCLUSION 
This work proposed a modification of the McEliece 

cryptosystem based on error-correcting codes over a 
Redundant Residue Number System (RRNS), employing 
the standard scrambling – permutation public-key 
construction (G, S, P). We showed that this substitution 
enables the use of integer entries in the relevant matrices 
and naturally integrates the parameters (n, k, t) through 
the choice of the modulus set, while preserving the fun-
damental security principles of code-based 
cryptosystems.  

An experimental assessment of statistical and 
structural properties of the generated public key 
indicated: full rank in the tested instance (no linear 
dependencies detected); high elementwise entropy (≈ 
7.449 bits/symbol versus a maximum of ≈ 7.672 
bits/symbol); and no statistically significant deviation 
from uniformity under the χ² test (p-value ≈ 0.9996). 
These metrics mitigate the risk of trivial, pattern-based 
structural leakage; however, they are not, by themselves, 
sufficient to guarantee cryptographic security – decisive 
factors remain the code parameters and resistance to 
Information Set Decoding (ISD) and algebraic attacks.  

We simulated ISD resistance while varying the 
number of errors t and the redundancy r=n−k. The 
resulting complexity curves confirm parameter regions 
in which the ISD cost reaches target post-quantum levels 
(e.g., ≥ 2128 operations) for acceptable public-key sizes.  

Overall, the results support the viability of the 
McEliece-RRNS approach and outline practical 
parameter-selection guidelines that achieve post-
quantum security levels with moderate memory and 
runtime overheads. Future work will focus on analyzing 
algebraic attacks targeting RRNS-based error-correcting 
codes and on optimizing the decryption algorithm. 
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