
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 10, No. 2, 2025

SCALABLE SYSTEM FOR AUTOMATED MODELING
OF PHYSICAL PROCESSES AND EXPERIMENT MANAGEMENT

Mykhailo Bavdys, Oleksii Kushnir

Ivan Franko National University of Lviv, 50, Drahomanov Str, Lviv, 79005, Ukraine.
Authors’ e-mails: bavdysmyh@ukr.net, oleksiy.kushnir@lnu.edu.ua

https://doi.org/10.23939/acps2025.02.223

Submitted on 29.09.2025

© Bavdys M., Kushnir O., 2025

Abstract: This article presents a new scalable system for
automated modeling of physical processes and experiment
management based on microservice architecture and cloud
technologies. The proposed platform addresses the growing
need for flexible, cost-effective, and highly scalable
computational solutions for physical research. The system
utilizes Amazon Web Services cloud infrastructure with
containerized microservices to provide automated resource
allocation, experiment orchestration, and laboratory
equipment integration. Key components include
computational engines for numerical methods, visualization
services, resource managers, and laboratory automation
interfaces. Performance evaluation shows a 60% reduction
in computational time and 45% cost savings compared to
traditional approaches. The platform supports multiple
physical domains, such as electromagnetic modeling, thermal
analysis, and mechanical simulations.

Index terms: cyber-physical systems, microservices, cloud
computing, physical modeling, laboratory automation, AWS,
scalability.

I. INTRODUCTION
Modern physical research requires sophisticated

computational tools capable of processing complex
simulations, managing experimental workflows, and
integrating diverse laboratory equipment [1]. Traditional
physical modeling platforms face significant limitations in
scalability, flexibility, and integration capabilities, which
hinder contemporary research methodologies.

Monolithic solutions require substantial initial
investments, impose rigid constraints on workflows, and
lack the adaptability necessary for diverse research
requirements [3, 4]. The isolation between computational
modeling tools and laboratory automation systems creates
inefficiencies that slow down research progress.

The emergence of cloud computing and micro-
service architecture presents transformational opportu-
nities for physics research platforms [5, 6]. Cloud solu-
tions offer unprecedented computational scalability and
cost-effectiveness through pay-per-use models. Micro-
services provide modular design, independent scaling, and
technological diversity [7, 8].

This convergence aligns with the principles of cyber-
physical systems, where computational elements are deeply
integrated with physical processes and laboratory

equipment. Such integration enables real-time feedback
between theoretical models and experimental observa-
tions [9].

 Recent advances in computational-measurement
systems have demonstrated the effectiveness of distributed
architectures for scientific applications, particularly in
nanoplasmonics research where complex physical
phenomena require sophisticated computational
approaches [10]. The implementation of microservice-
based structures in scientific computing environments has
shown promising results for managing heterogeneous
computational workflows and experimental data
processing [11].

This article presents a comprehensive scalable
system specifically designed for automated modeling of
physical processes and experiment management. The so-
lution addresses critical challenges such as computational
scalability limitations, experiment automation require-
ments, equipment integration complexities, and resource
optimization needs.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The physical modeling landscape encompasses
several categories of solutions with varying advantages
and limitations. Commercial platforms such as COMSOL
Multiphysics and ANSYS dominate the market, providing
comprehensive simulation capabilities [3]. COMSOL
offers advanced multiphysics modeling with user-friendly
interfaces, but its monolithic architecture presents
limitations in cloud deployment, requiring manual
resource management.

ANSYS provides powerful computational fluid dy-
namics and structural analysis capabilities with advanced
algorithms and material libraries [4]. However, ANSYS
implementations require significant licensing investments
and dedicated hardware infrastructure, which may
inefficiently utilize available resources.

Cloud simulation initiatives offer scalable infra-
structure but typically focus on provisioning rather than
integrated physical modeling capabilities [1]. AWS
ParallelCluster provides managed high-performance
computing infrastructure but requires substantial manual
configuration.

Scalable System for Automated Modeling of Physical Processes and Experiment Management 224

The application of microservice architecture in
scientific computing represents a new field with
significant potential [12, 13]. Several research initiatives
explore containerized scientific workflows, but most
existing implementations focus on bioinformatics rather
than physical modeling [12].

Laboratory automation systems provide compre-
hensive information management platforms and robotic
automation. These systems offer excellent laboratory
process management but typically operate in isolation
from computational modeling platforms (Table).

Comprehensive comparison of existing physical
modeling solutions by scalability, cost-effectiveness,

integration capabilities, and maintenance
requirements.

Decision Scalability Cost Integration Service
COMSOL Low High Limited Complex

ANSYS Low High Limited Complex

AWS
Cloud

High Medium Manual Automatic

Our
System

Very High Low Complete Automatic

Existing solutions require researchers to choose
between comprehensive physical modeling capabilities in
commercial platforms and the scalability advantages of
cloud architectures. This limitation motivates the
development of new approaches that combine the benefits
of both paradigms [15, 10].

III. SCOPE OF WORK AND OBJECTIVES
The proposed system utilizes microservice design

patterns optimized for physical modeling workloads and
deployed on AWS cloud infrastructure. The architecture
addresses the complex requirements of modern physical
research, ensuring seamless integration between
computational modeling and laboratory equipment [15].

A. GENERAL ARCHITECTURE DESIGN
The system architecture consists of multiple

interconnected layers that provide clear separation of
functions while maintaining efficient communication
between components [6]. The presentation layer offers
user interfaces for researcher interaction with the system.
The API gateway serves as the primary entry point,
providing authentication, authorization, and request
routing [2] (Fig. 1).

The microservice layer contains the core business
logic, implemented as independent services for auto-
nomous development, deployment, and scaling [7]. Each
microservice encapsulates specific functionality. The data
layer provides persistent storage through relational
databases for structured data, object storage for simulation
files, and time series databases for experimental measu-
rements.

Fig. 1. Comprehensive system architecture showing
microservices interconnections, data flow patterns,
and integration points with laboratory equipment.

B. CORE MICROSERVICES
IMPLEMENTATION

The computational engine service executes physical
modeling calculations using various numerical methods
implemented in Golang for optimal performance
characteristics. The service supports finite element
analysis for electromagnetic and structural problems,
finite difference methods for time-dependent phenomena,
and Monte Carlo simulations. Advanced algorithms
analyze problem characteristics to determine optimal
resource allocation strategies [8].

The visualization service generates interactive visual
representations through server-side rendering and client-
side components. The service supports two-dimensional
plots, three-dimensional renderings, and animation
sequences. Real-time visualization capabilities allow
researchers to monitor simulation progress.

The resource management service implements
sophisticated algorithms for dynamic resource allocation,
auto-scaling decisions, and cost optimization [2]. The ser-
vice continuously monitors performance metrics and pre-
dicts future requirements based on historical data (Fig. 2).

The task scheduler service manages experimental
workflows, task queue systems, and dependency reso-
lution for multi-stage research processes [5]. The service
allows researchers to define complex procedures that com-
bine computational modeling with laboratory measu-
rements.

Fig. 2. Detailed auto-scaling process flow showing decision-

making algorithms and resource allocation strategies for optimal
performance.

Mykhailo Bavdys, Oleksii Kushnir 225

The laboratory integration service provides standar-
dized interfaces for connecting laboratory equipment
through abstracted driver implementations. The service sup-
ports common laboratory standards, providing extensible
plugin architectures for specialized equipment (Fig. 3).

Fig. 3. Laboratory equipment integration architecture showing

communication protocols and real-time data flow between
instruments and models.

C. COMMUNICATION AND SECURITY
Microservices communicate through REST APIs for

synchronous operations and asynchronous messaging,
using Amazon SQS and SNS for long-running tasks [2].
The system implements OAuth 2.0 authentication, role-
based access control, and encryption for data protection.
AWS IAM provides granular permission management,
while VPC networks ensure secure infrastructure isolation
[15].

IV. EXPERIMENTAL RESEARCH AND RESULTS
Comprehensive system evaluation included practical

implementation of physical modeling using specialized
computational algorithms deployed in Docker containers
on AWS ECS. All experiments were conducted using real
numerical methods and validation through laboratory
equipment to confirm the accuracy of obtained results.

A. ELECTROMAGNETIC MODELING RESEARCH
Electromagnetic modeling was implemented through

a custom Golang implementation of the finite element
method for solving Maxwell's equations in the frequency
domain. The core Computation Engine Service was
written in Golang using high-performance libraries for
parallel computing and sparse matrix operations. The
system automatically generates unstructured tetrahedral
meshes and performs parallel solving of large linear
equation systems.

The technical implementation is based on the curl-
curl formulation of Maxwell's equations in weak form,
where the main equation has the form

 × (μ-¹ × E) - ω²εE = -iωJ. (1)
The Computation Engine Service runs specialized

Golang microservices in Docker containers, ensuring
computational process isolation and efficient resource
management. Each container is optimized for working
with specific types of electromagnetic modeling tasks.

Computational domains included complex three-
dimensional geometries of microwave resonators with
adaptive mesh refinement from 500,000 to 2,000,000
nodes. Frequency analysis covered a wide range from 1 to
10 GHz with detailed consideration of electrical properties
of 15 different dielectric materials. Material dielectric
permittivity varied from 2.1 to 12.8, and the dielectric loss
tangent ranged from 0.001 to 0.05, corresponding to real
characteristics of modern microwave materials.

The Resource Manager Service continuously
monitored memory usage, which is a critical parameter for
efficient execution of finite element algorithms, and
automatically allocated computational tasks between 2 to
50 EC2 instances of type c5.4xlarge. Each instance
provided 16 virtual CPUs and 32 GB of RAM for optimal
parallel computation execution. Parallelization was
implemented through Message Passing Interface with
automatic dynamic load balancing between available
computational resources.

Performance results demonstrate significant impro-
vements compared to traditional monolithic solutions.
Comparison with commercial systems showed a 60%
reduction in solution time for tasks containing over one
million finite elements, thanks to efficient parallelization
and optimized sparse matrix algorithms (Fig. 4).

B. THERMAL ANALYSIS RESEARCH
Thermal modeling was performed through a custom

Golang implementation of computational fluid dynamics
algorithms for solving the unsteady heat conduction
equation with consideration of convective heat transfer.
The main equation has the form

∂T/∂t + ·(UT) = ·(α T) + ST,
where T represents temperature distribution, U is the
coolant velocity field, α denotes the material thermal
diffusivity coefficient, and ST describes internal heat
generation sources.

Fig. 4. Electromagnetic modeling scalability results showing
execution time reduction and resource utilization efficiency.

Experimental validation was conducted through
integrated data collection from 24 high-precision K-type
thermocouples connected through a specially developed
microcontroller interface with a sampling frequency of 10
Hz. The Laboratory Integration Service, written in
Golang, provided reliable transmission of experimental

Scalable System for Automated Modeling of Physical Processes and Experiment Management 226

data through MQTT protocol to the TimeSeries Database
running in a separate Docker container to ensure data
storage reliability.

The Task Scheduler Service coordinated simul-
taneous execution of thermal simulation and experimental
data collection with automatic result synchronization.
Every 30 seconds, the system performed detailed
comparison of calculated and measured temperatures and
automatically corrected modeling boundary conditions
through specialized Golang parameter optimization algo-
rithms. This ensured continuous improvement of mode-
ling accuracy throughout the entire experimental process.

The geometric model included a detailed three-
dimensional representation of a semiconductor chip
measuring 15×15×2 millimeters with realistic thermal
sources ranging from 5 to 25 W. Third-type boundary
conditions modeled convective heat exchange with the
environment using heat transfer coefficients from 10 to 50
W/(m²·K), corresponding to typical operating conditions
of electronic devices.

The system achieved high validation accuracy with
95% convergence between simulated and experimentally
measured temperatures thanks to automatic parameter
tuning through advanced minimization algorithms.
Automated validation dramatically reduced experimental
verification time by 70% compared to traditional manual
procedures, significantly accelerating the development
and testing cycle (Fig. 5).
C. MECHANICAL VIBRATIONAL ANALYSIS RESEARCH

Modal analysis of mechanical vibrations was
implemented through custom Golang finite element
method algorithms for solving the generalized eigenvalue
problem of the form [K - λіM]φі = 0. In this equation, K
represents the structural stiffness matrix, M is the mass
matrix, λі correspond to natural vibration frequencies, and
φі describe the corresponding vibration modes of the
system.

Fig. 5. Thermal analysis performance comparison showing
accuracy improvements and time reduction through integrated

validation.

The Computation Engine Service used efficient
algorithms for working with large sparse matrices,

implemented in Golang, for rapid computation of
eigenvalues and eigenvectors. Geometric models were
generated automatically through built-in tetrahedralization
algorithms that ensured optimal finite element mesh
quality for accurate modeling of mechanical systems'
dynamic characteristics.

The experimental setup included a 16-channel array
of high-sensitivity ADXL345 accelerometers with a
sampling frequency of 25.6 kHz, connected via I2C bus to
Raspberry Pi 4 for primary signal processing. Data was
transmitted in real-time through WebSocket connections
to the Lab Integration Service, ensuring minimal latency
and high reliability of measurement information
transmission.

Signal processing was performed through custom
Golang implementations of fast Fourier transform
algorithms with Hamming windowing to reduce spectral
leakage. Resonant frequency identification was conducted
through specialized peak-finding algorithms in the
frequency domain with automatic threshold determination
and noise component filtering.

The system successfully identified 98% of resonant
frequencies with high accuracy of ±2% in a wide
frequency range from 0 to 5000 Hz. Complete automation
of the experimental process dramatically reduced
experiment setup time from four hours to fifteen minutes
thanks to automated equipment calibration and
synchronization of all measurement channels.

D. SYSTEM PERFORMANCE EVALUATION
All computational modules were packaged in

optimized Docker containers with Alpine Linux base
images to minimize size and increase deployment speed.
The orchestration system used Kubernetes for automatic
scaling and intelligent resource management through
Horizontal Pod Autoscaler, ensuring optimal utilization of
available computational power.

Performance optimization included compilation of
critical Golang components with aggressive optimization
flags for maximum execution efficiency. The system used
memory-mapped files for efficient work with large
matrices and asynchronous result writing to minimize
blocking input-output operations.

Detailed benchmark testing against leading
commercial systems COMSOL and ANSYS on identical
computational tasks demonstrated significant advantages
of the developed system. Results showed 15%
improvement in single-core performance thanks to
optimized algorithms and impressive 85% parallelization
efficiency when using up to 64 computational cores.

The system's cost-effectiveness was confirmed by
detailed analysis through AWS Cost Explorer, which
showed a 45% reduction in operational costs thanks to
intelligent use of spot instances and adaptive auto-scaling
policies. CloudWatch metrics consistently confirmed
exceptionally high system reliability with 99.9%
availability and mean recovery time of only 30 seconds
when failures occurred [1, 15] (Fig. 6, 7).

Mykhailo Bavdys, Oleksii Kushnir 227

Fig. 6. Comparison of operating expenses. Economic analysis
showing cost savings through cloud microservice architecture

compared to traditional infrastructure.

Fig. 7. Cost allocation in our system. Economic analysis
showing cost savings through cloud microservice architecture

compared to traditional infrastructure.

V. DISCUSSION AND DEVELOPMENT
PERSPECTIVES

The microservice approach provides significant
advantages through independent service scaling, techno-
logical diversity, and failure isolation [6, 7]. Independent
scaling allows optimal resource allocation for different
computational tasks, while modular design ensures
appropriate technology selection for each component [8].

Cloud deployment offers unprecedented flexibility
through pay-per-use models, geographic distribution for
global collaboration, and managed services that reduce
administrative overhead [2]. The elastic nature of cloud
infrastructure enables access to computational resources
that would be prohibitively expensive with traditional
approaches.

Laboratory equipment integration presents chal-
lenges such as supporting legacy devices with proprietary
protocols and network security issues for cloud
connectivity [9]. Scalability limitations arise from inherent
characteristics of specific physical problems, where
memory-bound computations may not benefit from
horizontal scaling.

Future improvements include machine learning
integration for intelligent resource allocation, edge com-
puting support for reduced laboratory integration latency,
blockchain technology for immutable experiment audit
trails, and standardized laboratory equipment commu-
nication protocols [12].

VI. CONCLUSION
This research presented a comprehensive scalable

system for automated modeling of physical processes and
experiment management that successfully addresses
critical limitations of existing solutions through micro-
service architecture and cloud technologies [13].

Performance evaluation in electromagnetic mode-
ling, thermal analysis, and mechanical vibrational analysis
demonstrated consistent improvements, including 60%
execution time reduction, 45% cost savings, and 99.9%
system availability. Laboratory integration capabilities
reduced equipment configuration time from hours to
minutes while maintaining 95% compatibility with
existing instrumentation.

The microservice architecture provided unprece-
dented flexibility through independent component scaling,
technological diversity, and failure isolation mechanisms
[14]. Economic analysis revealed substantial benefits
through reduced infrastructure investments, eliminated
licensing costs, and decreased administrative overhead.

The modular design ensured excellent extensibility
for implementing new computational methods and
equipment integration capabilities. Future directions
included machine learning integration, edge computing
deployment, and blockchain implementation for research
audit trails [15].

Successful implementation validated cloud appro-
aches for physical research applications, providing a solid
foundation for next-generation research automation. The
platform served as a reference implementation for
scientific computing initiatives with comprehensive
documentation and open architecture that facilitates
adaptation to diverse research requirements.

VII. CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

VIII. DECLARATION ON GENERATIVE AI
During the preparation of this work, the authors used

Claude in order to spelling check and translation. After
using this tool/service, the authors reviewed and edited the
content as needed and take full responsibility for the
publication’s content.

References

[1] Ganje, A. (2025). The evolution and future of
microservices architecture with AI-driven enhancements.
Journal of Software Engineering and Applications, 18(2),
45-62. https://doi.org/10.4236/jsea.2025.182005

[2] Amazon Web Services. (2024). AWS auto scaling user
guide (Technical Documentation). Amazon Web Services.
https://docs.aws.amazon.com/autoscaling/

[3] COMSOL AB. (2023). COMSOL Multiphysics user's
guide (Version 6.0). COMSOL AB. https://doc.comsol.
com/6.0/docserver/#!/com.comsol.help.comsol/helpdesk/h
elpdesk.html

[4] ANSYS Inc. (2024). ANSYS Fluent theory guide (Release
2024 R1). ANSYS Inc. https://ansyshelp.ansys.com/account/

Scalable System for Automated Modeling of Physical Processes and Experiment Management 228

secured?returnurl=/Views/Secured/corp/v241/en/flu_th/flu_th.
html

[5] The Kubernetes Authors. (2023). Production-grade con-
tainer orchestration (Documentation v1.28). Cloud Native
Computing Foundation. https://doi.org/10.64252/1gsp5b96

[6] Newman, S. (2021). Building microservices: Designing
fine-grained systems (2nd ed.). O'Reilly Media.

[7] Bass, L., Clements, P., & Kazman, R. (2021). Software
architecture in practice (4th ed.). Addison-Wesley
Professional.

[8] Patel, R., & Singh, A. (2023). Microservices architecture
patterns and implementation strategies in cloud computing.
International Journal of Recent Engineering Science,
12(1), 28-35. https://doi.org/10.14445/23497157/IJRES-
V12I1P103

[9] Kumar, S., et al. (2021). Evaluating monolithic versus
microservice architecture patterns: A comprehensive
performance analysis. International Research Journal of
Modernization in Engineering Technology and Science,
3(4), 1024-1032. https://doi.org/10.56726/IRJMETS.
2021.3.4.24

[10] Bolesta, I., Kushnir, O., Bavdys, M., Khvyshchun, I., &
Demchuk, A. (2019). Computational-measurement system

"Nanoplasmonics". Part 1: Architecture. 2019 IEEE XIth
International Scientific and Practical Conference on
Electronics and Information Technologies (ELIT).
https://doi.org/10.1109/ELIT.2019.8892288

[11] Bolesta, I., Kushnir, O., Bavdys, M., Khvyshchun, I., &
Demchuk, A. (2019). Computational-measurement system
"Nanoplasmonics". Part 2: Structure of microservices.
2019 IEEE XIth International Scientific and Practical
Conference on Electronics and Information Technologies
(ELIT). https://doi.org/10.1109/ELIT.2019.8892345

[12] Chen, L., & Wang, M. (2022). Kubernetes: Up and
running in cloud-native environments (3rd ed.). O'Reilly
Media.

[13] Richardson, C., & Fowler, M. (2021). Microservices
patterns and best practices for distributed systems. IEEE
Software, 38(3), 24-32. https://doi.org/10.1109/
MS.2021.3064286

[14] Richardson, C. (2018). Microservices patterns: With
examples in Java. Manning Publications.

[15] Amazon Web Services. (2023). Microservices on AWS
(AWS Whitepaper). Amazon Web Services.
https://docs.aws.amazon.com/whitepapers/latest/microserv
ices-on-aws/microservices-on-aws.html

Mykhailo Bavdys was born
in Lviv, Ukraine, on April 25,
1994. He received the B.S. degree
in Computer Science from Ivan
Franko National University of Lviv
in 2016 and the M.S. degree in
Computer Science from the same
university in 2018. He is currently
pursuing the Ph.D. degree in
Computer Science at Ivan Franko
National University of Lviv.

From September 2021 to February 2022, he served as a
Teaching Assistant. Since 2018, he has been a Ph.D. student at
Ivan Franko National University of Lviv. His research interests
include big data computational optimization, development of
various architectural systems, and computational methods in
computer science applications.

Oleksii Kushnir was born in
Lviv, Ukraine, on July 27, 1987.
He received the M.S. degree in
Radiophysics and Electronics from
Ivan Franko National University
of Lviv in 2009 and the Ph.D.
degree in Physics and Mathe-
matics in 2013 with a dissertation
on "Surface plasmon excitations in
inhomogeneous metal-dielectric
nanocomposites."

From 2009 to 2012, he was a Ph.D. student at Ivan Franko
National University of Lviv. From 2014 to 2015, he served as a
Junior Research Fellow and then Research Fellow at the
Department of Radiophysics and Computer Technologies. Since
2015, he has been an Assistant Professor, and since 2019, he has
been an Associate Professor with the Department of
Radiophysics and Computer Technologies, Ivan Franko National
University of Lviv. He also serves as a First Category Engineer
at the Laboratory of Radiophysics and Computer Technologies.

His research interests include nanoplasmonics, optics of
dispersive media, and robotics. He is a Laureate of the President of
Ukraine Prize for Young Scientists (2015) for his work on
"Electrical, optical and structural properties of ultrathin films of
simple and transition metals."

