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Abstract: This article presents a new scalable system for 
automated modeling of physical processes and experiment 
management based on microservice architecture and cloud 
technologies. The proposed platform addresses the growing 
need for flexible, cost-effective, and highly scalable 
computational solutions for physical research. The system 
utilizes Amazon Web Services cloud infrastructure with 
containerized microservices to provide automated resource 
allocation, experiment orchestration, and laboratory 
equipment integration. Key components include 
computational engines for numerical methods, visualization 
services, resource managers, and laboratory automation 
interfaces. Performance evaluation shows a 60% reduction 
in computational time and 45% cost savings compared to 
traditional approaches. The platform supports multiple 
physical domains, such as electromagnetic modeling, thermal 
analysis, and mechanical simulations. 

Index terms: cyber-physical systems, microservices, cloud 
computing, physical modeling, laboratory automation, AWS, 
scalability. 

I. INTRODUCTION 
Modern physical research requires sophisticated 

computational tools capable of processing complex 
simulations, managing experimental workflows, and 
integrating diverse laboratory equipment [1]. Traditional 
physical modeling platforms face significant limitations in 
scalability, flexibility, and integration capabilities, which 
hinder contemporary research methodologies. 

Monolithic solutions require substantial initial 
investments, impose rigid constraints on workflows, and 
lack the adaptability necessary for diverse research 
requirements [3, 4]. The isolation between computational 
modeling tools and laboratory automation systems creates 
inefficiencies that slow down research progress. 

The emergence of cloud computing and micro-
service architecture presents transformational opportu-
nities for physics research platforms [5, 6]. Cloud solu-
tions offer unprecedented computational scalability and 
cost-effectiveness through pay-per-use models. Micro-
services provide modular design, independent scaling, and 
technological diversity [7, 8]. 

This convergence aligns with the principles of cyber-
physical systems, where computational elements are deeply 
integrated with physical processes and laboratory 

equipment. Such integration enables real-time feedback 
between theoretical models and experimental observa- 
tions [9]. 

 Recent advances in computational-measurement 
systems have demonstrated the effectiveness of distributed 
architectures for scientific applications, particularly in 
nanoplasmonics research where complex physical 
phenomena require sophisticated computational 
approaches [10]. The implementation of microservice-
based structures in scientific computing environments has 
shown promising results for managing heterogeneous 
computational workflows and experimental data 
processing [11]. 

This article presents a comprehensive scalable 
system specifically designed for automated modeling of 
physical processes and experiment management. The so-
lution addresses critical challenges such as computational 
scalability limitations, experiment automation require-
ments, equipment integration complexities, and resource 
optimization needs. 

II.  LITERATURE REVIEW AND PROBLEM 
STATEMENT 

The physical modeling landscape encompasses 
several categories of solutions with varying advantages 
and limitations. Commercial platforms such as COMSOL 
Multiphysics and ANSYS dominate the market, providing 
comprehensive simulation capabilities [3]. COMSOL 
offers advanced multiphysics modeling with user-friendly 
interfaces, but its monolithic architecture presents 
limitations in cloud deployment, requiring manual 
resource management. 

ANSYS provides powerful computational fluid dy-
namics and structural analysis capabilities with advanced 
algorithms and material libraries [4]. However, ANSYS 
implementations require significant licensing investments 
and dedicated hardware infrastructure, which may 
inefficiently utilize available resources. 

Cloud simulation initiatives offer scalable infra-
structure but typically focus on provisioning rather than 
integrated physical modeling capabilities [1]. AWS 
ParallelCluster provides managed high-performance 
computing infrastructure but requires substantial manual 
configuration. 
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The application of microservice architecture in 
scientific computing represents a new field with 
significant potential [12, 13]. Several research initiatives 
explore containerized scientific workflows, but most 
existing implementations focus on bioinformatics rather 
than physical modeling [12]. 

Laboratory automation systems provide compre-
hensive information management platforms and robotic 
automation. These systems offer excellent laboratory 
process management but typically operate in isolation 
from computational modeling platforms (Table). 

Comprehensive comparison of existing physical 
modeling solutions by scalability, cost-effectiveness, 

integration capabilities, and maintenance 
requirements. 

Decision Scalability Cost Integration Service 
COMSOL Low High Limited Complex 

ANSYS Low High Limited Complex 

AWS 
Cloud 

High Medium Manual Automatic 

Our  
System 

Very High Low Complete Automatic 

Existing solutions require researchers to choose 
between comprehensive physical modeling capabilities in 
commercial platforms and the scalability advantages of 
cloud architectures. This limitation motivates the 
development of new approaches that combine the benefits 
of both paradigms [15, 10].  

III. SCOPE OF WORK AND OBJECTIVES 
The proposed system utilizes microservice design 

patterns optimized for physical modeling workloads and 
deployed on AWS cloud infrastructure. The architecture 
addresses the complex requirements of modern physical 
research, ensuring seamless integration between 
computational modeling and laboratory equipment [15]. 

A. GENERAL ARCHITECTURE DESIGN 
The system architecture consists of multiple 

interconnected layers that provide clear separation of 
functions while maintaining efficient communication 
between components [6]. The presentation layer offers 
user interfaces for researcher interaction with the system. 
The API gateway serves as the primary entry point, 
providing authentication, authorization, and request 
routing [2] (Fig. 1). 

The microservice layer contains the core business 
logic, implemented as independent services for auto-
nomous development, deployment, and scaling [7]. Each 
microservice encapsulates specific functionality. The data 
layer provides persistent storage through relational 
databases for structured data, object storage for simulation 
files, and time series databases for experimental measu-
rements. 

 
Fig. 1. Comprehensive system architecture showing 
microservices interconnections, data flow patterns,  
and integration points with laboratory equipment. 

B. CORE MICROSERVICES 
IMPLEMENTATION 

The computational engine service executes physical 
modeling calculations using various numerical methods 
implemented in Golang for optimal performance 
characteristics. The service supports finite element 
analysis for electromagnetic and structural problems, 
finite difference methods for time-dependent phenomena, 
and Monte Carlo simulations. Advanced algorithms 
analyze problem characteristics to determine optimal 
resource allocation strategies [8]. 

The visualization service generates interactive visual 
representations through server-side rendering and client-
side components. The service supports two-dimensional 
plots, three-dimensional renderings, and animation 
sequences. Real-time visualization capabilities allow 
researchers to monitor simulation progress. 

The resource management service implements 
sophisticated algorithms for dynamic resource allocation, 
auto-scaling decisions, and cost optimization [2]. The ser-
vice continuously monitors performance metrics and pre-
dicts future requirements based on historical data (Fig. 2). 

The task scheduler service manages experimental 
workflows, task queue systems, and dependency reso-
lution for multi-stage research processes [5]. The service 
allows researchers to define complex procedures that com-
bine computational modeling with laboratory measu-
rements. 

 

 
Fig. 2. Detailed auto-scaling process flow showing decision-

making algorithms and resource allocation strategies for optimal 
performance. 
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The laboratory integration service provides standar-
dized interfaces for connecting laboratory equipment 
through abstracted driver implementations. The service sup-
ports common laboratory standards, providing extensible 
plugin architectures for specialized equipment (Fig. 3). 

 

 
Fig. 3. Laboratory equipment integration architecture showing 

communication protocols and real-time data flow between 
instruments and models. 

C. COMMUNICATION AND SECURITY 
Microservices communicate through REST APIs for 

synchronous operations and asynchronous messaging, 
using Amazon SQS and SNS for long-running tasks [2]. 
The system implements OAuth 2.0 authentication, role-
based access control, and encryption for data protection. 
AWS IAM provides granular permission management, 
while VPC networks ensure secure infrastructure isolation 
[15]. 

IV. EXPERIMENTAL RESEARCH AND RESULTS 
Comprehensive system evaluation included practical 

implementation of physical modeling using specialized 
computational algorithms deployed in Docker containers 
on AWS ECS. All experiments were conducted using real 
numerical methods and validation through laboratory 
equipment to confirm the accuracy of obtained results. 

A. ELECTROMAGNETIC MODELING RESEARCH 
Electromagnetic modeling was implemented through 

a custom Golang implementation of the finite element 
method for solving Maxwell's equations in the frequency 
domain. The core Computation Engine Service was 
written in Golang using high-performance libraries for 
parallel computing and sparse matrix operations. The 
system automatically generates unstructured tetrahedral 
meshes and performs parallel solving of large linear 
equation systems. 

The technical implementation is based on the curl-
curl formulation of Maxwell's equations in weak form, 
where the main equation has the form  

 × (μ-¹  × E) - ω²εE = -iωJ.                      (1) 
The Computation Engine Service runs specialized 

Golang microservices in Docker containers, ensuring 
computational process isolation and efficient resource 
management. Each container is optimized for working 
with specific types of electromagnetic modeling tasks. 

Computational domains included complex three-
dimensional geometries of microwave resonators with 
adaptive mesh refinement from 500,000 to 2,000,000 
nodes. Frequency analysis covered a wide range from 1 to 
10 GHz with detailed consideration of electrical properties 
of 15 different dielectric materials. Material dielectric 
permittivity varied from 2.1 to 12.8, and the dielectric loss 
tangent ranged from 0.001 to 0.05, corresponding to real 
characteristics of modern microwave materials. 

The Resource Manager Service continuously 
monitored memory usage, which is a critical parameter for 
efficient execution of finite element algorithms, and 
automatically allocated computational tasks between 2 to 
50 EC2 instances of type c5.4xlarge. Each instance 
provided 16 virtual CPUs and 32 GB of RAM for optimal 
parallel computation execution. Parallelization was 
implemented through Message Passing Interface with 
automatic dynamic load balancing between available 
computational resources. 

Performance results demonstrate significant impro-
vements compared to traditional monolithic solutions. 
Comparison with commercial systems showed a 60% 
reduction in solution time for tasks containing over one 
million finite elements, thanks to efficient parallelization 
and optimized sparse matrix algorithms (Fig. 4). 

B.  THERMAL ANALYSIS RESEARCH 
Thermal modeling was performed through a custom 

Golang implementation of computational fluid dynamics 
algorithms for solving the unsteady heat conduction 
equation with consideration of convective heat transfer. 
The main equation has the form  

∂T/∂t + ·(UT) = ·(α T) + ST, 
where T represents temperature distribution, U is the 
coolant velocity field, α denotes the material thermal 
diffusivity coefficient, and ST describes internal heat 
generation sources. 

 

 
Fig. 4. Electromagnetic modeling scalability results showing 
execution time reduction and resource utilization efficiency. 

Experimental validation was conducted through 
integrated data collection from 24 high-precision K-type 
thermocouples connected through a specially developed 
microcontroller interface with a sampling frequency of 10 
Hz. The Laboratory Integration Service, written in 
Golang, provided reliable transmission of experimental 
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data through MQTT protocol to the TimeSeries Database 
running in a separate Docker container to ensure data 
storage reliability. 

The Task Scheduler Service coordinated simul-
taneous execution of thermal simulation and experimental 
data collection with automatic result synchronization. 
Every 30 seconds, the system performed detailed 
comparison of calculated and measured temperatures and 
automatically corrected modeling boundary conditions 
through specialized Golang parameter optimization algo-
rithms. This ensured continuous improvement of mode-
ling accuracy throughout the entire experimental process. 

The geometric model included a detailed three-
dimensional representation of a semiconductor chip 
measuring 15×15×2 millimeters with realistic thermal 
sources ranging from 5 to 25 W. Third-type boundary 
conditions modeled convective heat exchange with the 
environment using heat transfer coefficients from 10 to 50 
W/(m²·K), corresponding to typical operating conditions 
of electronic devices. 

The system achieved high validation accuracy with 
95% convergence between simulated and experimentally 
measured temperatures thanks to automatic parameter 
tuning through advanced minimization algorithms. 
Automated validation dramatically reduced experimental 
verification time by 70% compared to traditional manual 
procedures, significantly accelerating the development 
and testing cycle (Fig. 5). 
C.  MECHANICAL VIBRATIONAL ANALYSIS RESEARCH 

Modal analysis of mechanical vibrations was 
implemented through custom Golang finite element 
method algorithms for solving the generalized eigenvalue 
problem of the form [K - λіM]φі = 0. In this equation, K 
represents the structural stiffness matrix, M is the mass 
matrix, λі correspond to natural vibration frequencies, and 
φі describe the corresponding vibration modes of the 
system. 

 

Fig. 5. Thermal analysis performance comparison showing 
accuracy improvements and time reduction through integrated 

validation. 

The Computation Engine Service used efficient 
algorithms for working with large sparse matrices, 

implemented in Golang, for rapid computation of 
eigenvalues and eigenvectors. Geometric models were 
generated automatically through built-in tetrahedralization 
algorithms that ensured optimal finite element mesh 
quality for accurate modeling of mechanical systems' 
dynamic characteristics. 

The experimental setup included a 16-channel array 
of high-sensitivity ADXL345 accelerometers with a 
sampling frequency of 25.6 kHz, connected via I2C bus to 
Raspberry Pi 4 for primary signal processing. Data was 
transmitted in real-time through WebSocket connections 
to the Lab Integration Service, ensuring minimal latency 
and high reliability of measurement information 
transmission. 

Signal processing was performed through custom 
Golang implementations of fast Fourier transform 
algorithms with Hamming windowing to reduce spectral 
leakage. Resonant frequency identification was conducted 
through specialized peak-finding algorithms in the 
frequency domain with automatic threshold determination 
and noise component filtering. 

The system successfully identified 98% of resonant 
frequencies with high accuracy of ±2% in a wide 
frequency range from 0 to 5000 Hz. Complete automation 
of the experimental process dramatically reduced 
experiment setup time from four hours to fifteen minutes 
thanks to automated equipment calibration and 
synchronization of all measurement channels. 

D.  SYSTEM PERFORMANCE EVALUATION 
All computational modules were packaged in 

optimized Docker containers with Alpine Linux base 
images to minimize size and increase deployment speed. 
The orchestration system used Kubernetes for automatic 
scaling and intelligent resource management through 
Horizontal Pod Autoscaler, ensuring optimal utilization of 
available computational power. 

Performance optimization included compilation of 
critical Golang components with aggressive optimization 
flags for maximum execution efficiency. The system used 
memory-mapped files for efficient work with large 
matrices and asynchronous result writing to minimize 
blocking input-output operations. 

Detailed benchmark testing against leading 
commercial systems COMSOL and ANSYS on identical 
computational tasks demonstrated significant advantages 
of the developed system. Results showed 15% 
improvement in single-core performance thanks to 
optimized algorithms and impressive 85% parallelization 
efficiency when using up to 64 computational cores. 

The system's cost-effectiveness was confirmed by 
detailed analysis through AWS Cost Explorer, which 
showed a 45% reduction in operational costs thanks to 
intelligent use of spot instances and adaptive auto-scaling 
policies. CloudWatch metrics consistently confirmed 
exceptionally high system reliability with 99.9% 
availability and mean recovery time of only 30 seconds 
when failures occurred [1, 15] (Fig. 6, 7). 
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Fig. 6. Comparison of operating expenses. Economic analysis 
showing cost savings through cloud microservice architecture 

compared to traditional infrastructure. 

 

Fig. 7. Cost allocation in our system. Economic analysis 
showing cost savings through cloud microservice architecture 

compared to traditional infrastructure. 

V. DISCUSSION AND DEVELOPMENT 
PERSPECTIVES 

The microservice approach provides significant 
advantages through independent service scaling, techno-
logical diversity, and failure isolation [6, 7]. Independent 
scaling allows optimal resource allocation for different 
computational tasks, while modular design ensures 
appropriate technology selection for each component [8]. 

Cloud deployment offers unprecedented flexibility 
through pay-per-use models, geographic distribution for 
global collaboration, and managed services that reduce 
administrative overhead [2]. The elastic nature of cloud 
infrastructure enables access to computational resources 
that would be prohibitively expensive with traditional 
approaches. 

Laboratory equipment integration presents chal-
lenges such as supporting legacy devices with proprietary 
protocols and network security issues for cloud 
connectivity [9]. Scalability limitations arise from inherent 
characteristics of specific physical problems, where 
memory-bound computations may not benefit from 
horizontal scaling. 

Future improvements include machine learning 
integration for intelligent resource allocation, edge com-
puting support for reduced laboratory integration latency, 
blockchain technology for immutable experiment audit 
trails, and standardized laboratory equipment commu-
nication protocols [12]. 

VI. CONCLUSION 
This research presented a comprehensive scalable 

system for automated modeling of physical processes and 
experiment management that successfully addresses 
critical limitations of existing solutions through micro-
service architecture and cloud technologies [13]. 

Performance evaluation in electromagnetic mode-
ling, thermal analysis, and mechanical vibrational analysis 
demonstrated consistent improvements, including 60% 
execution time reduction, 45% cost savings, and 99.9% 
system availability. Laboratory integration capabilities 
reduced equipment configuration time from hours to 
minutes while maintaining 95% compatibility with 
existing instrumentation. 

The microservice architecture provided unprece-
dented flexibility through independent component scaling, 
technological diversity, and failure isolation mechanisms 
[14]. Economic analysis revealed substantial benefits 
through reduced infrastructure investments, eliminated 
licensing costs, and decreased administrative overhead. 

The modular design ensured excellent extensibility 
for implementing new computational methods and 
equipment integration capabilities. Future directions 
included machine learning integration, edge computing 
deployment, and blockchain implementation for research 
audit trails [15]. 

Successful implementation validated cloud appro-
aches for physical research applications, providing a solid 
foundation for next-generation research automation. The 
platform served as a reference implementation for 
scientific computing initiatives with comprehensive 
documentation and open architecture that facilitates 
adaptation to diverse research requirements. 
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