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Abstract: Deploying small language models (e.g., SLMs) on 
edge devices has become increasingly viable due to 
advancements in model compression and efficient inference 
frameworks. Running small models offers significant 
benefits, including privacy through on-device processing, 
reduced latency, and increased autonomy. This paper 
conducts a comparative review and analysis of Node.js 
inference frameworks that operate on-device. It evaluates 
frameworks in terms of performance, memory consumption, 
isolation, and deployability. The paper concludes with a 
discussion and decision matrix to guide developers toward 
optimal choices. This approach pushes microservices one 
step closer to becoming first-class intelligent services rather 
than clients of external AI. 

Index terms: microservices, small language models, edge 
computing, artificial intelligence, benchmarking, distributed 
systems. 

I. INTRODUCTION 
The rise of large language models has sparked 

interest in integrating AI capabilities into microservice 
architectures [1]. Traditionally, incorporating LLMs into a 
system meant treating the model as a separate service. For 
example, a dedicated REST API or sidecar that the main 
application calls for inference. This service-oriented 
approach decouples AI processing, but it introduces 
network or inter-process communication overhead, added 
complexity in deployment, and potential latency 
bottlenecks [2]. As applications move toward the edge, 
these overheads and complexities become more 
pronounced due to limited hardware resources and the 
need for offline, low-latency operation [3]. 

Deploying small language models (SLMs) on 
resource-constrained edge hardware is becoming 
increasingly feasible as model efficiency improves [4]. 
Running SLM inference on devices like the Raspberry Pi 
5 offers privacy (as no data leaves the device) and low 
latency (since there is no cloud round-trip) [5]. In a secure 
microservice architecture, each service should run in 
isolation, preventing memory or execution interference. 

However, this scenario also poses unique challenges. 
The frameworks used for local inference must be 
lightweight, efficient, and secure [6]. Security demands 
memory isolation, preventing a compromised model 
process from affecting the host service. Equally important is 

the ability to deploy and integrate easily with microservices, 
whether via direct bindings, HTTP APIs, or Docker 
containers [7]. Microservices can be developed in various 
programming languages, including JavaScript, Python, Go, 
Java, and Rust, depending on the system’s requirements and 
ecosystem. One of the possible tools, Node.js, offers 
distinct advantages for microservice development in the 
scope of asynchronous, event-driven architecture, which 
supports high concurrency, lightweight deployments, and 
integration with modern AI and inference libraries [8]. 

Therefore, this research explores the paradigm of 
embedding the inference engine directly inside the 
Node.js microservice as a co-located component. By 
integrating the model runtime in-process, we essentially 
create a self-contained microservice, where AI model 
inference is a native component of the service’s logic 
rather than an external dependency. The result is a 
microservice that is AI-driven, similar to an AI agentic 
approach, with lower latency, fewer moving parts, and a 
clearer security posture. 

To experiment with this global idea, this research 
provides a comparison of frameworks for local LLM 
inference that are suitable for Node.js microservices on 
edge hardware. This research is intentionally focused on 
small language models and on-device inference, without 
relying on external API calls. 

A list of frameworks includes node-llama-cpp, 
Transformers.js, ONNX Runtime, and WasmEdge 
(WASI-NN). Within the scope of research, the design, 
performance on CPUs, technical qualities, security 
features, and deployment options of each framework are 
evaluated. As a result, we present a comparison table of 
key metrics and insights extracted from the testing and 
evaluation. A decision matrix for selecting the right 
solution is based on the key insights acquired. This 
research lays the foundation for further exploration of 
creating more intelligent small models and applying 
reasoning models to solve various microservice tasks. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Current efforts are focused mainly on LLMs, which 
are served and inferenced by specialized, separate, highly 
efficient inference frameworks like vLLM. In contrast, 
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small language models within the same system are often 
served by separate tools, such as Ollama or LocalAI [9]. 

Both approaches divide microservices and the model 
inference into separate components. These tools present 
an OpenAI-like API for local models but run the heavy 
inference in an external process (or even container), 
meaning the Node.js microservice must communicate 
over HTTP to get AI responses. This approach is suitable 
for most existing cloud-native distributed systems [10]. 

While this separation can simplify design in cloud 
settings, it is suboptimal for specialized and edge 
deployments. The overhead of serializing requests and 
responses can significantly impact latency and throughput 
on a low-power device. Additionally, maintaining a 
separate AI service complicates deployment for edge 
nodes, which benefit from simplicity and autonomy. 

Model quantization plays a central role in achieving 
efficiency. Techniques such as 8-bit, 5-bit, or 4-bit 
quantization reduce model size and memory bandwidth 
with minimal loss in quality. Llama.cpp, the pioneering 
C++ engine for running Meta’s LLaMA models, 
popularized 4-bit quantization via the GGML and GGUF 
model formats. In addition to quantization, multi-
threading, and CPU SIMD optimizations, this allows even 
ARM-based processors to perform usable inference at 
rates of several tokens per second [11]. 

When we look a little further into the future, the 
evolution extends beyond just using models to also 
include actionable AI agents and agentic systems. These 
systems can act and reason by themselves. As systems 
become increasingly complex, the reasoning they employ 
also becomes more sophisticated [12]. 

Recent advances have enabled the direct execution 
of LLMs on edge hardware. Lightweight runtimes such as 
llama.cpp demonstrates that large models can operate 
efficiently on CPUs through quantization and 
optimization, achieving faster inference with less memory 
than Python-based servers [13]. Benchmarks show that 3–
4B models can generate text at several tokens per second 
or even faster on a Raspberry Pi 5, demonstrating that 
real-time inference is feasible on small devices. These 
breakthroughs motivate embedding LLM inference inside 
microservices, eliminating network overhead while 
maintaining privacy and operational simplicity. 

Node-llama-cpp is a Node.js binding for the 
llama.cpp library, allowing models in GGUF/GGML 
format to run natively within a Node process. It supports 
multi-threaded CPU execution, multiple quantization 
levels, and even GPU acceleration through CUDA, Metal, 
or Vulkan backends. Its primary strengths are speed, 
simplicity, and tight integration with Node.js applications, 
exposing asynchronous APIs for prompt handling and 
streaming outputs. However, as a native C++ addon, it 
runs without sandboxing, meaning a crash or exploit in the 
model layer can impact the entire process. Node-llama-
cpp excels in offline chatbots, IoT assistants, and local 
reasoning components, where performance and portability 
outweigh security concerns [14]. 

ONNX Runtime provides a general-purpose inference 
engine that can run models exported from frameworks such 
as PyTorch or TensorFlow. It supports graph optimizations, 
INT8/FP16 quantization, and hardware acceleration 
(CUDA, TensorRT, DirectML, CoreML). While ONNX 
models are more memory-intensive. They enable 
architecture-agnostic deployment and can run a wide 
variety of model types, including GPT, T5, and distilled 
variants of these models. The main advantages of ONNX 
Runtime are model versatility, robust optimization, and 
enterprise maturity. Its limitations include larger memory 
requirements and more complex model conversion 
pipelines. Typical use cases involve custom-trained models 
integrated into microservices or hybrid AI pipelines 
combining multiple models [15]. 

Transformers.js is Hugging Face’s JavaScript 
runtime for running modern transformer models directly 
in Node.js or the browser, without Python or external 
servers. It supports a wide range of tasks, including text 
generation, embeddings, classification, image processing, 
audio, and multimodal models, using backends such as 
WebGPU, ONNX Runtime, and optimized WebAssembly 
to strike a balance between speed and portability. The 
library loads pretrained models from the Hugging Face 
Hub, offers a high-level, Python-like API, and provides 
streaming generation, tokenization, and hardware-
accelerated inference where available. Its strength is 
ecosystem breadth and ease of use, making it ideal for 
developers who want cross-platform AI workloads that 
run natively in JavaScript environments [16]. 

WasmEdge (WASI-NN) represents a newer 
approach, executing models within a WebAssembly 
sandbox for enhanced isolation and security. Developers 
can compile LLM inference code to WASM or use 
precompiled GGML-based modules, executing them 
safely within Node.js through WasmEdge bindings. 
Although slightly slower than native execution, 
WasmEdge provides strong memory isolation, portability 
across architectures, and a lightweight container 
alternative for secure, multi-tenant edge environments. It 
is ideal for applications requiring data privacy, sandboxed 
AI logic, or deployment in untrusted environments [17]. 

Together, these frameworks demonstrate that 
inference Node.js microservices is possible. The trade-offs 
lie in balancing performance, isolation, model flexibility, 
and software architecture.  

In summary, these frameworks enable edge 
microservices to utilize LLMs, where inference runs 
within the service, rather than as a separate, networked 
service. Embedding delivers lower latency by replacing 
HTTP/IPC with direct calls, boosts throughput by 
removing an entire service layer and enabling token 
streaming, simplifies deployment by bundling the runtime 
with the microservice (each instance carrying its own AI 
capacity), and strengthens data security and privacy. 

III. SCOPE OF WORK AND OBJECTIVES 
This study explores embedded LLM inference in 

Node.js microservices running on edge hardware 
(Raspberry Pi 5, 8 GB RAM). It focuses on a small text 
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model inferred entirely on-device using several 
frameworks that enable in-process inference. Node-llama-
cpp, ONNX Runtime for Node.js, Transformers.js, and 
WASM runtime WasmEdge (WASI-NN) are explored. 
External inference servers (e.g., Ollama, LocalAI, vLLM, 
LMStudio, Transformer Lab) and cloud APIs (e.g., 
OpenAI, Azure AI Foundry, and others) are excluded to 
isolate the design and security aspects of embedding 
inference directly within the microservice process. 

The study evaluates Granite-4.0-350M and 
Google/gemma-3-270m. A dedicated benchmark was 
prepared that automatically downloads the model in 
GGUF and ONNX formats, executes standardized tests 
across selected frameworks, and gathers metrics. A 
context window of 1024 tokens and a maximum output 
length of 1000 tokens were used. The evaluation prompt 
used for all tests was “Write a huge paragraph in detail 
that fully describes generative AI models.” 

Measurements include startup time, time to first 
token (TTFT), token generation rate (tokens/s), total 
inference time, per-token latency (ms/token), memory 
usage (peak RSS), and CPU load. Using these metrics, the 
comparative study assesses embeddability, performance, 
isolation properties, resource efficiency, quantization 
support, and Node.js integration. The security check 
examines each framework’s isolation model, contrasting 
native bindings with sandboxing for fault containment. 
Finally, the research presents a performance evaluation 
pipeline and summarizes the findings through a 
comparison table and a decision matrix. 

The hypothesis is that embedded inference provides 
microservice autonomy, establishing it as the preferred 
strategy for intelligent, self-contained edge microservices. 

IV. EXPERIMENTAL SETUP 
All experiments were conducted on a Raspberry Pi 5 

equipped with a quad-core Cortex-A76 CPU (2.4 GHz) 
and 8 GB of RAM, as well as the onboard VideoCore VII 
GPU, running the Raspberry Pi OS (Bookworm), a 
Debian-based system optimized for the hardware. The 
software environment included Node.js version 24 and 
Python version 3.13. 

A custom Node.js application with additional scripts 
was developed to automate the testing workflow. It 
downloads the required model and quantization files, 
executes custom tests, gathers metrics, and stores the 
results and logs for further analysis. During each run, the 
system metrics are measured. 

Each test was repeated multiple times to account for 
cold-start and steady-state conditions. The collected data 
provided the basis for comparing performance, resource 
efficiency, and security isolation across the inference 
framework runtimes. 

V. TESTING RESULTS 
The comparative study demonstrated that the 

Granite-4.0-350M and Google/gemma-3-270m models 
deliver practical inference performance when run on a 

Raspberry Pi 5 device. Across the optimized execution 
paths tested in the test environment, the observed 
throughput ranged from 4 to 8 tokens per second (TPS) 
for these models. The highest raw speed in the evaluation 
was achieved by the native C++ addon utilizing the 
Granite-4.0-350M variant, which reached approximately 
~8 TPS. This performance was attributed to aggressive 
GGUF quantization and optimized SIMD with 
multithreading kernels. Other configurations, such as the 
ONNX Runtime approach, averaged ~6 TPS, while the 
WebAssembly-sandboxed variant achieved about ~5 TPS. 

At these speeds, generating a standard ~100-token 
response on this hardware requires between 8 and 20 
seconds under typical prompt lengths. Sometimes the 
result may take longer, up to 40 seconds, depending on the 
input and output. This success aligns with vendor claims 
for the Granite-4.0 family, which tout “2x faster inference 
speeds” and “significantly reduced memory requirements” 
for nano-sized models compared to prior generations. The 
study concludes that both the Granite-4.0-350M and 
Google/gemma-3-270m models deliver smooth, 
lightweight inference when embedded directly in a 
Node.js microservice.  

Resource efficiency on the Raspberry Pi platform 
was notably favorable across all implementations tested. 
Memory usage remained well within the platform’s 8 GB 
RAM allowance. Peak memory consumption (RAM) 
varied depending on the execution path: the native addon, 
utilizing the Granite variant, recorded the lowest use at 
~1.6 GB; the sandboxed version consumed ~1.8 GB 
(including sandboxing overhead); and the ONNX Run-
time required the most at ~2.1 GB. Startup times (model 
load) were equally efficient: the native binding (Granite 
variant) initialized fastest in ~2.3 seconds, the sandboxed 
module took ~3.0 seconds, and ONNX Runtime required 
~3.5 seconds due to extra time needed for session 
building. After initialization, all frameworks maintained 
stable throughput and consistent per-token latency across 
repeated runs, providing practitioners with actionable data 
for microservice-embedded local inference. 

Together, these findings highlight that even modest 
edge hardware can host an embedded reasoning engine, 
enabling self-contained, intelligent microservices without 
reliance on external AI infrastructure. 

VI. ARCHITECTURAL OVERVIEW OF THE 
INFERENCE FRAMEWORKS 

Node-llama-cpp embeds the llama.cpp inference 
engine directly into Node.js as a native C++ addon, 
enabling extremely fast CPU inference with aggressive 
quantization. Its architecture is minimal, including a 
memory-mapped GGUF weight loader, multi-threaded 
SIMD kernels, and optional GPU backends. This tightly 
coupled native integration maximizes performance but 
provides no isolation, because native code executes in the 
same memory space as the Node.js event loop. Any 
segmentation fault or vulnerability in the inference engine 
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can cause the microservice process to crash. 
Architecturally, node-llama-cpp has no runtime graph 
abstraction, no intermediate representation, and no graph 
optimizations. Instead, it executes a fused attention kernel 
tailored for transformer architectures and optimized for 
quantized integer weights. 

ONNX Runtime for Node.js uses a very different 
architecture. It loads ONNX computational graphs 
exported from PyTorch, TensorFlow, or other frameworks 
and executes them using an optimized C++ runtime that 
provides graph fusion, operator-level parallelism, and 
multiple execution providers (CPU, CUDA, TensorRT, 
ROCm, DirectML, OpenVINO, depending on the 
platform). ONNX models are fully declarative. The 
runtime interprets an IR graph with standardized ops, 
allowing a wide variety of model families beyond LLaMA 
derivatives. This introduces greater flexibility but also 
higher memory overhead, since ONNX models often 
contain verbose metadata, unoptimized tensors, and larger 
operator kernels. ONNX Runtime for Node.js is provided 
as a native addon, so inference executes in the same 
process without isolation. However, its enterprise-oriented 
architecture emphasizes stability, operator correctness, 
and predictable performance across hardware types. 

Transformers.js follows a pure-JavaScript 
architecture defined around pluggable inference backends 
(WebGPU, ONNX Runtime Web, WebAssembly, and 
CPU-optimized WASM kernels). Unlike node-llama-cpp 
or ONNX Runtime, Transformers.js does not run native 
code directly inside Node.js. Instead, it interposes a typed 
model-execution layer built around the Hugging Face 
model hub, handling model loading, tokenization, 
streaming, and execution through standardized pipelines. 
This abstract backend architecture allows portability 
across browsers, desktop JavaScript, and Node 
environments. However, transformers.js supports a 
narrower range of model architectures and often relies on 
WebGPU or WASM acceleration for speed; without them, 
throughput is lower. Its architecture favors portability and 
developer experience over raw performance or hardware-
specific optimizations. 

WasmEdge with WASI-NN employs a 
fundamentally different design: inference is executed 
inside a WebAssembly virtual machine. A WASM 
module loads the model using plugins such as ggml-NN, 
TFLite-NN, ONNX-NN, or OpenVINO-NN. WASI-NN 
standardizes the interface between the WASM sandbox 
and native inference backends. The runtime provides 
strong sandbox isolation. Therefore, memory, syscalls, 
and host interaction are restricted, making it ideal for 
secure multi-tenant or untrusted environments. The 
architecture introduces overhead due to boundary 
crossings and data copying into WASM linear memory, 
but modern AOT compilation and optimized native 
plugins reduce this overhead. WasmEdge prioritizes 
security and isolation, providing process-like separation 
while still running inference “in-process” from the 
microservice’s perspective. 

VII. QUALITATIVE EVALUATION  
AND DECISION MATRIX 

This section presents a decision matrix comparing 
the frameworks on various qualitative aspects important 
for edge microservices. 

 
Table 1 

Technical comparison 

Criteria Node-
llama-cpp 

ONNX 
Runtime 

WasmEdge 
(WASI-NN) 

Transformer
s.js 

In-pro-
cess Exe-
cution 

Native 
C++ addon  

Native 
C++ 
addon  

WASM 
runtime in-
process  

Pure JS with 
pluggable 
backends  

Isolation None 
(shares 
Node 
memory)  

None 
(native 
code)  

Strong 
WASM 
sandbox  

JS-level 
safety, 
backend-
dependent 
isolation  

CPU 
perfor-
mance 

Very fast 
(SIMD, 
multi-
thread, 
quantized)  

Fast (graph 
fusion, 
INT8/FP16
)  

Good, some 
WASM 
overhead  

Lower, 
depends on 
WASM, 
ONNX, 
WebGPU  

GPU 
support 

CUDA, 
Metal, 
Vulkan.  

CUDA, 
TensorRT, 
DirectML  

Limited, 
experiment
al  

WebGPU, 
ONNX 
Runtime 
Web GPU  

Model 
format 

GGUF, 
GGML  

ONNX  GGML, 
TFLite, 
ONNX, 
OpenVINO 
via plugins  

HF models 
auto-
converted 
to JS, 
WASM, 
WebGPU 
formats  

Memory 
use 

Low 
(mmap)  

Moderate 
(verbose 
models)  

Medium, 
High 
(WASM 
overhead)  

Moderate 
(JS, 
backend 
buffers)  

 
Table 2 

Integration and deployment comparison 
Criteria Node-

llama-cpp 
ONNX 

Runtime 
WasmEdge 
(WASI-NN) 

Transfor
mers.js 

Insta-
llation 

NPM 
package 

NPM 
package 

NPM 
package, 
WASM 
runtime, 
WASI-NN 
plugin 

NPM 
package 

Maturity Active, 
open-
source 

Enterprise-
grade 
(Microsoft) 

Growing 
(CNCF) 

Mature 
HuggingF
ace 
ecosystem 

Edge 
suitability 

Strong 
(quantized 
inference) 

Good 
(ARM64 
support) 

Excellent 
(sandboxed) 

Good 
(WebGPU
/WASM) 

Use cases Offline 
IoT 
assistants, 
chatbots, 
speech, 
text, 
reasoning, 
automatio
n 

AI-driven 
microservice
s, custom 
models, 
multimodal 
tasks, 
enterprise 
inference 
services 

Secure 
isolated edge 
AI, untrusted 
workloads, 
WASM-
driven 
microservice
s 

Browser, 
Node JS 
AI apps, 
web 
agents 

 
Table 1 compares the technical and architectural 

traits of the inference frameworks. It shows that all 
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support true in-process execution but differ in isolation 
strength and hardware integration. Node-llama-cpp offers 
the highest CPU performance and simplest native binding, 
ONNX Runtime provides broad model compatibility and 
hardware acceleration, while WasmEdge prioritizes 
security with WebAssembly sandboxing at a small 
performance cost. 

Table 2 focuses on integration and deployment 
factors. Node-llama-cpp is lightweight, easy to install, and 
ideal for quick edge deployments. ONNX Runtime is 
more resource-intensive but enterprise-ready and well-
documented. WasmEdge, though less mature, excels at 
secure, portable microservices, trading simplicity for 
isolation.  

Together, the tables highlight the trade-off between 
performance, flexibility, and security when embedding 
LLM inference into Node.js microservices. 

VIII. DISCUSSION 
The results confirm that embedding LLM inference 

directly into Node.js microservices on edge devices is not 
only feasible but also often offers benefits. By integrating 
the model into the same process, microservices become 
self-contained, intelligent units capable of local reasoning 
without network overhead or data exposure. This 
architectural shift simplifies deployment, reduces latency, 
and allows AI outputs to be tightly coupled with the 
service’s logic. For example, enabling real-time token 
streaming or direct function-level interaction with the 
model. Although this approach blurs traditional 
boundaries between business logic and AI, modern 
frameworks like node-llama-cpp mitigate such concerns 
with structured output controls and schema enforcement. 

The study highlights a clear trade-off between 
performance and isolation. Frameworks such as node-
llama-cpp and onnxruntime-node provide near-native 
speed and efficient quantized execution, but run 
unsandboxed native code, requiring complete trust in the 
model library. In contrast, WasmEdge introduces a secure 
sandbox that isolates model execution from the host 
process, preventing potential vulnerabilities from 
propagating but adding a small computational overhead. 
This trade-off suggests that native bindings are ideal for 
trusted environments that prioritize speed, while 
WebAssembly-based inference is best suited for untrusted 
edge deployments that require isolation. 

Finally, hardware and developer experience 
considerations shape the choice of framework. The 
Raspberry Pi 5 proved capable of handling small models 
with quantization. It is adequate for lightweight reasoning 
tasks. However, memory constraints limit the size of 
models, making small, efficient architectures more 
practical for edge AI. Node-llama-cpp offers the fastest 
setup and simplest integration for on-device text 
generation. ONNX Runtime provides broader model 
support and production-grade optimization for diverse 
workloads. WasmEdge delivers portable, secure inference, 
ideal for scaling across heterogeneous and potentially 
untrusted edge environments. Together, these findings 

demonstrate that embedding inference transforms 
conventional microservices into autonomous, intelligent 
agents, thereby balancing performance, flexibility, and 
security across various deployment scenarios. 

IX. CONCLUSION 
This research article presented an exploration of 

embedding LLM inference engines directly into Node.js 
microservices, thereby reframing them as intelligent 
microservices capable of on-board AI reasoning. Focusing 
on node-llama-cpp, onnxruntime-node, and WasmEdge, 
we demonstrated that each enables model execution with 
tangible benefits in latency, throughput, and data security. 
The exact choice of technology depended on priorities, but 
the fact that we have multiple viable options is a strong 
sign of the maturity of this approach as of 2025. As 
hardware improves (the next generations of edge devices 
will only get faster, possibly including NPUs for AI) and 
as models become more efficient, the case for embedded 
inference would grow even stronger. 

Our comparison tables and decision matrix can serve 
as a guide for practitioners. Moving forward, several areas 
require further research and development. For example, 
tooling to monitor and manage resource usage of in-
process models, techniques for seamless model upgrades 
in running microservices, and the exploration of hybrid 
models. The journey to truly intelligent microservices is 
just beginning, and embedding LLM inference is a pivotal 
step in that direction – one that we have shown is practical 
and advantageous today. 
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