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Abstract: Deploying small language models (e.g., SLMs) on
edge devices has become increasingly viable due to
advancements in model compression and efficient inference
frameworks. Running small models offers significant
benefits, including privacy through on-device processing,
reduced latency, and increased autonomy. This paper
conducts a comparative review and analysis of Node.js
inference frameworks that operate on-device. It evaluates
frameworks in terms of performance, memory consumption,
isolation, and deployability. The paper concludes with a
discussion and decision matrix to guide developers toward
optimal choices. This approach pushes microservices one
step closer to becoming first-class intelligent services rather
than clients of external Al

Index terms: microservices, small language models, edge
computing, artificial intelligence, benchmarking, distributed
systems.

I. INTRODUCTION

The rise of large language models has sparked
interest in integrating Al capabilities into microservice
architectures [1]. Traditionally, incorporating LLMs into a
system meant treating the model as a separate service. For
example, a dedicated REST API or sidecar that the main
application calls for inference. This service-oriented
approach decouples Al processing, but it introduces
network or inter-process communication overhead, added
complexity in deployment, and potential latency
bottlenecks [2]. As applications move toward the edge,
these overheads and complexities become more
pronounced due to limited hardware resources and the
need for offline, low-latency operation [3].

Deploying small language models (SLMs) on
resource-constrained edge hardware is becoming
increasingly feasible as model efficiency improves [4].
Running SLM inference on devices like the Raspberry Pi
5 offers privacy (as no data leaves the device) and low
latency (since there is no cloud round-trip) [5]. In a secure
microservice architecture, each service should run in
isolation, preventing memory or execution interference.

However, this scenario also poses unique challenges.
The frameworks used for local inference must be
lightweight, efficient, and secure [6]. Security demands
memory isolation, preventing a compromised model
process from affecting the host service. Equally important is

the ability to deploy and integrate easily with microservices,
whether via direct bindings, HTTP APIs, or Docker
containers [7]. Microservices can be developed in various
programming languages, including JavaScript, Python, Go,
Java, and Rust, depending on the system’s requirements and
ecosystem. One of the possible tools, Node.js, offers
distinct advantages for microservice development in the
scope of asynchronous, event-driven architecture, which
supports high concurrency, lightweight deployments, and
integration with modern Al and inference libraries [8].

Therefore, this research explores the paradigm of
embedding the inference engine directly inside the
Node.js microservice as a co-located component. By
integrating the model runtime in-process, we essentially
create a self-contained microservice, where Al model
inference is a native component of the service’s logic
rather than an external dependency. The result is a
microservice that is Al-driven, similar to an Al agentic
approach, with lower latency, fewer moving parts, and a
clearer security posture.

To experiment with this global idea, this research
provides a comparison of frameworks for local LLM
inference that are suitable for Node.js microservices on
edge hardware. This research is intentionally focused on
small language models and on-device inference, without
relying on external API calls.

A list of frameworks includes node-llama-cpp,
Transformers.js, ONNX Runtime, and WasmEdge
(WASI-NN). Within the scope of research, the design,
performance on CPUs, technical qualities, security
features, and deployment options of each framework are
evaluated. As a result, we present a comparison table of
key metrics and insights extracted from the testing and
evaluation. A decision matrix for selecting the right
solution is based on the key insights acquired. This
research lays the foundation for further exploration of
creating more intelligent small models and applying
reasoning models to solve various microservice tasks.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Current efforts are focused mainly on LLMs, which
are served and inferenced by specialized, separate, highly
efficient inference frameworks like VLLM. In contrast,
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small language models within the same system are often
served by separate tools, such as Ollama or LocalAl [9].

Both approaches divide microservices and the model
inference into separate components. These tools present
an OpenAl-like API for local models but run the heavy
inference in an external process (or even container),
meaning the Node.js microservice must communicate
over HTTP to get Al responses. This approach is suitable
for most existing cloud-native distributed systems [10].

While this separation can simplify design in cloud
settings, it is suboptimal for specialized and edge
deployments. The overhead of serializing requests and
responses can significantly impact latency and throughput
on a low-power device. Additionally, maintaining a
separate Al service complicates deployment for edge
nodes, which benefit from simplicity and autonomy.

Model quantization plays a central role in achieving
efficiency. Techniques such as 8-bit, 5-bit, or 4-bit
quantization reduce model size and memory bandwidth
with minimal loss in quality. Llama.cpp, the pioneering
C++ engine for running Meta’s LLaMA models,
popularized 4-bit quantization via the GGML and GGUF
model formats. In addition to quantization, multi-
threading, and CPU SIMD optimizations, this allows even
ARM-based processors to perform usable inference at
rates of several tokens per second [11].

When we look a little further into the future, the
evolution extends beyond just using models to also
include actionable Al agents and agentic systems. These
systems can act and reason by themselves. As systems
become increasingly complex, the reasoning they employ
also becomes more sophisticated [12].

Recent advances have enabled the direct execution
of LLMs on edge hardware. Lightweight runtimes such as
llama.cpp demonstrates that large models can operate
efficiently on CPUs through quantization and
optimization, achieving faster inference with less memory
than Python-based servers [13]. Benchmarks show that 3—
4B models can generate text at several tokens per second
or even faster on a Raspberry Pi 5, demonstrating that
real-time inference is feasible on small devices. These
breakthroughs motivate embedding LLM inference inside
microservices, eliminating network overhead while
maintaining privacy and operational simplicity.

Node-llama-cpp is a Nodejs binding for the
llama.cpp library, allowing models in GGUF/GGML
format to run natively within a Node process. It supports
multi-threaded CPU execution, multiple quantization
levels, and even GPU acceleration through CUDA, Metal,
or Vulkan backends. Its primary strengths are speed,
simplicity, and tight integration with Node.js applications,
exposing asynchronous APIs for prompt handling and
streaming outputs. However, as a native C++ addon, it
runs without sandboxing, meaning a crash or exploit in the
model layer can impact the entire process. Node-llama-
cpp excels in offline chatbots, IoT assistants, and local
reasoning components, where performance and portability
outweigh security concerns [14].

A Comparative Study of Inference Frameworks for Node.js Microservices on Edge Devices

ONNX Runtime provides a general-purpose inference
engine that can run models exported from frameworks such
as PyTorch or TensorFlow. It supports graph optimizations,
INT8/FP16 quantization, and hardware acceleration
(CUDA, TensorRT, DirectML, CoreML). While ONNX
models are more memory-intensive. They enable
architecture-agnostic deployment and can run a wide
variety of model types, including GPT, T5, and distilled
variants of these models. The main advantages of ONNX
Runtime are model versatility, robust optimization, and
enterprise maturity. Its limitations include larger memory
requirements and more complex model conversion
pipelines. Typical use cases involve custom-trained models
integrated into microservices or hybrid Al pipelines
combining multiple models [15].

Transformers.js is Hugging Face’s JavaScript
runtime for running modern transformer models directly
in Node.js or the browser, without Python or external
servers. It supports a wide range of tasks, including text
generation, embeddings, classification, image processing,
audio, and multimodal models, using backends such as
WebGPU, ONNX Runtime, and optimized WebAssembly
to strike a balance between speed and portability. The
library loads pretrained models from the Hugging Face
Hub, offers a high-level, Python-like API, and provides
streaming generation, tokenization, and hardware-
accelerated inference where available. Its strength is
ecosystem breadth and ease of use, making it ideal for
developers who want cross-platform Al workloads that
run natively in JavaScript environments [16].

WasmEdge (WASI-NN) represents a newer
approach, executing models within a WebAssembly
sandbox for enhanced isolation and security. Developers
can compile LLM inference code to WASM or use
precompiled GGML-based modules, executing them
safely within Node.js through WasmEdge bindings.
Although slightly slower than native execution,
WasmEdge provides strong memory isolation, portability
across architectures, and a lightweight container
alternative for secure, multi-tenant edge environments. It
is ideal for applications requiring data privacy, sandboxed
Al logic, or deployment in untrusted environments [17].

Together, these frameworks demonstrate that
inference Node.js microservices is possible. The trade-offs
lie in balancing performance, isolation, model flexibility,
and software architecture.

In summary, these frameworks enable edge
microservices to utilize LLMs, where inference runs
within the service, rather than as a separate, networked
service. Embedding delivers lower latency by replacing
HTTP/IPC with direct calls, boosts throughput by
removing an entire service layer and enabling token
streaming, simplifies deployment by bundling the runtime
with the microservice (each instance carrying its own Al
capacity), and strengthens data security and privacy.

III. SCOPE OF WORK AND OBJECTIVES

This study explores embedded LLM inference in
Node.js microservices running on edge hardware
(Raspberry Pi 5, 8 GB RAM). It focuses on a small text
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model inferred entirely on-device using several
frameworks that enable in-process inference. Node-llama-
cpp, ONNX Runtime for Node.js, Transformers.js, and
WASM runtime WasmEdge (WASI-NN) are explored.
External inference servers (e.g., Ollama, LocalAl, vLLM,
LMStudio, Transformer Lab) and cloud APIs (e.g.,
OpenAl, Azure Al Foundry, and others) are excluded to
isolate the design and security aspects of embedding
inference directly within the microservice process.

The study evaluates Granite-4.0-350M and
Google/gemma-3-270m. A dedicated benchmark was
prepared that automatically downloads the model in
GGUF and ONNX formats, executes standardized tests
across selected frameworks, and gathers metrics. A
context window of 1024 tokens and a maximum output
length of 1000 tokens were used. The evaluation prompt
used for all tests was “Write a huge paragraph in detail
that fully describes generative AI models.”

Measurements include startup time, time to first
token (TTFT), token generation rate (tokens/s), total
inference time, per-token latency (ms/token), memory
usage (peak RSS), and CPU load. Using these metrics, the
comparative study assesses embeddability, performance,
isolation properties, resource efficiency, quantization
support, and Node.js integration. The security check
examines each framework’s isolation model, contrasting
native bindings with sandboxing for fault containment.
Finally, the research presents a performance evaluation
pipeline and summarizes the findings through a
comparison table and a decision matrix.

The hypothesis is that embedded inference provides
microservice autonomy, establishing it as the preferred
strategy for intelligent, self-contained edge microservices.

IV. EXPERIMENTAL SETUP

All experiments were conducted on a Raspberry Pi 5
equipped with a quad-core Cortex-A76 CPU (2.4 GHz)
and 8 GB of RAM, as well as the onboard VideoCore VII
GPU, running the Raspberry Pi OS (Bookworm), a
Debian-based system optimized for the hardware. The
software environment included Node.js version 24 and
Python version 3.13.

A custom Node.js application with additional scripts
was developed to automate the testing workflow. It
downloads the required model and quantization files,
executes custom tests, gathers metrics, and stores the
results and logs for further analysis. During each run, the
system metrics are measured.

Each test was repeated multiple times to account for
cold-start and steady-state conditions. The collected data
provided the basis for comparing performance, resource
efficiency, and security isolation across the inference
framework runtimes.

V. TESTING RESULTS

The comparative study demonstrated that the
Granite-4.0-350M and Google/gemma-3-270m models
deliver practical inference performance when run on a
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Raspberry Pi 5 device. Across the optimized execution
paths tested in the test environment, the observed
throughput ranged from 4 to 8 tokens per second (TPS)
for these models. The highest raw speed in the evaluation
was achieved by the native C++ addon utilizing the
Granite-4.0-350M variant, which reached approximately
~8 TPS. This performance was attributed to aggressive
GGUF quantization and optimized SIMD with
multithreading kernels. Other configurations, such as the
ONNX Runtime approach, averaged ~6 TPS, while the
WebAssembly-sandboxed variant achieved about ~5 TPS.

At these speeds, generating a standard ~100-token
response on this hardware requires between 8 and 20
seconds under typical prompt lengths. Sometimes the
result may take longer, up to 40 seconds, depending on the
input and output. This success aligns with vendor claims
for the Granite-4.0 family, which tout “2x faster inference
speeds” and “significantly reduced memory requirements”
for nano-sized models compared to prior generations. The
study concludes that both the Granite-4.0-350M and
Google/gemma-3-270m  models  deliver  smooth,
lightweight inference when embedded directly in a
Node.js microservice.

Resource efficiency on the Raspberry Pi platform
was notably favorable across all implementations tested.
Memory usage remained well within the platform’s 8 GB
RAM allowance. Peak memory consumption (RAM)
varied depending on the execution path: the native addon,
utilizing the Granite variant, recorded the lowest use at
~1.6 GB; the sandboxed version consumed ~1.8 GB
(including sandboxing overhead); and the ONNX Run-
time required the most at ~2.1 GB. Startup times (model
load) were equally efficient: the native binding (Granite
variant) initialized fastest in ~2.3 seconds, the sandboxed
module took ~3.0 seconds, and ONNX Runtime required
~3.5 seconds due to extra time needed for session
building. After initialization, all frameworks maintained
stable throughput and consistent per-token latency across
repeated runs, providing practitioners with actionable data
for microservice-embedded local inference.

Together, these findings highlight that even modest
edge hardware can host an embedded reasoning engine,
enabling self-contained, intelligent microservices without
reliance on external Al infrastructure.

VI. ARCHITECTURAL OVERVIEW OF THE
INFERENCE FRAMEWORKS

Node-llama-cpp embeds the Illama.cpp inference
engine directly into Node.js as a native C++ addon,
enabling extremely fast CPU inference with aggressive
quantization. Its architecture is minimal, including a
memory-mapped GGUF weight loader, multi-threaded
SIMD kernels, and optional GPU backends. This tightly
coupled native integration maximizes performance but
provides no isolation, because native code executes in the
same memory space as the Node.js event loop. Any
segmentation fault or vulnerability in the inference engine
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can cause the nmicroservice process to crash.
Architecturally, node-llama-cpp has no runtime graph
abstraction, no intermediate representation, and no graph
optimizations. Instead, it executes a fused attention kernel
tailored for transformer architectures and optimized for
quantized integer weights.

ONNX Runtime for Node.js uses a very different
architecture. It loads ONNX computational graphs
exported from PyTorch, TensorFlow, or other frameworks
and executes them using an optimized C++ runtime that
provides graph fusion, operator-level parallelism, and
multiple execution providers (CPU, CUDA, TensorRT,
ROCm, DirectML, OpenVINO, depending on the
platform). ONNX models are fully declarative. The
runtime interprets an IR graph with standardized ops,
allowing a wide variety of model families beyond LLaMA
derivatives. This introduces greater flexibility but also
higher memory overhead, since ONNX models often
contain verbose metadata, unoptimized tensors, and larger
operator kernels. ONNX Runtime for Node.js is provided
as a native addon, so inference executes in the same
process without isolation. However, its enterprise-oriented
architecture emphasizes stability, operator correctness,
and predictable performance across hardware types.

Transformers.js  follows a  pure-JavaScript
architecture defined around pluggable inference backends
(WebGPU, ONNX Runtime Web, WebAssembly, and
CPU-optimized WASM kernels). Unlike node-llama-cpp
or ONNX Runtime, Transformers.js does not run native
code directly inside Node.js. Instead, it interposes a typed
model-execution layer built around the Hugging Face
model hub, handling model loading, tokenization,
streaming, and execution through standardized pipelines.
This abstract backend architecture allows portability
across browsers, desktop JavaScript, and Node
environments. However, transformers.js supports a
narrower range of model architectures and often relies on
WebGPU or WASM acceleration for speed; without them,
throughput is lower. Its architecture favors portability and
developer experience over raw performance or hardware-
specific optimizations.

WasmEdge  with  WASI-NN  employs a
fundamentally different design: inference is executed
inside a WebAssembly virtual machine. A WASM
module loads the model using plugins such as ggml-NN,
TFLite-NN, ONNX-NN, or OpenVINO-NN. WASI-NN
standardizes the interface between the WASM sandbox
and native inference backends. The runtime provides
strong sandbox isolation. Therefore, memory, syscalls,
and host interaction are restricted, making it ideal for
secure multi-tenant or untrusted environments. The
architecture introduces overhead due to boundary
crossings and data copying into WASM linear memory,
but modern AOT compilation and optimized native
plugins reduce this overhead. WasmEdge prioritizes
security and isolation, providing process-like separation
while still running inference “in-process” from the
microservice’s perspective.

A Comparative Study of Inference Frameworks for Node.js Microservices on Edge Devices

VII. QUALITATIVE EVALUATION
AND DECISION MATRIX

This section presents a decision matrix comparing
the frameworks on various qualitative aspects important
for edge microservices.

Table 1
Technical comparison
Criteria Node- ONNX WasmEdge | Transformer
llama-cpp Runtime (WASI-NN) s.js
In-pro- Native Native WASM Pure JS with
cess Exe- | C++addon| C++ runtime in- pluggable
cution addon process backends
Isolation None None Strong JS-level
(shares (native WASM safety,
Node code) sandbox backend-
memory) dependent
isolation
CpU Very fast Fast (graph Good, some Lower,
perfor- (SIMD, fusion, WASM depends on
mance multi- INT8/FP16 overhead WASM,
thread, ) ONNX,
quantized) WebGPU
GPU CUDA, CUDA, Limited, WebGPU,
support Metal, TensorRT, experiment ONNX
Vulkan. DirectML al Runtime
Web GPU
Model GGUF, ONNX GGML, HF models
format GGML TFLite, auto-
ONNX, converted
OpenVINO to JS,
via plugins WASM,
WebGPU
formats
Memory Low Moderate Medium, Moderate
use (mmap) (verbose High {ds,
models) (WASM backend
overhead) buffers)
Table 2
Integration and deployment comparison
Criteria Node- ONNX WasmEdge Transfor
llama-cpp Runtime (WASI-NN) mers.js
Insta- NPM NPM NPM NPM
llation package package package, package
WASM
runtime,
WASI-NN
plugin
Maturity Active, Enterprise- Growing Mature
open- grade (CNCF) HuggingF
source (Microsoft) ace
ecosystem
Edge Strong Good Excellent Good
suitability | (quantized | (ARM64 (sandboxed) (WebGPU
inference) | support) /WASM)
Use cases Offline Al-driven Secure Browser,
IoT microservice | isolated edge | NodeJS
assistants, s, custom Al untrusted | Al apps,
chatbots, models, workloads, web
speech, multimodal WASM- agents
text, tasks, driven
reasoning, | enterprise microservice
automatio inference s
n services

Table 1 compares the technical and architectural
traits of the inference frameworks. It shows that all
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support true in-process execution but differ in isolation
strength and hardware integration. Node-llama-cpp offers
the highest CPU performance and simplest native binding,
ONNX Runtime provides broad model compatibility and
hardware acceleration, while WasmEdge prioritizes
security with WebAssembly sandboxing at a small
performance cost.

Table 2 focuses on integration and deployment
factors. Node-llama-cpp is lightweight, easy to install, and
ideal for quick edge deployments. ONNX Runtime is
more resource-intensive but enterprise-ready and well-
documented. WasmEdge, though less mature, excels at
secure, portable microservices, trading simplicity for
isolation.

Together, the tables highlight the trade-off between
performance, flexibility, and security when embedding
LLM inference into Node.js microservices.

VIII. DISCUSSION

The results confirm that embedding LLM inference
directly into Node.js microservices on edge devices is not
only feasible but also often offers benefits. By integrating
the model into the same process, microservices become
self-contained, intelligent units capable of local reasoning
without network overhead or data exposure. This
architectural shift simplifies deployment, reduces latency,
and allows Al outputs to be tightly coupled with the
service’s logic. For example, enabling real-time token
streaming or direct function-level interaction with the
model. Although this approach blurs traditional
boundaries between business logic and Al, modern
frameworks like node-llama-cpp mitigate such concerns
with structured output controls and schema enforcement.

The study highlights a clear trade-off between
performance and isolation. Frameworks such as node-
llama-cpp and onnxruntime-node provide near-native
speed and efficient quantized execution, but run
unsandboxed native code, requiring complete trust in the
model library. In contrast, WasmEdge introduces a secure
sandbox that isolates model execution from the host
process, preventing potential vulnerabilities from
propagating but adding a small computational overhead.
This trade-off suggests that native bindings are ideal for
trusted environments that prioritize speed, while
WebAssembly-based inference is best suited for untrusted
edge deployments that require isolation.

Finally, hardware and developer experience
considerations shape the choice of framework. The
Raspberry Pi 5 proved capable of handling small models
with quantization. It is adequate for lightweight reasoning
tasks. However, memory constraints limit the size of
models, making small, efficient architectures more
practical for edge Al. Node-llama-cpp offers the fastest
setup and simplest integration for on-device text
generation. ONNX Runtime provides broader model
support and production-grade optimization for diverse
workloads. WasmEdge delivers portable, secure inference,
ideal for scaling across heterogeneous and potentially
untrusted edge environments. Together, these findings

237

demonstrate that embedding inference transforms
conventional microservices into autonomous, intelligent
agents, thereby balancing performance, flexibility, and
security across various deployment scenarios.

IX. CONCLUSION

This research article presented an exploration of
embedding LLM inference engines directly into Node.js
microservices, thereby reframing them as intelligent
microservices capable of on-board Al reasoning. Focusing
on node-llama-cpp, onnxruntime-node, and WasmEdge,
we demonstrated that each enables model execution with
tangible benefits in latency, throughput, and data security.
The exact choice of technology depended on priorities, but
the fact that we have multiple viable options is a strong
sign of the maturity of this approach as of 2025. As
hardware improves (the next generations of edge devices
will only get faster, possibly including NPUs for Al) and
as models become more efficient, the case for embedded
inference would grow even stronger.

Our comparison tables and decision matrix can serve
as a guide for practitioners. Moving forward, several areas
require further research and development. For example,
tooling to monitor and manage resource usage of in-
process models, techniques for seamless model upgrades
in running microservices, and the exploration of hybrid
models. The journey to truly intelligent microservices is
just beginning, and embedding LLM inference is a pivotal
step in that direction — one that we have shown is practical
and advantageous today.
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