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Abstract. Mechanical transmissions are widely used in various types of structures and 
mechanisms in different branches of the machine-building industry. One such branch is medicine. 
Devices with mechanical components are also used for patient rehabilitation in the postoperative 
period. Such mechanisms are known as orthoses. Structures of this type must meet several strict 
requirements–for example, compactness, light weight, safety, reliability, and others. Orthoses must 
reproduce the lost functions of a healthy person as accurately as possible. As previous work has 
shown, planetary gears meet the requirement for compactness. Planetary gears provide the necessary 
technical characteristics. This article presents the simulation and analysis of the stress-strain state of 
the components of a planetary gearbox for an elbow orthosis. KISSsoft and Ansys software 
packages were used for the design and 3D modeling of components, as well as for determining the 
stress-strain state. During the design process, KISSsoft software displays the profiles of the gear 
teeth and the contact line, allowing further adjustments to be made if necessary. When modeling the 
gears, the connecting elements were made of 45 steel. The article presents the basic formulas used 
for the analytical calculation and shows the stress and displacement fields obtained using the Ansys 
software product. 

Keywords: Gearbox, stress, deformation, shaft, satellite, carrier shaft, Kisssoft, Ansys. 

Introduction 
In traumatology, selecting rehabilitation devices for patients undergoing treatment is a constant 

necessity. Such devices must meet several key requirements, including compact design, ease of use, 
reliability, and patient safety. Orthoses may differ in type and structural design. This work examines a 
mechanical orthosis, which plays a crucial role in postoperative rehabilitation. 

Mechanical orthoses typically include an electric motor and a gearbox. The design of such devices 
requires careful determination of drive parameters and motor power to reproduce movements as closely as 
possible to those of a healthy elbow, particularly in terms of speed and force. The requirement for 
compactness can be fulfilled by using a planetary gearbox, which, due to multiple satellites, provides the 
necessary motion speed. The change in direction of the working elements can be achieved through a bevel 
gear transmission. Planetary gearboxes are distinguished by their small dimensions, stable operation, and 
high efficiency. 

Problem Statement 
Mechanical transmissions are often subjected to damage during operation under the influence of 

various factors. One of the primary causes of their failure is the occurrence of high stresses and 
deformations in the contact zones of moving elements and at the mounting points on shafts. Planetary 



Investigation of the stress–strain state of the planet gear shaft and carrier of the planetary… 

 39 

gearboxes, which are widely used in traumatology, consist of gear trains that operate at high rotational 
speeds. This creates the risk of overloads and consequently leads to the premature failure of the me-
chanism. 

During the design process, it is essential to carefully consider the tooth geometry of the gears and the 
potential occurrence of contact stresses to ensure the reliability and durability of the gearbox. Since gears 
are mounted on shafts, modeling and analyzing the stress–strain state are critical stages in the development 
of mechanical orthoses. 

Review of Modern Information Sources on the Subject of the Paper 
In recent years, significant advances have been made in understanding the dynamic behavior of rotor 

systems. Numerous studies have focused on modeling both static and dynamic processes using various 
engineering software tools, such as Ansys, KISSsoft, Abaqus, and others. For instance, in [1], the 
dynamics of flexible rotors equipped with active magnetic bearings were analyzed using the finite element 
method (FEM) in Ansys Workbench. In [2], a detailed study of a stepped composite rotor shaft was 
conducted, including load analysis, boundary conditions, vibration characteristics, and the Campbell 
diagram. 

Research in [3] investigated the stress–strain state (SSS) of a shaft using Ansys tools. In [4, 5], a 
model of an engine shaft was developed in CATIA, followed by static, dynamic, and fatigue analyses using 
Ansys. The study in [6] presents evaluations of strength and stiffness for shafts operating under high-tor-
que conditions, which is particularly relevant for automotive and marine applications. The work in [7] 
focused on the early detection of structural weaknesses through the analysis of the static behavior of a 
pump shaft model under various loading scenarios using FEM. 

In recent years, there has been a growing focus on optimizing shaft designs and evaluating their 
strength using the finite element method (FEM), particularly in applications where precision and reliability 
are crucial. In [8], approaches to shaft optimization considering their operational characteristics are 
described in detail. Reference [9] examines the application of the KISSsoft software for 3D modeling and 
stress analysis of shafts in planetary gearboxes used in mechanical elbow orthoses, including a comparative 
study based on von Mises and Tresca criteria. This highlights the importance of accurately designing drive 
components in orthoses, which must ensure safe and effective patient rehabilitation. 

In [10], the influence of cracks on the dynamic characteristics and structural integrity of a rotating 
stepped shaft was investigated using FEM modeling. Analytical and numerical evaluations of the stress–
strain state of hydraulic unit shafts, considering their specific structural features, are presented in [11]. 
Studies [12, 13] propose advanced modeling and optimization of the stress–strain state of high-strength 
rotor and shaft components used in high-speed machinery, including drive systems for orthoses. 

In [14], a comprehensive study of the static and fatigue strength, as well as the bending stiffness, of 
a bevel-cylindrical gear shaft was conducted, which is essential for ensuring the reliable operation of 
gearboxes in orthoses. Finally, [15] analyzes the structural behavior and strength of a steel spool shaft used 
as a drive shaft in steel rope winding under progressively increasing loads–an example that can be applied 
in the development of orthosis drive mechanisms. 

Thus, the study and optimization of shafts are key to creating high-performance orthoses that com-
bine compactness, reliability, and durability, providing patients with a safe and effective rehabilitation 
process. 

Objectives and Problems of Research 
To develop a highly efficient and reliable design of a planetary gearbox that meets all technical 

requirements, a comprehensive design process and a detailed analysis of the stress–strain state of its 
components are necessary. Such an approach enables the identification of critical areas within the structure 
that may cause failures or malfunctions of the mechanism, which in turn can pose a potential safety risk to 
patients.
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Numerical modeling of the stress–strain state plays a crucial role in the design phase, as it enables 
the prediction of the gearbox’s behavior under operational loads. The application of the finite element 
method (FEA) significantly reduces calculation time compared to traditional methods described in 
technical literature, improves the accuracy of results, and minimizes the risk of errors. In this study, the 
KISSsoft and Ansys software packages were employed to perform calculations of the components of the 
planetary gearbox, providing a comprehensive and efficient approach to modeling and optimizing the 
design. 

Main Material Presentation 
According to the technical requirements and structural features of the intended mechanism, the 

output shaft of the planetary gearbox must be positioned perpendicular to the input shaft. This 
configuration can be achieved through a bevel gear transmission, as illustrated in Fig. 1 [8]. 

To achieve technical characteristics that closely replicate the motion of a healthy human joint, the 
overall gear ratio of the mechanism should be at least 110. This requirement ensures sufficient torque and 
precise movement control in the application. Since the maximum recommended gear ratio for a single 
planetary stage does not exceed 9, the gearbox must incorporate at least three planetary stages to meet this 
criterion. 

From the standpoint of manufacturability, mechanical efficiency, and structural compactness, it is 
advantageous to design the gearbox using identical planetary stages [5]. This approach simplifies 
production, reduces costs, and ensures uniform performance across stages, which is particularly important 
in devices such as orthoses, where precision and reliability are crucial for safe and effective operation. 

The mechanical orthosis proposed in the article consists of three identical planetary gear stages and 
one bevel stage, with an overall gear ratio of 125. Of particular interest for verifying the analytical 
calculations of stresses and deflections in shafts is the satellite shaft. This is due to the presence of a stress 
concentrator in the form of a flange and the absence of a fillet radius, which is present on other shafts, 
creating specific conditions for the distribution of stresses and deformations. 

 
Fig. 1. 3D model of planetary gearbox for an elbow orthosis 

 
The gears are selected sequentially in accordance with the design requirements. Their dimensions 

were determined using the KISSsoft software package in two stages. At the first stage, based on a minimal 
set of input data, such as gear module coefficients, wheel parameters, material properties, and applied 
loads, preliminary gear dimensions were estimated. At the second stage, these parameters were refined, 
taking into account specified ranges for the number of teeth, module, center distance, and other design 
requirements. Based on the finalized data, a detailed calculation is performed. 

For modeling, gear material was chosen as grade 45 steel [8]. According to the technical 
specifications, the output shaft of the gearbox rotates at a speed of 2.8 1s− , which means that the sun gear 
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of the final planetary stage rotates approximately five times faster. The power required for the 
mechanism’s operation is 30 W. 

Since it is necessary to study the stress–strain state of the satellite and carrier shafts, a boundary 
value problem in linear elasticity must be solved. Let us consider a body with volume Ω, bounded by 
surface S, made of an isotropic material, with small deformations. 

Assume that at the initial moment. 0t  The actual body has zero displacements ( )0,iU x tr
, strains 

( )0,ij x tε
r

, and stresses ( )0,mn x tσ
r

. Subsequently, over a specific period of time, the load conditions 

within the volume Ω and on parts of its surface change G U PS S S= ∪ . At time t, the following are applied: 

surface forces. ( ),mP x tr
 on the portion of the surface PS ; prescribed displacements ( ),iU x tr

 on the 

portion of the surface US . 

Then, to determine at each point of the body the following quantities: displacements ( ),iU x tr
; strains 

( ),ij x tε
r

; stresses ( ),mn x tσ
r

. 
The equilibrium equation is a special case of the equation of motion (1) 

0n mnσ∇ = . (1) 
Geometric relations (for small deformations) (2) 

( )1
2ij i j j iU Uε = ∇ + ∇ , (2) 

And only elastic deformations are considered (3) 
e

ij ijε ε= , (3) 
physical equations (4) 

e
ij ijmn mnCε σ= , (4) 

where ijmnC  – compliance tensor. 

Additionally, boundary conditions are applied on US (5) and PS (6): 

U
i iS

U U= , (5) 

     

Pmn n mS
Pσ ν = . (6) 

For convenience in solving the boundary value problem, the principle of virtual displacements is 
commonly applied. 

To derive the equation of the principle of virtual displacements, the above relations are used along 
with the symmetry properties of the stress tensor. mn nmσ σ=  and the Gauss–Ostrogradsky theorem. As a 
result, the following functional is obtained with respect to variations of displacements and the 
corresponding strains (7): 

0
P

mn mn m m
S

F d P U dSσ δε δ
Ω

= Ω − =∫ ∫ , (7) 

together with the kinematic boundary conditions on the surface US , defines an infinite set of possible 
(virtual) stress–strain states. 

For the application of the finite element method, it is necessary to transition to matrix notation [11]. 
Hooke’s law can be expressed as (8) 

[ ]{ } { }eDσ ε= , (8) 

where [ ]D  – stiffness matrix. 
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In the case of elastic isotropy of the material, the matrix takes the form (9): 

[ ]

0 0 0
0 0 0
0 0 0

2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

a b b
b a b
b b a

D G
c

c
c

 
 
 
 

= ⋅ 
 
 
  
 

, (9) 

where ( )2 / 1G E µ= + ; ( ) ( )1 / 1 2a µ µ= − − ; ( )/ 1 2b µ µ= − ; 0,5c = ; E  – Young’s modulus; µ  – 
Poisson’s ratio. 

All deformations are elastic (10): 
{ } { }eε ε= . (10) 

Taking into account (10), expression (8) can be written as (11): 
{ } [ ]{ }Dσ ε= . (11) 

The geometric equations take the form (12): 
[ ] e{ } B { }qε = , (12) 

where ( ) ( )1 2 3 1 2 3 T T
e 1 2 31 M

{ } { , , ,..., , , } { , ,..., }Mq q q q q q q q q q= =  – finite element nodal displacement 

vector; [В] – the differentiation matrix with respect to global coordinates, associated only with the type of 
finite element and the global coordinate system. 

The functional, taking into account the possibility of superposition of work in finite elements – because 
finite elements interact with each other at the nodes and do not overlap – is expressed as follows (13): 

T T
e e e{ } [ ] [ ][ ]{ } { } [ ] { }dS 0

e e
P

T T

e e S

F q B D B q d q pδ δ φ
Ω

= Ω − =∑ ∑∫ ∫ , (13) 

where the load vectors are denoted T
1 2 3{ } { , , }p p p p= ; e

PS  – the side of the finite element that lies on the 
surface PS  of the body. 

Since the integrands contain vectors T
e{ }qδ  and e{ }q , which do not depend on the integration 

parameters and can therefore be taken outside the integrals. By grouping the integrals, we obtain (14): 

{ } { } { }[ ] [ ][ ] [ ] { }dS 0
e e

p

T TT T
e e e

e e S

F q B D B d q q pδ δ φ
Ω

= Ω⋅ + =∑ ∑∫ ∫ . (14) 

Let us denote (15): 
[ ] [ ] [ ][ ]

e

T
eK B D B d

Ω

= Ω∫ , (15) 

and (16) 

e{ } [ ] { }dS
e
P

T

S

P pφ= ∫ . (16) 

Then 

( )T
e e e{ } [ ] { } { } 0e

e
F q K q Pδ= − =∑ . (17) 

Since the displacement variations are arbitrary, the system of linear algebraic equations takes the 
form (18): 

[ ]{ } { }K q P= , (18) 

with respect to the global vector of actual displacement increments e{ }q  at the nodes of the finite element 
mesh. 
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Mechanical properties of the material and dimensions of the satellite shaft are given in Table 1 [9]. 

Table 1 
Material properties and dimensions of the satellite shaft  

Parameter Units of measure Steel 45 
Density kg/m3 7850 
Thermal expansion coefficient C-1 1.2·10-5 
Young modulus Pa 2·1011 
Poisson’s ratio  0,3 
Shear modulus Pa 7.69·1010 
Shaft diameter mm 6 
Shaft length mm 10.4 
Collar diameter mm 7 

 
According to the characteristics given in Table 1, the KISSsoft program was used to model the 

satellite shaft and the planetary transmission. The modeling results are shown in Fig. 2. 
In the process of designing the shafts of a planetary gearbox, a critical task is to ensure a reliable 

connection between the planet gears and the carrier, allowing the planet gears to rotate freely around their 
own axes. To achieve this, the planet gears are mounted on separate shafts fixed within the airline, while 
the gear is installed on bearings. A schematic and a 3D model of such a shaft are shown in Fig. 2. To 
provide stable and durable gear mounting, thrust bearings are employed. To prevent axial displacement of 
the bearings, a collar with a height of 1 mm and a length of 0.4 mm is formed on the shaft. 

  
a b 

Fig. 2. Satellite and satellite shaft: a – Satellite shaft drawing; b – Satellite model 

 
The only loads on the shaft are two bearings, i.e., two forces perpendicular to the shaft axis. To 

determine their magnitudes, a load is applied to planet gear 3 of the planetary stage, as it experiences the 
most significant load. According to the technical specifications, the maximum torque acting on the output 
shaft is 1.732 N·m. Figure 3 shows the forces acting on the carrier.  

Where M is the torque on the bevel gear, and P is the force acting on the side of the satellite shaft, 
directed perpendicular to the radius drawn to the point of application from the carrier center. 
The equation for the moment equilibrium is equal to zero with respect to the center of the carrier (19): 

3 0,
3w

w

MM Pa P
a

− = = , (19) 
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where wa  the center distance of the sun–planet gear transmission. Substituting the numerical values, we 

obtain 47.26P N= . An equal-magnitude force acts on the satellite shaft. The masses of the shaft, gear, 
and bearings are not taken into account.  

The planet gear is rigidly fixed in the carrier. Fig. 4 shows the calculation scheme for modeling in Ansys. 
 

 
Fig. 3. Forces acting on the carrier 

 
Fig. 4. Calculation scheme for modeling: А – fixed support, B – P force 

 

Fig. 5 shows the stress state of the shaft (equivalent von Mises stress), and Fig. 6 shows the 
deformed state of the shaft (deflection). 

 
Fig. 5. Stress distribution (von Mises), Pa 
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Fig. 6. Shaft deflection, m 

The results obtained by numerical and analytical methods (stress concentration was not considered) 
are presented in Table 2. 

Table 2 
Comparative analysis of the calculation 

 Numerically Analytically 
Stress at the collar–shaft junction, MPa 12.90 9.54 

Maximum deflection, mm 5.29·10-4 5.4·10-4 
Maximum stress, MPa 12.90  10.74  

 
From Table 2, it can be seen that the discrepancy in stress at the collar–shaft junction is 

approximately 35 %, indicating a stress concentration factor of 1.35. Meanwhile, the values of the 
maximum deflections are almost identical, with a deviation of only 2 %. 

We also consider the stress–strain state of the carrier of the 3rd stage, which simultaneously serves 
as the shaft of the bevel gear. Its schematic is shown in Fig. 7, and Table 3 presents the mechanical 
properties of the material and the dimensions of the shaft. 

 

Table 3 
Material properties and dimensions of the carrier shaft 

Parameter Units of measure Steel 45 
Density kg/m3 7850 
Thermal expansion coefficient C-1 1.2·10-5 
Young modulus Pa 2·1011 
Poisson’s ratio  0,3 
Shear modulus Pa 7.69·1010 
Shaft diameter mm 30 
Shaft length mm 14 
Collar diameter mm 10 

 
Fig. 8 shows the calculation scheme for modeling in Ansys. 
Fig. 9 shows the stress state of the shaft (equivalent von Mises stress), and Fig. 10 shows the 

deformed state of the shaft (deflection). 
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a b 

Fig. 7. Carrier and carrier shaft: a – Carrier shaft drawing; b – Carrier model with bevel gear 

 
Fig. 8. Calculation scheme for modeling: E – fixed support, A,B,C – P force; D – М moment 

 

 
Fig. 9. Carrier stress distribution (von Mises), Pa 

The results obtained by numerical and analytical methods (stress concentration was not considered) 
are presented in Table 4. 
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Fig. 10. Carrier deflection, m 

 

Table 4 
Comparative analysis of the calculation 

 Numerically Analytically 
Maximum stress, MPa 20.28 24.43 

Maximum deflection, mm 0.00068 0.00071 
 

From Table 4, it can be seen that the discrepancy in stress at the collar–shaft junction is 
approximately 20 %, which can be attributed to the fact that the analytical calculation did not account for 
the presence of a fillet radius, where the highest stresses occur. At the same time, the values of the 
maximum deflections are almost identical, with a deviation of only 2 %. 

Conclusions 
In this paper, we designed a gearbox for an elbow orthosis. The design was carried out using the 

KISSsoft software package, which utilizes the ISO 6336 standard for calculating gear strength.  
Although the collar diameter of the satellite shaft is only 1 mm, the stress concentration is 

significant, with a stress concentration factor of 1.35. Nevertheless, the maximum stress of 12.9 MPa is 
considerably lower than the material’s yield strength of 240 MPa. Therefore, the strength requirement for 
the satellite shaft is satisfied.  

The numerical calculation of the carrier, on the other hand, showed an overestimation of the acting 
stresses by approximately 20 %. However, this does not affect the fulfillment of the strength and stiffness 
requirements, indicating that the carrier has been correctly designed. 
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