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The paper investigates the feasibility of using lightweight predictive models for proactive
microservice autoscaling, addressing the limitations of the alternative approaches: reactive thre-
shold-based scaling, causing potential delays in resource adjustment and response time, and the
deep learning models, such as LSTM, requiring high computational resource allocation. Using
Alibaba Cluster Trace dataset, microservice workloads are analyzed and classified into four distinct
categories (Stable, Periodic, Spiky, Mixed) based on the coefficient of variation and peak-to-mean
ratio. Coming from the considerations of simplicity in implementation, low level of computational
complexity, and covering main methodological categories, six forecasting methods were selected
for evaluation: simple moving average (SMA), exponential moving average (EMA), Holt-Winters
smoothing, Kalman filter, autoregressive integrated moving average (ARIMA), and percentile-
based estimation. Each method is tested for different forecast horizons in both vertical and
horizontal scaling scenarios. The evaluation criteria were forecast accuracy (RMSE, MAE, MAPE),
computational efficiency (execution time, amount of memory used), and model suitability for
specific types of workloads. The results showed that lightweight approaches provide acceptable
forecast accuracy (RMSE 0.0621-0.0846) with minimal computational costs (0.43-11.76 ms per
forecast). Across predictive algorithms compared, SMA offers optimal efficiency for stable
workloads, Holt-Winters is most effective for periodic patterns, Kalman filter excels in handling
spiky and mixed workloads, while percentile-based estimation is advantageous for long-horizon
volatile patterns. Aggregation at the service level significantly reduced errors for spiky workloads.
Based on the findings, a method for workload-aware selection of lightweight prediction models was
proposed, mapping workload type, scaling objective, and prediction horizon to the most suitable
model and parameters, enabling resource-efficient autoscaling.
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Introduction

Microservices architectures have transformed how modern cloud applications are developed, dep-
loyed, and scaled. Breaking away from monolithic design, microservices decompose complex systems into
independently deployable services that interact through well-defined APIs. This architectural shift offers
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significant benefits — development flexibility, service isolation, and technology diversity — while
simultaneously introducing unique challenges in resource allocation across potentially hundreds or
thousands of interconnected services.

Efficient resource utilization in microservice environments relies on autoscaling mechanisms that
allows to adjust the resource allocation according to the workflow fluctuations.

Commonly used solutions, such as Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler
(VPA) by Kubernetes, relies on reactive approach, which triggers scaling actions only after utilization
crosses predefined thresholds. Though straightforward, this reactive approach creates several critical
limitations in practice.

Reactive scaling frequently leads to noticeable delay in resource adjustment, causing performance
degradation during traffic surges. Such system should detect threshold violation, provide resources and
bring additional instances online — a process that is problematic to execute within short period of time. This
can be crucial for services with strict latency requirements. Jindal et al. [1] quantified this inefficiency,
showing that reactive autoscaling typically results in 20-35 % resource over-provisioning compared to
ideal allocation. Similarly, Abdullah et al. [2] found that reactive scaling can lead to transient performance
degradation of up to 42 % during sudden traffic increases. These findings highlight the significant
limitations of threshold-based reactive approaches in dynamic microservice environments.

Predictive autoscaling offers a solution to the problem by forecasting workload patterns and
adjusting resources before expected change of the demand, covering both under- and over-provisioning [3,
4]. Despite the advantages, most of the practical models used for predictive autoscaling remains
unrepresented in production environments, largely due to implementation complexity and computational
overhead. For instance, Zhang et al. [5] demonstrated that LSTM-based workload prediction can achieve
high accuracy (MAPE < 10 %) but requires significant computational resources, with training times
ranging from 30 minutes to several hours depending on dataset size. Similarly, Nguyen et al. [4] showed
that deep learning approaches incur 4—10x higher computational overhead compared to reactive forecasting
methods.

The focus on sophisticated models has overshadowed a practical question: could simpler,
lightweight forecasting techniques provide sufficient accuracy with significantly lower overhead? As
Mahdavi — Hezavehi et al. [6] noted in their systematic review, the practicality of implementing complex
prediction models at scale remains a significant barrier to adoption in production environments.

Another limitation in current approaches is the tendency to apply uniform prediction models across
all services. Yet microservice workloads demonstrate diverse temporal patterns — stable, periodic, spiky,
and mixed behaviors [7, 8]. Grambow et al. [9] analyzed workload patterns across over significant amount
of microservices and identified distinct behavioral categories with significantly different predictability
characteristics. This one-size-fits-all approach misses opportunities to tailor forecasting techniques to
specific workload characteristics, potentially compromising both accuracy and efficiency.

Our research addresses these gaps through comprehensive evaluation of lightweight predictive
models for microservice autoscaling. We explore several key questions:

1. Can lightweight statistical and time-series forecasting models predict microservice workloads
with acceptable accuracy for practical autoscaling decisions?

2. How does prediction performance vary across different workload patterns, and which models
best suit specific patterns (stable, periodic, spiky, mixed)?

3. What practical trade-offs exist between prediction accuracy and computational efficiency?

4. Which lightweight approaches prove most effective for vertical scaling (adjusting per-instance
resources) versus horizontal scaling (adjusting instance count)?

Our study tries to answer to these questions. First, we introduce a workload-aware analysis
framework that classifies microservice patterns before applying forecasting models, enabling targeted
prediction strategies. Second, we provide systematic comparison of multiple lightweight techniques —
Simple Moving Average, Exponential Moving Average, Holt-Winters smoothing, ARIMA, Kalman filters,
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and percentile-based approaches. Third, we quantify both prediction accuracy and computational overhead
to determine real-world feasibility. Finally, we evaluate effectiveness at instance and service levels,
addressing distinct requirements for different scaling strategies. With that, we summarize our findings with
proposing a method of model selection that utilizes various models across different scaling scenarios and
observed workflow patterns.

2. Related works

Reactive autoscaling remains predominant approach in microservice environments. Several researchers
have focused their work on the limitations of reactive scaling. Casalicchio and Perciballi [10] conducted
extensive experiments measuring Docker performance during scaling operations, finding average delays of 7—
28 seconds for horizontal scaling operations, with substantially longer delays for complex microservice
applications. Netto et al. [11] extended this analysis by examining container startup times across different cloud
providers, finding variations from 2 to 43 seconds depending on image size and platform characteristics. Taibi
et al. [12] identified “over-provisioning” as a common anti-pattern in microservice architectures, where
excessive resources are allocated to handle potential demand spikes. Podolskiy et al. [13] quantified this
inefficiency, showing that reactive autoscaling typically results in 15-40 % resource wastage compared to
optimal allocation strategies. These findings align with Jindal et al. [1], who demonstrated that resource
utilization in reactively-scaled microservices rarely exceeds 65-80 % of allocated capacity.

Predictive autoscaling addresses the limitations of reactive approaches by forecasting future resource
requirements and proactively adjusting the resource allocations. Existing research on predictive autoscaling can
be categorized into three main approaches: machine learning-based, statistical time-series, and hybrid methods.

Machine learning-based techniques are the most represented in the latest researches and were
believed to be a solution to any problem, yet shown some common problems when applied to the topic of
autoscaling. Studies of Qiu et al. [14], Zhang et al. [5] demonstrated that while LSTM-models can achieve
mean absolute percentage error (MAPE) of 8-15 %, they also bring a substantially higher computational
overhead. This problem is well-represented on comparative analysis of forecasting models by Nguyen et
al. [4], showing that deep learning approaches incur 4-10 times higher computational overhead.

Statistical time-series method offers a solution to the problem of computational efficiency. As per
studies of Roy et al. [15] and Calheiros et al. [16], the autoregressive integrated moving average (ARIMA)
models demonstrate 11-16 % accuracy compared to deep learning approaches, while requiring only a
fraction of computational resources. For more simple models, such as exponential smoothing and Hold-
Winters models, the study of Weber et al. [22] bring even higher advantages in terms of execution time and
computational efficiency, while showing MAPE of 10-25 % for various workload types.

Hybrid approach, combining multiple prediction methods, shows significant increase of prediction
efficiency. Jiang et al. [17] have proposed the pattern-aware load prediction system that dynamically
selects the prediction method based on the identified workload pattern. Such approach shows 15-30 %
accuracy increase compared to static model selection while maintaining computational efficiency.

With results of these findings, we continue to investigate the best way to identify workload patterns
and efficient prediction methods.

Several methodologies for automated pattern classification have been proposed. The most efficient
among them was discovered in study of Lu et al. [7], that analyzes containerized microservice workloads
and identifies distinct pattern categories, including stable, periodic, spiky, and mixed workloads. Their
analysis demonstrated significant variations in predictability across these categories, with prediction errors
for spiky workloads typically 3-5x higher than for stable workloads.

Based on proposed workload classification, we try to identify the most suitable lightweight
algorithms that could show practical advantages in both computational efficiency and prediction accuracy.
We examine literature on several key approaches relevant to the study: moving average methods, Holt-
Winters exponential smoothing, ARIMA models, Kalman filters and percentile-based approaches.
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Simple and exponential moving averages (SMA and EMA) represent the most computational-
efficient forecasting approaches. Study of Naskos et al. [21] shows that SMA and EMA commonly results
in 8-14 times less resource usage than neural network approaches. The results of this study is then
extended by Li et al. [18], finding that weighted moving averages achieve best balance between accuracy
and efficiency for short term forecasts.

More sophisticated statistical approaches, such as Holt — Winters exponential smoothing and
ARIMA models offer improved accuracy while maintaining reasonable computational overhead.

Despite significant advances in predictive autoscaling research, several important gaps remain. First,
while workload pattern classification has been studied, few researchers have systematically evaluated how
different prediction models perform across these patterns. Our study addresses this gap by com-
prehensively evaluating multiple lightweight models across distinct workload categories derived from
production microservice metrics.

Second, existing research has primarily focused on prediction accuracy, with limited attention to
computational efficiency. The practical deployment of prediction models in large-scale microservice
environments requires careful consideration of computational overhead, as highlighted by Mahdavi —
Hezavehi et al. [7] in their survey of self-adaptive systems. Our work explicitly quantifies both prediction
accuracy and computational requirements, providing concrete insights into the practical viability of differ-
rent approaches.

Third, current research rarely distinguishes between the prediction requirements of vertical and
horizontal scaling mechanisms. As noted by Al-Dhuraibi et al. [19] and Imdoukh et al. [20], these scaling
approaches have different characteristics and potentially different prediction requirements. Our study
evaluates prediction effectiveness at both instance and service-aggregation levels, addressing the distinct
needs of different scaling strategies.

3. Dataset and workload classification

Evaluation of predictive models highly relies on the quality of initial data. To properly evaluate how
predictive models will behave under different scenarios, varying prediction horizons, scaling approaches
and workload patterns, we seek for a dataset that will provide full-fledged information about node-to-
service relationship and resource utilization, while maintaining short snapshot intervals. From available
sources we have chosen the Alibaba Cluster Trace [23] dataset due to its detailed information about
microservice’s node metrics, representing over ten thousand of nodes spanning a 14-days period in 2022.

In our analysis we focus on MSResource data component that contains time-series records of CPU
and memory utilization for individual microservice instances. Each record includes a timestamp,
microservice name, instance identifier, node identifier, and normalized resource utilization values

The dataset required several preprocessing steps to prepare it for workload pattern analysis. Before
processing the data, we ensured to avoid records that can cause misinterpretation in applied evaluation
methods, so we adjust the initial dataset records to remove any records that are missing necessary values
(timestamp, performance metrics, note-to-service relation).

As we try to classify the workload patterns, the core performance features are stability of the service
and possible presence, and if so, intensity of spikes in workload. To evaluate the stability of the service, we
apply coefficient of variation (CV) (1)

S
CV=— 0
m
where S - standard deviation of resource utilization; m — mean of resource utilization.
To evaluate the intensity of utilization spikes in the workload, we apply peak-to-mean ratio (PMR),

)
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X
Peak - to - Mean = ™ @)
m H
where X, —maximum value of resource utilization; m — mean of resource utilization.

Before clustering, the features need to be standardized to ensure equal contributions to distance
calculations (3). Standardization prevents features with larger numerical ranges from dominating the
clustering process and ensures that both CV and PMR contribute equally to the distance calculations

S;

X§ = 3)

where X% — standardized value for feature j of instance i; X

i — original value for feature j of instance i;

m; —mean of feature j across all instances; S ; — standard deviation of feature j across all instances.

To identify distinct patterns, we use an unsupervised machine learning approach of K-means clu-
stering algorithm. The decision to use K-means clustering with k=4 was based on previous research on
microservice workload patterns [10] and validated through evaluation of cluster separation and inter-
pretability. While we considered other clustering algorithms such as DBSCAN, K-means provided more
interpretable results for our specific dataset and feature set.

For cluster interpretation, we analyzed the cluster centers in the original feature space to assign
meaningful labels to each cluster based on their characteristic features. We label workloads as stable,
periodic, spiky and mixed, applying them by following rules:

— Stable workload: low CV, low PMR; consistent resource utilization;

— Periodic workload: moderate CV, moderate PMR; recurring patterns of high / low utilization;

— Spiky workload: high CV, high PMR; unpredictable patterns, intense utilization spikes;

— Mixed workload: CV and PMR between periodic and spiky ranges.

To visualize clustering results, we apply Principal Component Analysis (PCA), transforming the
data into two-dimensional array representing two PCA components: First Principal Component (PCA 1)
capture the dominant pattern of variation, representing overall resource volatility. Services with high PCA
1 have both high CV and PMR values, indicating spiky resource utilization. Second Principal Component
(PCA 2) captures the remaining orthogonal variation and tends to differentiate between services with
different types of variability — separating those with regular periodic fluctuations from those with
unpredictable spikes. Fig. 1 displays visualization of CPU and memory unitization clusters.

PCA of CPU Usage Clusters PCA of Memary (RAM) Usage Clusters

CPU Cluster 30 PAM Cluister
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& Pensdie CPU usage s Mixed RAM usage

& Mixed CPU usage 1 & Penodic RAM usage
Spiky CPU usage Spiky RAM usage

PCA Component 2
&
PCA Component 2

=R
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PCA Component 1 PCA Component 1

Fig. 1. PCA visualization of CPU and memory utilization clusters
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The PCA visualization of CPU and memory utilization confirms that each microservice’s core
metric should be evaluated separately when it comes to prediction strategy. Autoscaling algorithms should
be applied to each metric individually. Performed classification provides foundation for further evaluation
of predictive methods.

4. Predictive model selection

We defined following selection criteria: model need to demonstrate low computational complexity,
generating its predictions with minimal CPU and memory overhead; it need to minimize parameter-tuning
requirements to exclude operational challenges in applying to wide range of microservices. As so, complex
predictive models like LSTM networks, Random Forests, Gradient Boosting Methods were not included
due to their high computational requirements.

To properly cover all methodological approaches, aside of mentioned excluded models, we selected
six lightweight predictive models. First model of our selection, representing pure averaging method, is
Simple Moving Average (SMA), which implements the basic averaging method of arithmetic mean of
recent data points. SMA’s minimal computational requirements and single tuning parameter made an ideal
baseline for the research. SMA forecast may be defined as (4)

o
aX, (4)

where )%Hh — predicted value at time t+h; W — window size (number of observations included); X, — ob-

served values in the time series; t — current time point.

Next, Exponential Moving Average (EMA) extends the concept of SMA by applying exponentially
decreasing weights to the historical records. Compared to SMA, EMA offers improved response accuracy
for recent trends while maintaining similar computational efficiency. EMA forecast is calculated recur-
sively for a number of historical records (5), so for our evaluation we used span-based parametrization,
evaluating spans of 5, 10, ..., 30 observations to determine optimal configurations.

>€1+h:a*xt+(1—a)*>’<t, 5)

where )%Hh is the predicted value at time t+h; & — smoothing factor (between 0 and 1); X, — current obser-

vation; )%t — previously calculated EMA.

To cover trend-based forecasting approach we evaluated Holt — Winters model in configuration of
additive trend model without seasonal components, as our dataset shows limited seasonality within selec-
ted prediction horizons. Holt — Winters algorithm can be defined as forecast (6) of trend (6a) and level (6b)
components:

%1+h:|t+h*bti (6)
|, =a*Xx +(1_a)(|t—l+bt—l)v (6a)
b, = b(lt - It—l)+ (1_ b)bt—l- (6b)

For capturing more complex temporal dependencies, we evaluated autoregressive integrated moving
average (ARIMA) model. Due to low seasonality of initial dataset, the seasonal ARIMA model is excluded
from evaluation. ARIMA(p,d,q) model combines autoregressive components (p), differencing (d), and
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moving average components (g). To maintain reasonable efficiency, we evaluated fixed-order con-
figurations - (1,1,1), (2,1,2), (5,1,0), (0,1,1), and (1,0,1) — rather than employing computationally ex-
pensive automated order selection. ARIMA evaluation is defined as (7):

f(B)(L- B)' X, =q(Be,, ™

where T(B) - autoregressive polynomial of order p; (1— B)d — differencing operator of order d;
X, — time series value at time t; q(B) — moving average polynomial of order g; e, — error term (white

noise); B — backshift operator where BX, = X, .

As a model representing recursive Bayesian estimation, Kalman filter is selected. Our imple-
mentation uses simplified single-variable Kalman filter with constant transition and observation matrices.
Such configuration is selected to optimize its performance across selected workload patterns and maintain
the evaluation efficiency. Kalman filter implementation involves two main steps: prediction and update.
The prediction step estimates the current state (8) and error covariance (8a), while the update step incor-
porates new measurements, including Kalman gain (8b), state update (8c) and covariance update (8d). This
can be described mathematically as:

%(t|t—1) = F){t—l +B*u,, €)
Pt|t—1 = FPt—lFT + Q ) (8a)

— T T -1
K = Pt|t—1H (HPt|t—1H + R) , (8b)
%1 = ){(t|t—1) + K, (Zt - H%(Ht—l)), (8c)
Pt|t = (I - KH )Pt|t—1, (8d)

where >)((t|t-1) — predicted state estimate; Ptlt—l — predicted covariance matrix; F — state transition matrix;
— control input matrix; U, — control vector; Q — process noise covariance; H — observation matrix;
— measurement noise covariance; K, - Kalman gain; z, — measurement; )%t — updated state estimate;
P« — updated covariance matrix; | - identity matrix.

Finally, we selected for evaluation the percentile-based forecasting, covering a non-parametrized
approach of direct estimation based on previous values. This approach is expected to be highly valuable for
higher percentiles values, as next prediction will be based on high amount of previously observed records.
After investigating the results of different percentile values (50" — 99™), we selected the balanced value of
95" percentile.

%, = Percentile(X,_,..q), ©)

where % . — forecasted value at horizon h; X — observations over a window of size w ending at time

t+h t-wit

t; q — percentile level (e.g., 95 for 95" percentile).

5. Model evaluation

As we try to cover both horizontal and vertical scaling options, we need to implement multiple
prediction horizons relevant to different scaling decisions. Vertical scaling typically completes within 5-
minutes, while horizontal scaling requires 10-30 minutes [11], which justify selection of prediction
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horizons of 5 and 30 minutes. Additionally, we cover 60-minutes prediction horizon to evaluate the
prediction accuracy with buffered reaction time, allowing possible infrastructure provisioning ahead of the
demand.

Aside of prediction horizon, vertical and horizontal scaling approaches also require us to evaluate
data differently. For vertical scaling data should be addressed on instance-level, while horizontal scaling
requires service level predictions, representing data grouping by values of msinscanceid and nodeid
respectively.

To analyze the prediction performance, we used common accuracy metrics. Root Mean Square Error
(RMSE) measured the average magnitude of prediction errors with higher sensitivity to large deviations.
Mean Absolute Error (MAE) quantified average absolute differences between predictions and actual
values, providing measurements less affected by outliers. Mean Absolute Percentage Error (MAPE)
expressed prediction errors as percentages of actual values, representing interpretation across different
scales.

To quantify computational overhead we measured execution time, memory consumption and
potential scalability for large-scale deployment.

After individual evaluation of each model, we process and analyze the resulting metrics, ranking
selected models for specific variants of workload and scaling mechanisms. Fig. 2 represents the flowchart
of evaluation workflow.

Workload Classification
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Fig. 2. Forecasting model evaluation workflow

Table 1 presents the aggregated results for CPU utilization prediction across all tested models,
measured using RMS, MAE, and MAPE.

Table 1
Accuracy metrics for CPU utilization prediction

Model RMSE MAE MAPE, %
SMA 0.0731 0.0412 18.24
EMA 0.0689 0.0391 17.63
Holt — Winters 0.0654 0.0379 16.92
ARIMA 0.0712 0.0408 19.35
Kalman 0.0621 0.0361 15.87
Percentile 0.0846 0.0513 24.76

Memory utilization predictions followed similar patterns but with generally lower error metrics
compared to CPU predictions, reflecting the inherently more stable nature of memory consumption in
containerized environments. This stability advantage for memory prediction was consistent across all
evaluated models, with RMSE values approximately 15-25 % lower than their corresponding CPU
predictions.
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When disaggregating results by workload type, we observed substantial variations in model per-
formance, highlighting the importance of workload-aware model selection, yet showing very close results
for each selected model. Fig. 3 displays CPU prediction accuracy measured by RMSE across models for 5-
minute prediction horizon.

All Models Comparison: CPU RMSE by Workload Type (Horizon = 5)

RMSE

Periodic Spiky
Workload Type

Fig. 3. RMSE by workload type for 5-minute horizon

For stable workloads, characterized by consistent resource utilization with minimal variation, all
models achieved excellent prediction accuracy, with RMSE values below 0.04. Simple models like SMA
and EMA performed particularly well in this category, achieving comparable accuracy to more complex
approaches while requiring significantly less computational overhead. This indicates that for predictable
workloads, sophisticated models offer minimal additional benefit.

Spiky workloads presented the worst results for all prediction models, with RMSE values 2.5-4x higher
than for stable workloads. The Kalman filter demonstrated highest performance for spiky workloads
(RMSE = 0.0892), leveraging its ability to adaptively adjust predictions based on measurement uncer-
tainty. The percentile-based approach, while showing the highest overall error rates, exhibited better relative
performance for spiky workloads compared to other workload types, particularly at higher percentile values
(95" and 99™). This suggests that for highly variable workloads, conservative estimation approaches may be
more appropriate than traditional time-series models.

Periodic workloads were best predicted by Holt — Winters exponential smoothing (RMSE = 0.0518),
which effectively captured the trending behavior characteristic of these workloads. ARIMA models also
performed well for periodic patterns, particularly with orders that included autoregressive components (p > 0),
demonstrating the value of more sophisticated modeling techniques for workloads with regular patterns.

Mixed workloads, combining elements of both periodic and spiky behavior, showed intermediate
error rates. The relative performance of different models for mixed workloads closely mirrored the overall
average results, with Kalman filters and Holt — Winters providing the best accuracy.

Table 2 summarizes the best-performing model configuration for each workload type at each
prediction horizon, providing practitioners with specific guidance for model selection based on workload
characteristics and forecasting timeframes.

These results confirm our hypothesis that different workload patterns benefit from specifically tailored
prediction approaches, with no single model providing optimal performance across all workload types and
prediction horizons. The data also reveals a shift in optimal model selection as the prediction horizon increases,
with simpler models like SMA performing best for stable workloads at short horizons, while percentile-based
approaches become more competitive for spiky and mixed workloads at longer horizons.
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Table 2
Best performing model configurations by workload type and prediction horizon
Workload Type Honzliznon, Best model Parameters RMSE Ex. time, ms

Stable 5 SMA window=5 0.0312 0.42
Stable 30 EMA span=10 0.0428 0.51
Stable 60 EMA span=15 0.0587 0.52
Periodic 5 Holt — Winters 0=0.3 p=0.1 0.0518 217
Periodic 30 Holt — Winters 0=0.5 p=0.1 0.0689 2.22
Periodic 60 Holt — Winters a=0.5 p=0.1 0.0736 2.25
Spiky 5 Kalman Q=0.1 R=0.01 0.0892 1.85
Spiky 30 Kalman Q=0.1R=0.1 0.1365 1.88
Spiky 60 Percentile g=95 window=30 0.1821 0.77
Mixed 5 Kalman Q=0.1R=0.1 0.0683 1.78
Mixed 30 Holt — Winters a=0.5 p=0.1 0.0982 221
Mixed 60 Percentile =90 window=30 0.1247 0.76

The prediction horizon significantly influenced forecasting accuracy across all models and workload
types. Fig. 4 illustrates how prediction error changes across measured horizons.

CPU Prediction Error (RMSE)

CPU Prediction Error (RMSE)

Workload Type: Stable

0

Prediction Horizon (minutes)

Waorkload Type: Spiky

0
Prediction Horizen {minutes)

- SMA

o— EMA  —8— Holl-Wintors

‘Workload Type: Periodic

ao

Prediction Horizon (minufes)

Workload Type: Mixed

30

Prediction Horizon (minules)

Fig. 4. Prediction error by forecast horizon across different models

For the 5-minute horizon, all models achieved acceptable accuracy with RMSE values below 0.08
(averaged across workload types). As the prediction horizon extended to 30 minutes, error rates increased
by approximately 40-65 %, with the most significant degradation observed for spiky workloads. At the
60-minute horizon, prediction errors were on average 75-120 % higher than at the 5-minute horizon, with
some workload-model combinations showing 3x higher error rates.
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Computational efficiency is a critical factor when it comes to consideration of prediction model at
scale in microservice environments. Table 3 presents execution time, scalability metrics and performance
of models relative to the baselined SMA model.

Table 3
Performance and estimated computational metrics for 10,000 microservice predictions
Model Execution time, Relative to Scaled execution Total memory, CPU cores
ms SMA time, s MB for 1s latency
SMA 0.43 1.0x 4.3 78 1
EMA 0.51 1.2x 51 92 1
Percentile 0.76 1.8x 7.6 135 1
Kalman 1.83 4.3x 18.3 4100 5
Holt-
Winters 2.24 5.2x 22.4 6200 6
ARIMA 11.76 27.3x 117.6 23000 30

We continue our analysis with evaluating scaling effectiveness in terms of horizontal vs vertical
approaches. Comparison of prediction accuracy is illustrated on Fig. 5.

0.08

°

Prediction Error (RMSE)
°

0.02

Periodic Spiky
Workload Type

Fig. 5. Comparison of prediction accuracy: vertical vs horizontal scaling

For CPU-based vertical scaling, prediction models demonstrated varying effectiveness across
workload types. Stable workloads achieved high accuracy with even the simplest models, enabling precise
vertical scaling with minimal risk of resource contention. For instance, SMA with a window size of 5
achieved a MAPE of just 7.8 % for stable workloads, translating to highly reliable CPU allocation
adjustments.

Memory-based vertical scaling generally achieved higher prediction accuracy than CPU-based
scaling across all workload types and models. For stable and periodic workloads, memory prediction
MAPEs averaged 8.3 % and 12.7 % respectively, enabling reliable vertical scaling decisions. Even for
spiky and mixed workloads, memory predictions maintained reasonable accuracy (MAPE < 20 %) at the 5-
minute horizon.

At the service level (relevant for horizontal scaling), prediction accuracy improved substantially
compared to instance-level forecasting, particularly for spiky workloads. This improvement stems from the
statistical smoothing effect of aggregation, where individual spikes often average out across multiple
instances. Table 4 quantifies this improvement, showing the percentage reduction in RMSE when moving
from instance-level to service-level predictions. Table 4 summarizes this improvement, showing the per-
centage reduction in RMSE when moving from instance-level to service-level predictions.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 1-14 (2025)
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Above results let us to summarize the selection of predictive model for each combination of
workload type and scaling mechanism. Table 5 shows resulting best-performing models.

Percentage improvement in prediction accuracy

Table 4

for horizontal compared to vertical scaling approaches

Workload Type CPU RMSE improvement, % Memory RMSE improvement, %
Stable 12.3 9.8
Periodic 18.7 14.2
Spiky 28.5 23.9
Mixed 22.1 17.8
Table 5
Proposed predictive model selection
Scaling type Workload type Recommended model Parameters
Vertical Stable SMA window=5
Vertical Periodic Holt — Winters 0=0.3 p=0.1
Vertical Spiky Kalman Q=0.1 R=0.01
Vertical Mixed Kalman Q=0.1R=0.1
Horizontal Stable EMA span=10
Horizontal Periodic Holt — Winters a=0.5 p=0.1
Horizontal Spiky Percentile 95th window=30
Horizontal Mixed Hybrid Kalman (Q=0.01 R=0.1)

After identifying best ranking models for each combination of workload type and scaling mecha-
nism, we can implement a suggested method of applying specific lightweight predictive model for various
combinations of scaling scenarios. Fig. 6 displays method of selecting predictive model based on workload
characteristics and scaling objectives.

Calculate Statistical Featuras

Anply K-means Clustering

[

Stable Workloads

Periodic Workloads

—

Spiky Workioads

Vertical Scaling Horlzental Scaling Vertieal Scaling

Horizantal Scaling Vertieal Scaling

l } }

Holt-Winters a=0.3 f=0.1 |

Harizontal Scaling Verical Scaling Harizontal Sealing

Kalman Q=0.1 R=0.1 Hybrid Kalman+Percentile |

SMA window=5 EMA span=10 Kalman ©=0.1 R=0.01 Percantile BSth window=30

eee—— s

Deploy Prediction Service

\

Fig. 6. Method of selecting predictive model based on scaling and workflow types

Holt-Winters a=0.5 p=0.1

Track Scaling Effectiveness

Conclusions

Based on Alibaba Cluster Trase dataset we evaluated the how real-world data can be categorized
into separate groups based on common workflow patterns. Based on microservice performance metrics we
grouped data into stable, periodic, spiky and mixed workflow group. According to previous studies in this
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area and considerations of resource-limited environments, we selected SMA, EMA, Holt — Winters,
Kalman filters and ARIMA models for prediction accuracy and computational efficiency evaluation. We
considered feasibility of mentioned models into horizontal and vertical autoscaling approaches, grouping
data selected for analysis by individual nodes and microservice node clusters respectively.

Our analysis provides evaluation results of workflow-based prediction model selection, showing that:
microservices with stable workflow patterns achieve best prediction accuracy rate with Simple Moving Average
model; periodic workflow — with Holt — Winters algorithm; spiky and mixed — with Kalman filter model, when
ranked across evaluated lightweight models. Yet, the results of our evaluation show, that services with spiky and
mixed workflow patterns achieved considerably high error rate (MAPE ~ 25 %), leading to a conclusion that
services with such workflow patterns will not be efficiently scaled with lightweight prediction models.

Study provides foundation for implementing a method for resource-efficient predictive autoscaling
in microservice environments based on specific workload characteristics, scaling objectives and
computational constraints.
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METO/] BUBOPY OIITUMAJIBHUX ITPOTHO3HUX MOJIEJIEN ¥
CUCTEMAX ABTOMACHITABYBAHHSA MIKPOCEPBICIB

Muxaiino Kinumam, Kocrsintun Moproes
Hayionanonuti ynieepcumem **Jlvsiscoxa nonimexuixa’, yn. C. banoepu, 12, Jlvsis, 19013, Vkpaina

JlocimimpkeHO JOLUIBHICTD 3aCTOCYBAHHS JISTKOBaroBHX IPOTHO3HMX MOJENEH Ul MPOaKTHBHOTO
aBTOMacIITa0yBaHHSI MIiKPOCEpBICiB. PO3IIISIHYTO OOMEXXEHHS Ta HEJOJIKH Pi3HUX AIbTCPHATHBHIX
I IXOIiB MacIITaOyBaHHs, 30KpeMa PeaKTHBHI TIOPOTOBI TiIXOIX Ta MOJIENI TAMOMHHOTO HaBYaHHS,
BU3HAYEHO HENOMIKM X 3aCTOCYBaHHS BIJHOCHO BHOpaHoro migxomxy. Ha ocHoBi HaOopy maHUX
Alibaba Cluster Trace mpoanasizoBaHO XapaKTEPHCTHKH POOOYMX HABAHTAXEHH MIKPOCEPBICIB i3
MO/IANBIIOK0 TX Kiacudikaiiero 3a koedillieHToM Bapialii Ta BiIHOIIEHHSM MIKOBOTO 3HAYEHHS JI0
CepeTHROTO Ha HYOTHPH HITKO OKpECIeHI TWIH: CTaOiIbHI, MepioW4Hi, iMITyIbCHI Ta 3MIillaHi.
IpoaHaiti3oBaHO OCHOBHI JIETKOBArOBi METO/M MPOTHO3YBAaHHS: mpocte pyxome cepenane (SMA),
ekcrioHeHIiiine pyxome cepente (EMA), 3rmampkyBanus 3a [ombtoM — Bintepcom, ¢inbTp
Kanmana, aBroperpeciiiny interpoBany koB3Hy cepenio (ARIMA) Ta OIiHIOBaHHS Ha OCHOBI
MEepUEHTWIS. BUKOHaHO TepeBipKy KOXHOTO MENONy Ul Pi3HMX TOPH30HTIB NMPOTHO3YBAaHHS Y
CIICHApIsSIX K BEPTHKAJIHHOTO, TaK 1 TOPHU30HTAILHOTO MaciuTaOyBaHHA. KpuTepisiMu OLiHIOBaHHS
cnyryBanmu tounicte nporaosy (RMSE, MAE, MAPE), o6uucnioBaibia eeKTUBHICT (4ac BH-
KOHAHHs, 00CAT BHKOPUCTAHOI MaM’sTi) Ta MPHIATHICTH MOJENi JJisi KOHKPETHHUX THIB HABaH-
TakeHb. OTpHUMaHi pe3ysIbTaTH 3aCBIMYMIIM, IO JIETKOBAroBi MiAXOAM 3a0e3NeuyloTh NPUHHATHY
TounicTh Tiporuo3ysanus (RMSE 0,0621-0,0846) 3a miniMansanx obGuncioBanshux Butpar (0,43
11,76 mc Ha nporuos). Cepen mpoTecToBaHKX anroputMis SMA mnokasana HalBHIY eDEKTUBHICT
JUI CTaOLTPHMX HaBaHTaXeHb, Mojenb lonbTa — BiHTepca Oyna Haiipe3yabTaTUBHIIION IS
nepioAnYHKX aboHiB, ¢pinbTp KajaMana — 1yt iIMITyJIBCHUX 1 3MIlIQHUX, @ MIEPLEHTWIBHUH METO
BUSIBUBCS IOLUIBHUM /IS JOBFOCTPOKOBHX MPOTHO3IB 32 YMOB BHCOKOT BOJIATHIILHOCTI. Jl01aTKOBO
BCTAHOBIICHO, III0 arperaiis JaHWX Ha pPiBHI CEpBICYy ICTOTHO 3HIDKYE MOXHOKY 32 IMITYIIECHHX
HaBaHTa)XKeHb. Ha OCHOBI OIHIOBAaHHS JOCIIPKEHHX METOB 3alpOIOHOBAHO METOJ BHOOPY
OINITUMAJIBHUX JIETKOBaroBHX MoJEe misd HaOOpy 3HAaueHb T'OPH3OHTY IPOTHO3YBAaHHS, THIIB
HaBaHTA)KCHHS Ta CIIOCO0Y aBTOMAcIITabyBaHHS MIKPOCEPBICIB.

Keywords: asmomacumabysannss mMikpocepgicie, npo2Ho3Hi MoOei, Kiacugikayis Haeanma-
JHCEHHS1.
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