IHOOKOMYHIKALIMHI TEXHONOTIT TA ENNEKTPOHHA IHXEHEPIA
INFORMATION AND COMMUNICATION TECHNOLOGIES,
ELECTRONIC ENGINEERING

Ne 5 (2), 2025

https://doi.org/10.23939/ictee2025.02.

DEVELOPMENT OF EMBEDDED SOFTWARE
FOR ESP32-BASED LORA MODULES WITH ADAPTIVE
CONFIGURATION AND LINK QUALITY MONITORING

Yu. Shkoropad [ORCID: 0009-0005-7892-6799] H. Beshley [ORCID: 0000-0001-5392-3499]
Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine

Corresponding author: M. Beshley (e-mail: mykola.i.beshlei@Ipnu.ua)

(Received 30 July 2025)

The article describes a new approach to developing embedded software for LoRa modules based on the
ESP32 microcontroller. The main idea behind the work is to create universal firmware with a mini-
malist architecture and advanced configuration options that ensures reliable peer-to-peer data exchange.
The developed system uses a simplified text command format (COMMAND;PARAM=VALUE) in-
stead of JSON, which reduces computational costs and speeds up processing. This simplifies integration
into application solutions and increases the efficiency of hardware resource utilization. The firmware
integrates a delivery confirmation (ACK) mechanism with retransmission in case of packet loss, which
increases the reliability of the communication channel. Additionally, the CONFIG_SYNC command is
implemented for automatic synchronization of parameters between nodes, which ensures stability in
dynamic conditions. The proposed approach also includes a PING/PING_ACK function, which, in
addition to checking connection availability, provides diagnostic characteristics, including RSSI, SNR,
TOA, DELAY, and data transfer rate. It is possible to transmit large messages using a packet
segmentation and aggregation algorithm that overcomes the hardware limitations of the LoRa SX1276
chip. During the study, the firmware was experimentally tested with variations in key parameters:
spreading factor, bandwidth, coding rate, transmission power, and preamble length. The results con-
firmed the patterns of influence of these parameters on delay, speed, RSSI, and signal-to-noise ratio,
which made it possible to form practical recommendations for optimizing the system. The proposed
solution combines ease of use, configuration flexibility, and communication quality assessment tools,
providing a balance between performance and scalability. Further development involves the integration
of artificial intelligence modules, in particular reinforcement learning, for automatic selection of optimal
parameters in real time, which opens up prospects for the creation of intelligent self-configuring
wireless systems.

Key words: LoRa, ESP32, embedded software, command protocol, automatic synchronization,
communication quality assessment.
UDC: 621.391

Introduction

In modern wireless data transmission systems, LoRa technology has become widespread due to its
combination of low power consumption and long communication range [1]. At the same time, existing
software solutions for ESP32 microcontrollers with LoRa modules are often characterized by overly
complex architecture, unnecessary functionality, or dependence on external services, which creates sig-

© 2025 HarionanbHuii yaipepcuter “JIbBiBchka momiTexHika”

26 Yu. Shkoropad, H. Beshley

nificant obstacles for use in application development with limited resources. Typical examples are
multifunctional firmware with support for mesh networks, mobile applications, or LoRaWAN infra-
structure [2]. Such solutions require additional configuration, third-party services, or do not provide
sufficient transparency at the data transmission level. Among the most common options are Meshtastic,
LoRaWAN Stack, and Simple LoRa firmware, which demonstrate different approaches to organizing data
transmission and building network infrastructure [3].

Meshtastic is firmware that implements a LoRa-based mesh network, focused on creating
autonomous communication networks without a central server. The advantage of Meshtastic is its high
routing reliability and support for mobile applications for convenient management. However, its
complexity and redundancy of functions often complicate its use in simple devices, and the need for
synchronization with a mobile application reduces autonomy.

LoRaWAN Stack is a set of firmware that provides support for the LoRaWAN protocol for
connecting to global networks such as The Things Network (TTN). The main advantage is a standardized
protocol that guarantees compatibility with a wide ecosystem. The disadvantages are dependence on
network infrastructure, complexity of settings, and increased hardware requirements, which are not always
suitable for simple direct transmission scenarios.

Simple LoRa is simplified firmware focused on basic data transmission between two nodes. It has
minimal functionality, which ensures quick and easy integration, but does not support advanced features,
including the lack of a mechanism for confirming received messages (ACK). The lack of built-in en-
cryption creates a risk of data interception, which is critical for secure applications. The settings in this
firmware are hard-coded, so changing them requires recompiling and reloading the code, which makes it
difficult to adapt to different conditions. In addition, Simple LoRa does not support multi-channel ope-
ration, adaptive transmission power, or power-saving features, which limits its effectiveness in complex
network environments and negatively affects the battery life of devices.

The paper proposes its own compact and flexible software that eliminates these limitations and provides a
number of important advantages. Its architecture is based on the use of simple text commands instead of formats
such as JSON, which significantly speeds up processing and integration into third-party applications. The user
can configure all module parameters, and built-in synchronization mechanisms ensure consistency of con-
figurations between different devices. Additionally, connection quality verification functions are provided, allo-
wing for quick assessment of transmission channel reliability. Thanks to its modular structure, the software can
be further integrated into artificial intelligence-oriented solutions and extended to work not only with LoRa, but
also with other wireless technologies, such as Wi-Fi, LTE, BLE, or GSM.

Thus, the developed solution combines ease of use with extensive adaptability and scalability,
making it suitable for both basic and more complex data transmission systems.

2. Development of unique embedded software for LoRa module

The main goal of the development is to develop universal and easy-to-use firmware for LoRa
modules based on ESP32, which allows effective device control via a serial USB (UART) interface. The
software should provide fast and intuitive connection without complex settings, implementing the “plug
and play” concept. It is important that the same firmware code works on both the transmitter and receiver
sides (peer-to-peer), thus simplifying system scaling. The firmware should provide the user with the ability
to flexibly configure the main parameters that directly affect the transmission speed, connection quality,
and power consumption. Key features include support for ACK message acknowledgment with the ability
to retransmit in case of data loss, which increases communication reliability. It also provides real-time
synchronization of settings between two modules with the ability to automatically restore the last working
parameters after temporary communication loss. This solution will ensure stable system operation even in
difficult conditions of radio interference and minimize the need for manual intervention. The LILYGO
TTGO LoRa32 V3 module with an integrated LoRa module based on the SX1276 chip (Fig. 1) was
selected for the development and testing of our own firmware.

[H(poKOMYyHIKaITiliHI TEXHOIOTII Ta eleKTpOHHa imkenepis, Bum. 5, Ne 2, C. 25-37 (2025)

Development of Embedded Software for ESP32-Based LoRa ... 27

This module combines an ESP32
microcontroller, which provides sufficient
computing power and multifunctionality,
with an SX1276 radio frequency module
for data transmission in the 433/868/915
MHz band. The main technical charac-
teristics of the module under study are the
use of an ESP32 Dual-Core microcon- @ i rerrennene
troller with a clock frequency of up to P
240 MHz, which provides a high level of
computing power and allows the imple-
mentation of complex data processsing

algorithms in real time. Fig. 1. LILYGO TTGO LoRa32 V3

The communication subsystem is based on the Semtech SX1276 LoRa chip, which supports the
configuration of the main modulation parameters (Spreading Factor, Bandwidth, Coding Rate), allowing
the system to be adapted to different usage scenarios, balancing power consumption, speed, and
transmission range. A USB-UART interface is used for integration and programming, which simplifies the
debugging process and ensures convenient device control. The module supports power supply from both a
USB port and an external battery, which increases its autonomy and expands the scope of practical
application. Additional hardware includes an OLED display for displaying service information and buttons
for basic local control. The cost of the module at the time of the study is about $ 20-25, making it an
economically viable choice for scientific experiments, prototyping, and implementation in applied projects.
Thanks to active support from the international developer community and the availability of open libraries,
this module can be considered the optimal hardware solution for research and development of applications
based on LoRa technology.

The embedded software was developed using the PlatformlO environment, which provides
convenient dependency management, build automation, and flexible integration with the ESP32 hardware
platform. During the development of the embedded software, a simple and efficient text format for
exchanging commands between devices was defined. Messages can have one of two structures:

Without parameters - COMMAND;
With parameters - COMMAND; PARAM1=VALUE1, PARAM2=VALUE?2.

his approach makes it easy to parse messages and avoids the complex processing typical of
structured formats such as JSON. Initially, the message format was implemented as JSON strings, but
testing revealed significant performance limitations. In particular, JSON serialization and deserialization
required significant amounts of RAM, significantly increased message processing time, and generally
overloaded the ESP32’s computing resources. For optimization purposes, it was decided to switch to a
lighter format that combines ideas from various simple and proven syntaxes: AT commands, widely used
in microcontrollers and modems, as well as URL Query Parameters, where parameters are passed as key-
value pairs. This format is flexible enough for most application scenarios and convenient for both manual
interaction and machine processing.

To check the connection between devices, a PING-type service message mechanism has been
implemented. The controller initiates a connection check by sending a command in the format PING;
ID=123, where ID is a unique request identifier. This message is transmitted via the LoRa module to the
other end of the connection. An experimental diagram of the data exchange architecture between two LoRa
modules is shown in Fig. 2.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 25-37 (2025)

28 Yu. Shkoropad, H. Beshley

Controller/Agent Module 5.7 e — — — — S Ra— — — — = > ; Controller/Agent Module
(Laptop, Phone, Server, Robot) [~ —o e LoraESP32 LaRd LoraESP32 Dk (Laptop, Phone, Server, Robot)

Fig. 2. Experimental diagram of the data exchange architecture between two LoRa modules

If the message is successfully received, the receiving module immediately sends a confirmation in
response in the form of a PING_ACK message, storing the transmitted identifier. The message has the
following format: PING_ACK; ID=123, DELAY=594, RSSI=-22.00, SNR=12.50, TOA=25, BPS=400.

The received message contains service reception parameters that characterize the quality of the
communication channel and the message delivery time. The ID (Identifier) parameter is used as a request
identifier, allowing the received response to be correlated with a specific sent request. The DELAY
parameter reflects the delay in milliseconds from the moment the request was sent to the moment the
response was received. RSSI (Received Signal Strength Indicator) characterizes the power level of the
received signal. SNR (Signal to Noise Ratio) describes the signal-to-noise ratio in the communication
channel. TOA (Time Over the Air) determines the packet transmission time in milliseconds. BPS (Bytes
per Second) indicates the data transfer rate in bytes per second. If no response is received within 5 seconds
after sending the PING request, the controller generates a service message about the lack of confirmation
in the form: PING_NO_ACK; ID=123

This approach allows you to detect connection breaks, delays, or packet loss and respond
accordingly, for example, by resending or switching to standby mode. All messages have a unified format
and can be easily processed by automated systems or read by a human for diagnostics.

Send PING command via
serial port

PTNG; TR 123;

Transmit Message over LoRa

PTNG; TR 123;

Received ACK
with same id
in 5 seconds?

PTNG ACK; TN=123;

Fig. 3. Block diagram of the PING command algorithm

To ensure flexibility and optimal operation of the LoRa module in various operating conditions, the
firmware provides the ability to configure a number of key parameters. To change the settings, send a
command listing the parameters and their values to be replaced:

CONFIG; FQ=868, BW=125, SF=7, CR=6, TP=10, SW=171.
Table 1 shows the parameters that can be modified.

[H(poKOMYyHIKaITiliHI TEXHOIOTII Ta eleKTpOHHa imkenepis, Bum. 5, Ne 2, C. 25-37 (2025)

Development of Embedded Software for ESP32-Based LoRa ... 29

Table 1
Parameters for configuration
Parameter Designation Meaning
Frequency FQ 860-870 MHz
Channel width BW 7.8-500 kHz
Spreading factor SF 6-12
Code rate CR 5-8
Transmission power TX 2-20
Synchronization word SW 0-255
Header transmission IH 0;1
Packet size HS
Preamble length PL 6-65535

For modules to work correctly, they must have identical configuration parameters, otherwise the
module will not be able to receive messages from other devices. To simplify configuration and
synchronization of parameters, the CONFIG_SYNC command has been developed, which sends a request
with the parameters that need to be changed. If the module successfully receives this request, it updates its
settings to the new values and sends a confirmation control packet. If a control packet with new parameters
is received, the changes are considered confirmed. If no confirmation is received, the module restores the
previous settings to maintain stability. Fig. 4 shows a block diagram of the algorithm for this command.

Send Config Sync
command via serial port

Transmit message over
LoRa

Report config sync failure Settings updated according

to received params

Transmit message over
LoRa
CONFTE VNG 2HTCK

Config config sync succesfull

Report config sync failure

Restore settings

Fig. 4. Block diagram of the automatic synchronization algorithm between modules

Received ACK
CONI1_5¥NG_GIIE:

There are certain limitations when working with Spreading Factor 6 (SF6), which provides the
highest transmission speed among LoRa modes. In particular, SF6 can only be used if no packet header is
sent during transmission, as this mode only supports implicit header mode.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 25-37 (2025)

30 Yu. Shkoropad, H. Beshley

This means that all message parameters,
including its length, must be agreed upon in
advance between the modules. This results in a
loss of flexibility in transmitting variable
amounts of data, so the packet size is set with a
certain margin. If the actual message is smaller
than the allowable packet size, the remaining
bytes are filled with spaces to achieve the agreed
length. This approach ensures compatibility with
SF6 requirements and maintains minimal
transmission delay, which is critical for time-
sensitive applications.

For convenience, the module displays the
Fig. 5. Current parameters displayed on the screen current parameters on the display (Fig. 5).

The developed software implements a mechanism for universal transmission of arbitrary data
between devices. Block diagram of the segmented guaranteed data transfer algorithm is depicted in Fig. 6.

Send SEND command via

Is implicit
header mode

Send chunk i
lidlotall...

Yes

Received ACK
Report SEND failure with same id
Pel No: Ye
SEND_NO_ACK; 1312 in 5 seconds?
SEND ACK;TT 12

Fig. 6. Block diagram of the segmented guaranteed data transfer algorithm

Transmission is initiated by generating and sending a command to the LoRa module in the following
format:
SEND; ID=12, DATA= “Test Data Hello”

IndokoMyHiKamilHI TEXHOJIOTII Ta eJIeKTpOHHA irkeHepis, Bum. 5, Ne 2, C. 25-37 (2025)

Development of Embedded Software for ESP32-Based LoRa ... 31

After receiving this message, the LoRa module on the receiver side generates a confirmation of
successful receipt, which contains the technical parameters of signal reception:

SEND_ACK; ID=12, DELAY=544, RSSI=-12.00, SNR=12.75, TOA=25, BPS=400

In turn, the receiver transmits the received message via the serial port in the following format:

DATA, ID=12, DATA= “Test Data Hello”

However, LoRa technology has certain limitations on the size of transmitted messages. In particular,
the maximum size of a single packet is limited by hardware and protocol parameters and is typically up to
255 bytes (depending on the region, modulation, and configuration parameters such as Spreading Factor
and Bandwidth). To enable the transmission of messages that exceed the permissible limit, a segmentation
mechanism has been implemented. All large messages are automatically divided into segments of a fixed
size of 200 bytes, or according to the length of the header if the no-header mode is used. Each chunk is
accompanied by a service header that includes a sequence number and the total number of segments in the
format:

[1/5] SEND; ID=12, DATA=....

This approach allows the receiving party to correctly track which part of the message has been
received and how many are expected in total. After receiving all the chunks, the receiver combines them
into the original message in the correct sequence, ensuring the integrity of the transmitted information.

After completing the transmission of all segments, the transmitting party waits for confirmation from
the receiver in a standard format. The response contains service parameters, as well as a special CHC
(Chunks Count) parameter, which indicates the number of segments into which the original message was
divided.

3. Experimental study of communication quality in LoRa modules with developed embedded
software

In order to evaluate the effectiveness of the developed embedded software, an experimental study of
the main parameters of wireless communication quality between LoRa modules was conducted. During the
tests, the basic settings of the module were changed, followed by the recording of key characteristics of the
system’s operation, namely:

- transmission delay;

received signal strength (RSSI);
signal-to-noise ratio (SNR);

- time on air (TOA).

It should be emphasized that delay and transmission time in a wireless channel are not identical
values: delay covers the entire cycle, namely from the moment the command is sent by the transmitter to
the moment the confirmation is received by the receiver, while transmission time in the air describes only
the physical duration of packet transmission.

Four series of experiments were conducted:

1. Transmission of a ping command at a distance of 15 cm (Experiment 1).

2. Transmission of 1 kilobyte of useful data at a distance of 15 cm (Experiment 2).

3. Transmission of a ping command at a distance of 100 meters (Experiment 3).

4. Transmission of 1 kilobyte of useful data at a distance of 100 meters (Experiment 4).

When transmitting 1 kilobyte of data, it is necessary to fragment it into several packets, since the SX1276
module has a hardware limitation of a 256-byte FIFO (First-In, First-Out) buffer. To ensure reliability, a
fragmentation algorithm has been implemented that breaks packets larger than 200 bytes into smaller pieces.
Thus, to transmit 1024 bytes, 7 packets were formed, each of which also includes a service header.

In each series of experiments, the following module parameters were changed: spreading factor,
bandwidth, coding rate, transmission power, and preamble length.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 25-37 (2025)

32 Yu. Shkoropad, H. Beshley

Fig. 7 shows the results of an experimental study of the effect of the spreading factor (SF) on the key
performance characteristics of the LoRa communication system.

—&— Experiment 1 »— Experiment 2 —8— Experiment 3 —8— Experiment 4

SF/DELAY SF/RSSI

= \\’P——A\,_F

—30

16000

14000

12000

_40 -
10000

£ 80001 5—50‘ '
6000 {— 504
4000
e
20001
_80 - i
o
6 7 8 9 10 1 12 6 7 8 9 10 11 12
SF SF
SF/SNR SF/TOA
14000 |
12000
10000 ||
8000
wy
g
6000 |
4000 1
2000
-
6 7 8 9 10 11 12 6 7 8 9 10 11 12
SF SF

Fig. 7. Change in system characteristics at different values of the spreading factor

Analysis of the graphs shows a clear exponential dependence of data transmission latency on the SF
value. This is a direct consequence of the Chirp Spread Spectrum modulation principle used in LoRa. As
SF increases, each bit of information is encoded with a longer chirp, resulting in a proportional decrease in
data transmission speed. Accordingly, the time required to transmit a complete data packet (Time-on-Air)
increases exponentially. Thus, the trade-off between communication range (which improves with higher
SF) and latency is a fundamental feature of LoRa modulation. Accordingly, the signal quality increased
with the coefficient, but dropped significantly at a coefficient of 12. In the case of the first experiment, this
can be explained by the receiver saturation effect, and in the case of transmitting 1 kilobyte of data, due to
high sensitivity, it also registers noise.

Fig. 8 shows the results of an experimental study of the effect of bandwidth (BW) on the main
operating characteristics of the LoRa communication system. The graphs show that as the bandwidth
increased, the transmission delay decreased, resulting in higher data transfer rates. At the same time, with
the expansion of the bandwidth, a significant deterioration in the signal-to-noise ratio (SNR) was observed,

[H(poKOMYyHIKaITiliHI TEXHOIOTII Ta eleKTpOHHa imkenepis, Bum. 5, Ne 2, C. 25-37 (2025)

Development of Embedded Software for ESP32-Based LoRa ... 33

since a wider channel covers a larger noise spectrum. The RSSI value remained virtually unchanged, since
the distance between the transmitter and receiver did not change, and therefore the received signal power
remained approximately constant.

—e— Experiment 1 —8— Experiment2 —@— Experiment 3 —e— Experiment 4
BW/DELAY BW/RS5I
70000 A
_20]
60000 ® ® it
_30 1
50000 4
-40
40000 1+ L
w wn
£ 9 -50
30000 1
—60
20000 4—
-70
10000
| e L -80
0 - -
T T T ,
125 250 500 125 250 500
BW BW
BW/SNR BW/TOA
60000
50000 A
40000
@ w
z
n E 30000 {
20000 4
10000 A
ol @ & ®
T T T T T T
125 250 500 125 250 500
BW BW

Fig. 8. Change in system characteristics at different bandwidth values

The next parameter under investigation was the coding rate (CR), as illustrated in Fig. 9.
Experimental results showed that with an increase in CR, the transmission delay consistently grew. This
effect arises because additional redundant symbols are appended to each transmitted frame, which allows
the application of forward error correction (FEC). Such redundancy improves the system’s capability to
recover data in noisy environments, thus enhancing noise immunity and ensuring reliable packet delivery
even under unfavorable propagation conditions.

At the same time, the introduction of redundant information reduces the proportion of useful payload
data within the frame, which in turn lowers the effective throughput. Consequently, the time-on-air (ToA)
for each packet increases, leading to longer end-to-end transmission times. Despite this drawback, the
improved error resilience results in a noticeable gain in the signal-to-noise ratio (SNR) at the receiver,
confirming that higher coding rates contribute to more robust communication links.

Overall, the findings highlight a fundamental trade-off: while higher CR values reduce spectral
efficiency and increase delay, they also enhance link reliability and stability, which may be critical in long-
range or interference-prone environments.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 25-37 (2025)

34 Yu. Shkoropad, H. Beshley

—8— Experiment 1 @— Experiment 2 —8— Experiment 3 ——8— Experiment 4
CR/DELAY CR/RSSI
16000 | —107
14000 | =20: . ==
. - J ——
12000 - _304 @ & -
10000 _40 4
o) n
£ 4
8000 2 _ ool |
6000 4—
_60 -
4000
_?0 -
2000 1
*— @ = —e -80
0- . T
5 6 7 8 5 6 7 8
CR CR
CR/SNR CR/TOA

14000 ~

12000 A

10000 A

8000 +

ms

6000 +—

4000 —

2000 +
5.0 4

L 3
L g

o
I
L 4

w
[=]]
-
[+:]
w
ol @
i
-

CR CR

Fig. 9. Change in system characteristics at different error correction rates (Coding Rate)

Another important parameter analyzed in the experimental study was the transmission power (TP),
with the corresponding results presented in Fig. 10. As shown in the graphs, variations in transmission
power did not affect the transmission rate or the end-to-end delay, which remained practically constant
across all experiments. This is expected, since these metrics are primarily determined by the modulation
parameters (Spreading Factor, Bandwidth, Coding Rate) rather than the output power of the transceiver.

At the same time, an increase in TP had a direct impact on the received (RSSI). Higher output power
resulted in a significant improvement of the received signal level, which indicates enhanced link budget
and extended communication range. Moreover, the SNR also exhibited a positive trend, reflecting
improved robustness of the communication channel under higher transmission power.

These results highlight that adjusting transmission power provides a straightforward mechanism for
improving link reliability without altering the transmission speed. However, this comes at the expense of
increased energy consumption, which may be a limiting factor for battery-powered IoT devices. Therefore,
the selection of transmission power in LoRa-based systems should be optimized according to the
application scenario, balancing energy efficiency with communication reliability.

[H(poKOMYyHIKaITiliHI TEXHOIOTII Ta eleKTpOHHa imkenepis, Bum. 5, Ne 2, C. 25-37 (2025)

Development of Embedded Software for ESP32-Based LoRa ... 35

—8— Experiment 1 —&— Experiment 2 —8— Experiment 3 —8— Experiment 4

TP/DELAY TP/RSSI
_10 o

16000 +

s

L 4

L
L
L]

14000 204

12000 A

10000 7 '/\//

8000 14—

ms
RSSI

—40 1+
6000 4

750 -
4000 A

2000 4
—60 A .:"—k\‘ﬂ:&—’;”’/“’f——’
&

14 15 16 17 20 14 15 16 17 20
TP TP
TP/SNR TP/TOA

Mool g o5

12000

10000 A

8000

SNR
ms

6000 -

4000 ~

L

Y
. 4

o
L
L 2
L 2
L 2

T T
14 15 16 17 20 14 15 16 17 20
TP TP

Fig. 10. Change in system characteristics at different transmission power value

The last parameter analyzed in the experimental study was the PL, with the corresponding results
presented in Fig. 11. The obtained data demonstrate that an increase in PL led to a noticeable rise in ToA,
which is explained by the proportional growth of the packet size due to the extension of the
synchronization preamble.

At the same time, the RSSI remained nearly constant across different preamble values, confirming
that PL does not affect the signal level at the physical layer. However, a significant improvement was
observed in the SNR with longer preambles. This effect is associated with better synchronization at the
receiver side, as a longer preamble allows more accurate detection and demodulation of the incoming
signal, thereby reducing bit errors under noisy conditions.

Thus, increasing the preamble length enhances the robustness and reliability of the communication
link, though at the cost of higher transmission time and, consequently, increased energy consumption. The
choice of PL should therefore be adapted to the application scenario, balancing the trade-off between link
stability and system efficiency.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 25-37 (2025)

36 Yu. Shkoropad, H. Beshley

—8— Experiment 1 Experiment 2 —&— Experiment3 —@— Experiment 4
PL/DELAY PL/RSSI
17500
—20 1
15000 +
—30 4 /
8
12500 + L & 4
—40
» 10000 @
E & —s0
7500 4
—60 ® . = —y
5000
—70 4
2500 4
' —
— & 4 —g80 4
0 T T T T T T T T T T T T
6 10 20 30 40 50 6 10 20 30 40 50
PL PL
PL/SNR PL/TOA
14000 { g—@ - * Py il
8.0 + @ & ®
12000 4
T8
10000 A
7.0 1
& 8000 +
[u}
% 6.5 =
6000
6.0 T
4000 +
5:5:
2000 4
5.0
< = Py 8 —a
o *—%® ool i b
T T T T T T T T T T T
6 10 20 30 40 50 6 10 20 30 40 50

PL PL

Fig. 11. Change in system characteristics at different preamble lengths

Experimental studies have confirmed that the developed software for LoRa modules not only ensures
communication stability but also expands functionality compared to existing solutions. Analysis of the
parameters showed patterns of their impact on transmission quality: an increase in the spreading factor increases
the range but worsens the time characteristics; a wider bandwidth speeds up transmission but reduces the SNR;
a higher coding rate enhances noise immunity at the cost of reduced speed; increasing the transmission power
increases the signal level; a longer preamble improves SNR but increases transmission time. The scientific
novelty of the work lies in the combination of a simplified command interaction protocol, automatic parameter
synchronization, built-in diagnostics, and a packet fragmentation algorithm in a single firmware. This
comprehensive approach not only improves data exchange efficiency, but also lays the foundation for further
integration of artificial intelligence methods for adaptive real-time parameter optimization.

Conclusion

This paper presents the development of software for ESP32 microcontrollers with LoRa modules,
which provides simple configuration and flexible control of wireless communication parameters. A
mechanism for using simple text commands for configuration and control has been implemented, which
simplifies integration into application systems and significantly reduces computational costs compared to
structured formats. Additionally, communication quality assessment functions have been developed that
allow analyzing channel reliability and adapting the device's operation to environmental conditions in a
timely manner.The results confirm the effectiveness of the approach, which focuses on compactness,
simplicity, and scalability of the system. The implemented solution can be used not only for basic data
transfer scenarios, but also for more complex systems that require adaptability and scalability.

[H(poKOMYyHIKaITiliHI TEXHOIOTII Ta eleKTpOHHa imkenepis, Bum. 5, Ne 2, C. 25-37 (2025)

Development of Embedded Software for ESP32-Based LoRa ... 37

Further work will focus on developing an artificial intelligence module capable of optimizing
communication parameters in real time. In particular, we plan to use reinforcement learning methods that will
allow us to automatically select the optimal values for parameters such as frequency, bandwidth, and spread
spectrum coefficient, according to current environmental conditions and interference levels. The computational
part of the artificial intelligence algorithms will be performed on external computing modules, such as NVIDIA
Jetson or Raspberry Pi, which will ensure a balance between high analysis performance and minimal load on the
microcontroller firmware. This approach opens up prospects for the creation of intelligent wireless systems
capable of independently adapting and optimizing communication in dynamic conditions.

References

[1] M. A. M. Almuhaya, W. A. Jabbar, N. Sulaiman, and S. Abdulmalek, ““A survey on LoRaWAN technology:
Recent trends, opportunities, simulation tools and future directions”, Electronics, Vol. 11, No. 1, p. 164, Jan.
2022. DOI:10.3390/electronics11010164.

[2] J. M. Solé, R. P. Centelles, F. Freitag and R. Meseguer, “Implementation of a LoRa Mesh Library”, in IEEE
Access, Vol. 10, pp. 113158-113171, 2022. DOI: 10.1109/ACCESS.2022.3217215

[3] M. Jouhari, N. Saeed, M.-S. Alouini, and E. M. Amhoud, “A survey on scalable LoRaWAN for massive 10T:
Recent advances, potentials, and challenges”, IEEE Commun. Surv. Tutor., Vol. 25, No. 3, pp. 1841-1876,
2023. DOI: 10.1109/comst.2023.3274934.

PO3POBJIEHHA BBYIOBAHOI'O TIPOI'PAMHOI'O 3ABE3IIEYEHHA
JJISA MOJAYJIIB LORA HA BA3I ESP32 3 AJJAIITUBHOIO
KOH®PIT'YPALHIECIO TA MOHITOPUHI'OM AKOCTI 3B’ AA3KY

I0piii HIkoponan, Ianuna Beuwreii
Hayionanvuuii ynisepcumem ““Jlvgiscoxa nonimexnixa”, 12, eyn. C. Bandepu, Jlveis, 19013, Vipaina

VY crarTi onrcaHo HOBUH MiAXiJ 10 po3poOieHHsT BOYI0OBAHOTO MIPOTpaMHOTro 3ade3nedeHHs 1t LoRa-
MozyIiB Ha 0a3i MikpokoHTposepa ESP32. OcHoBHa ines poGoTH mossirae y CTBOPEHHI YHiBepcaIbHOT
TIPOIIMBKY 13 MIHIMAJTICTUYHOIO apXiTEKTYPOI Ta PO3MIMPEHIMH MOXKIABOCTAME KOH(DIiryparmii, mo
3abe3neuye HamiHUA OOMIH JaHUMH Yy pekuMmi peer-to-peer. Po3pobneHa cucteMa BHKOPHUCTOBYE
crporrenwnit Tekctosuit popmat komau (COMMAND;PARAM=VALUE) 3amicts JSON, 110 3HMKYE
00UMCITIOBAJIFHI BUTPATH Ta IPUILIBHALIYE ONPAIFOBAHHS. 3aBISKU [IbOMY CIIPOIILYEThCS IHTETpallis y
NPUKJIAAHI PIOICHHS Ta IIABUIIYETHCS €(QEKTHBHICTh BHKOPHUCTaHHS amapaTHUX pecypeiB. Y
MPOIIMBKY IHTErPOBaHO MeXaHi3M minrBeppkerHs goctaBku (ACK) i3 OBTOPHHM TepenaBaHHsIM Y
pasi BTpaTH TaKeTa, L0 IJBHIIYE HATIHHICTh KaHATy 3B’A3Ky. J[0aTKOBO peasi3oBaHO KOMaHIY
CONFIG_SYNC pmns apromMaTMyHOI CHHXpOHI3alil MapaMeTpiB MDK BY3JIaMH, IO TapaHTye
CTaOUIbHICTh Yy JMHAMIYHMX YMOBaX. 3alpoONOHOBaHWHA MiAXiA mepeadadyae TakokK (YHKIIFO
PING/PING_ACK, sika, okpiM TepeBIpKH NOCTYIMHOCTI 3’€qHaHHS, 3a0e3edye OTPUMAHHS [iarHo-
CTHYHUX XapakTepucTrk, pazoM i3 RSSI, SNR, TOA, DELAY Ta mBuakicTIO meperaBaHHs JaHUX.
[MepenbaueHO MOXKIMBICTh TEpelaBaHHs BENUKHUX IOBIJOMJICHb 32 JONOMOIOI aJIrOPUTMY Cer-
MeHTaIlil Ta 00’€IHAHHS MMAKETIiB, MO J0Ja€ amapatHi oOMexeHHs LORa-umma SX1276. V xomi
JIOCITIDKEHHS 3ICHEHO EKCIICPUMEHTAITbHY TIePEBIPKY pOOOTH MPOIIMBKY i3 Bapiali€lo KITFOYOBUX
napamertpis: spreading factor, bandwidth, coding rate, transmission power ta preamble length. Otpu-
MaHi pe3yJIbTaTH MiJTBEpAMINA 3aKOHOMIPHOCTI BIUIMBY LMX IapaMeTpiB Ha 3aTPHMKY, LIBHIKICTH,
RSSI Tta BigHOmieHHs curHan [HIyMm, IO Jaj0 3MOry c(OpMyBaTH MPAaKTUYHI PEKOMEHIAINT st
ornTuMizanii poOOTH cucTeMH. 3alpoIOHOBAHE PIMICHHS TMOEJHYE IMPOCTOTY Y BUKOPHCTaHHI, THYY-
KICTh KOH(QIrypaliii Ta iIHCTpYMEHTH OLIHIOBaHHS SKOCTI 3B 513Ky, 3a0e3neuytoun OajgaHc MiXk NPOIyK-
TUBHICTIO Ta MaciiTaboBaHicTio. [lomanbmii po3BUTOK Tependavae iHTETpaIio MOAYIIB IITyYHOTO
iHTeNeKTy, 30KkpeMa reinforcement learning, s aBTOMaTHYHOrO MiAOUPaHHS ONTUMATIBPHUX MapameT-
piB y peaJlbHOMY daci, IO BiIKpUBA€ TEPCIEKTHBH CTBOPEHHS IHTENCKTYyaJIbHHX CaMOHAJIAIITOBY-
BaHUX OE3MPOBITHUX CUCTEM.

Keywords: LoRa, ESP32, BOymoBaHe mporpamHe 3a0e3leueHHs, KOMAaHIHHHA POTOKO,
aBTOMAaTHYHA CHHXPOHI3allisl, OI[iHKA IKOCTIi 3B’ SI3KY.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 25-37 (2025)

