IHOOKOMYHIKALIAHI TEXHONOMT TA ENEKTPOHHA IHXEHEPIS
INFORMATION AND COMMUNICATION TECHNOLOGIES,
ELECTRONIC ENGINEERING

Ne 5 (2), 2025

https://doi.org/10.23939/ictee2025.02.049

INVESTIGATION OF UNMANNED AIRCRAFT AUTOPILOTING
METHODS WITH REAL TIME ROUTE CORRECTION

L. Bernevek [ORCID: 0003-0000-2122-0545] () Yy aremko [SCOPUS ID: 24484282800]

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine

Corresponding author: |. Bernevek (e-mail: ivan.a.bernevek@Ipnu.ua).

(Received 16 July 2025)

The article explores the prospects for the automatic control of unmanned aerial vehicles (UAVSs)
implementation, analyzes the results of modern research and existing implementations in this area.
Special attention is paid to popular software packages for their ability to provide automatic
piloting functions without any need to equip the UAV with additional modules, and also considers
the features of such implementation when using third-party equipment and software. A test
algorithm for extended automatic piloting of the UAV has been developed for the ArduPilot +
Companion Computer assembly, which involves piloting the UAV along a given route, performing
additional operations on the UAV at certain points on the route, and correcting the route in real
time if necessary. The peculiarities of connecting the Companion Computer to the flight controller,
using the MAVLink protocol for ArduPilot, and using the appropriate libraries for programming
languages, in particular Pymavlink (mavgen) for Python, are analyzed. The corresponding stages
of the test algorithm are implemented using the Python language and the Pymavlink library, in
particular the stage of establishing a connection via the MAVLink protocol, receiving the
coordinates of the current position from the flight controller, calculating the distance to the next
route point, dynamically changing the route by setting the coordinates of the next route point,
performing additional operations at certain points of the route, as well as collecting and processing
UAV telemetry information. The ArduPilot + Companion Computer assembly allows you to
significantly expand the functionality of the UAV and dynamically change them, however, the use
of such assemblies is advisable only in cases that cannot be covered by the computational
capabilities of the flight controller and standard UAV software. Compared to other software
packages, ArduPilot provides the best functionality for implementing automatic piloting, both
using the ArduPilot Mission Planer and in the ArduPilot + Companion Computer assembly and
third-party software.

Keywords: unmanned aircrafts, autopiloting, flight by route, ArduPilot.
UDC: 621.126

Introduction

The functionality of any UAV is defined by its physical characteristics, flight controller and
software used for control. Changing the physical characteristics of a UAV during its use is a rather
resource-intensive process, whereas changing the flight controller and updating the software can sig-
nificantly expand the functional and quality characteristics of the UAV with little or even no physical
modification. The presence of certain functions is the key criterion for choosing software. There are a large

© 2025 HarionanbHuii yaipepcuter “JIbBiBchka momiTexHika”

50 1. Bernevek, O. Yaremko

number of software packages for controlling UAVs. The most popular today are Betaflight, iNav and
ArduPilot. In this article, using these packages as an example, we will consider the possibilities of
implementing the UAV automatic piloting function within the software package itself, as well as using
auxiliary modules (Companion Computer) and third-party software.

2. Recent research and existing implementation analysis

Every year, the uses of UAVS, especially automatically piloted ones, are expanding. As the range of
applications grows, so do the requirements for the functional capabilities of these UAVs. Today, there is
active research in the field of automatic piloting. In particular, study [1] considers the possibility of
simultaneously controlling several UAVs by shifting each one a certain distance relative to the others. To
implement this method, the additional Arduino modules were used to monitor the flight in real time and
manage the shifting function. Study [2] explores using an automatic piloting function for UAVs in the
event of a lost radio control signal. This method was implemented using an additional control module
based on a Raspberry Pi, which processes the lost signal messages. Studies [3, 4] demonstrate the use of
computer vision for organizing automatic piloting of UAVSs in a pursuit mode. As in the previous cases,
this approach requires external information processing and control modules. Study [5] presents the process
of implementing a UAV autopilot function for the Betaflight software package, which in its standard
version only supports a return-to-home function. The implementation used an additional Raspberry Pi
module to analyze flight data and perform all UAV control functions. The results of these studies de-
monstrate the implementation of UAV autopilot functions for various situations, usually for flights without
a predefined route. These solutions are based on the use of additional control and information processing
modules, which complicates their implementation.

The implementation of UAV autopilot functions without additional modules is limited by the ca-
pabilities of the flight controller and the UAV’s software. The most popular software packages used for
UAVs today are Betaflight, iNav, and ArduPilot.

Betaflight is an open source flight controller software package designed primarily for multi-rotor
aircraft, including quadcopters. It is by far the most popular choice for FPV drone operators, known for its
wide range of features and performance-oriented design. Betaflight offers an intuitive interface and sup-
ports a wide range of hardware. An active community and ongoing development ensure regular updates
introducing new features and improvements. With its high-performance customization capabilities and
constant innovation, this software package is most suitable for racing and aerobatic flights. It is also
suitable for long-distance flights, thanks to the GPS Rescue function, which provides automatic return to a
point with given coordinates in case of loss of communication [6].

iNav is a package that focuses on GPS navigation and autonomous flight. In addition to multi-
copters, iNav can also be used for fixed-wing aircraft and radio-controlled cars. It offers more advanced
GPS features such as waypoint navigation, return-to-home, and altitude hold. Like Betaflight, iNav is an
open-source software package that is constantly updated and improved by the development community.
Although iNav is not as popular for racing or aerobatic flying as Betaflight, it is a popular choice for long-
range fixed-wing aircraft and autonomous applications [7].

ArduPilot is perhaps the most popular and advanced open source autopilot software package. It
supports a variety of vehicles, including quadcopters, aircraft, land vehicles, and even radio-controlled
submarines. ArduPilot is known for its extensive feature set and customization options, making it a good
choice for experienced operators and developers. It supports both autonomous and manual control modes,
as well as GPS waypoint navigation. However, the wide range of features and capabilities comes at the
cost of the product’s complexity [8].

The features of the above-mentioned software packages are summarized in Table 1.

IndoxoMyHiKamilHI TEXHOJIOTII Ta eJIeKTpOHHA irkeHepis, Bum. 5, Ne 2, C. 49-58 (2025)

Investigation of unmanned aircraft autopiloting methods with real time route correction ...

51

UAYV software package options

Table 1

Option

Betaflight

iNav

ArduPilot

Main purpose and used
areas

Racing / aerobatic flights

Cruise / long-duration
flights, hobby UAVs

Universal platform for
UAVs, cars, boats.
Industry, agriculture,
mapping, military drones,

autonomous platforms
Full autopilot

. Limited Basic autopilot . .
Autopilot . . (RTH, Loiter, Mission,
(RTH) (Loiter, RTH, Waypoints) Follow Me etc.)
. L Fully functional
Route planning Not supported Limited

Mission Planner
GPS, compass, telemetry,
Lidar, camera, gimbal,

Support for additional
modules

Camera, OSD, GPS
(limited)

GPS, compass, barometer,
telemetry

ADS-B, LTE
Mission Planner,
User interface BetaFlight Configurator iNav Configurator QGroundControl
(configuration) (user friendly, simple) (similar to BetaFlight) (complicated, fully
functional)

3. Basic UAV autopiloting implementation

If we talk about manual piloting, then each of the above-mentioned software packages fully covers
these needs. However, if there is a need to use autopiloting and other automated functions to perform tasks,
then not each of them can provide such capabilities by default. It is also important to note that autopiloting
involves the use of positioning systems.

Betaflight supports altitude hold and return-to-home functions by default, but does not support
waypoint flight planning. Unlike Betaflight, iNav and ArduPilot are more advanced in this regard.

For automatic piloting, the iNav software package uses Mission Control — an extension of the iNav
configurator which acts as a ground station. It allows users to create, load, and manage missions, such as
waypoint flights. The process for using this function involves several steps: first, a mission must be created
(defining the coordinates of waypoints, altitude, speed, and other mission options); second, the mission is
loaded into the flight controller; and finally, after an initial takeoff, the mission is launched for execution.
Mission Control can also be used to monitor the mission’s execution. For this purpose, an additional radio
channel is used for the UAV to transmit telemetry information back to Mission Control. Mission Control
does not provide a way to dynamically change a mission while it is being executed. In such cases, it is
necessary to create and load a new mission and launch its execution.

Similar to iNav, ArduPilot also allows for mission execution. For this purpose, the ArduPilot
Mission Planner is used. Compared to iNav, ArduPilot allows for more detailed configuration of both
mission and UAV parameters, which provides increased functionality. Another key feature is the ability to
dynamically change the mission without needing a reboot, as well as the ability to analyze log files to
understand the system’s performance and correctness. The expanded list of ArduPilot functions naturally
places increased requirements on flight controllers and also increases the complexity of setting up and
using the system

According to the publications analyzed, another possible option for autonomous UAV control is the
use of a companion computer. This computer can form a flight route based on data received from the
UAV’s sensors and cameras.

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 49-58 (2025)

52 1. Bernevek, O. Yaremko

For communication between the flight controller and the external computer, two main protocols are
used: MAVLink — supported by ArduPilot, with limited support in Betaflight and iNav; and MSP -
supported by iNav and Betaflight, with limited support in ArduPilot.

When using a companion computer with Betaflight or iNav, the functionality depends on the
communication protocol used. With MAVLIink, its use is generally limited to reading and processing
telemetry data. Betaflight does not support UAV control commands via MAVLink, while iNav supports
both telemetry and control commands [7, 9, 10]. Regarding the MSP protocol, recent updates allow for the
development of autopilot solutions using a companion computer with Betaflight [5]. However, these
solutions currently do not integrate with existing flight planning tools like Betaflight or iNav (Mission
Control) and require the implementation of a separate control system.

Compared to Betaflight and iNav, ArduPilot has limited support for MSP, using it only to receive
telemetry information. However, it can fully utilize MAVLIink, providing complete two-way interaction
and the ability to integrate with existing flight planning tools like the ArduPilot Mission Planner [11].

4. Using ArduPilot + Companion Computer to implement advanced UAV autopiloting

Based on a preliminary analysis of recent research and implementations, it can be concluded that the
basic implementation of UAV automatic piloting is possible without additional computing modules. This is
achieved through the capabilities of the flight controller and its software. In cases where the requirements
for automatic piloting exceed the capabilities of the flight controller or its software, using a companion
computer is recommended.

Considering the advantages of ArduPilot, let’s consider an example of the operation of the ArduPilot +
Companion Computer assembly using the example of performing an autopilot task with performing additional
operations at certain waypoints along the route, and correcting the route if necessary.

Task:

fly over a certain area, according to the principle of a mapping mission using a predefined flight
route;

at the predefined waypoints, take a photo of the area from the current altitude;

analyze the image for the presence of suspicious objects (transport, people, fires, etc.);

in case of detection — move in the direction of these objects and take additional pictures, analyze
again and send the conclusions to the monitoring;

continue the flight along the route.

The algorithm of UAV operation in this configuration is presented in Fig. 1.

To perform resource-intensive computing operations, this configuration uses a Companion Com-
puter — a separate on-board computer connected to the flight controller, which provides additional
operations that are not provided by the flight controller. The Companion Computer usually runs Linux, as
it is a universal platform for software development. Connection to the flight controller is carried out using
a fast serial or Ethernet connection and using the MAVLink protocol. The Raspberry Pi mini computer is
used as the Companion Computer. Connection and use are carried out in accordance with the official
ArduPilot recommendations and the use of recommended software [12]. The MAVLink protocol is used to
ensure communication between the Companion Computer and the flight controller, in particular commands
for working with missions [13]. To work with the MAVLink protocol, both official and external libraries
for various programming languages are available. The choice of programming language, as well as the
library, will depend on the functionality and speed that must be obtained [14]. For the current task, we will
use the Pymavlink library for python [15]. The process of interaction of UAV components during the
execution of the algorithm is presented in Fig. 2. The general diagram of connecting UAV components to
work with the Companion Computer is shown in Fig. 3.

IndoxoMyHiKamilHI TEXHOJIOTII Ta eJIeKTpOHHA irkeHepis, Bum. 5, Ne 2, C. 49-58 (2025)

Investigation of unmanned aircraft autopiloting methods with real time route correction ...

53

A

Creating and launching
a mission through Flight on route |«
Mission Planner

Is an additional
operations at the checkpoint
required?

Yes

Stopping the UAV,
receiving and
processing the image

Is suspicious
activity detected?

Continue flight
on route

Route correction
{movement towards
the object)

Are there
waypoints left?

Re-receiving and
processing the new
image
v
Sending activity
findings to Cloud
Server

Fig. 1. Algorithm of UAV operation for mission execution
in ArduPilot + Companion Computer configuration

Flight .
controller Companion Camera Cloud

(ArduPilot) computer server
I

Creating and start mission
through Mission planner

Groudn
station

w

4 Mission details
Al

Mission launch
confirmation

4
[N
loop |["Performing resource-intensive computing operations™]

Passing
waypoint

Additional action required

4 Stopping UAV
Al

Taking
4 thephoto |
b L4
Processing
the image
[
alt J["Susplclcus activity is detected™]
Route correction
4 (move towards activity)
4
Taking
g thephoto
Al P
Processing
the Image
Conclusions on activity
Continue flight
4 on route
bl

Mission completion |
T P

4 Mission completion
kl
| |

Fig. 2. UAV components interaction diagram for algorithm

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 49-58 (2025)

54 1. Bernevek, O. Yaremko

Cloud Ground Station
(integrated manual controls)

Radio/IP
Links

/ Flight Controller \ / Companion (Mission) \

Computer

Core flight control and safety

Computer vision, avoidance,
features

advanced flight modes

MAVLink,
microDDS
I12C/CAN/
YU SPI/UART
Sensors Payload Sensors
Motors Distance, IMU, Camera, Depth
Baro, GPS, Flow Cargo Camera

Fig. 3. UAV component connection diagram using Companion Computer

According to the constructed operating algorithm and UAV components interaction diagram, the
implementation involves writing code blocks that will be responsible for performing various functions, in
particular:

Code block for establishing a connection with the flight controller (Fig. 4).

from pymavlink import mavutil
import time

Connect to the drone via MAVLink

master = mavutil.mavlink_connection('/dev/ttyAMA®', baud=57600)
Fig. 4. Code block to establish connection to flight controller

B W NP

The function to obtain the coordinates of the current location — is used to determine the position of the
UAV in the route (Fig. 5).

1~ def get_position():

msg = master.recv_match(type="'GLOBAL_POSITION_INT', blocking=True, timeout=5)
- if msg:
lat = msg.lat / le7
lon = msg.lon / 1le7

alt = msg.relative_alt / 1000.0
return lat, lon, alt
return None

0 N oy U1 B WKW

Fig. 5. Code block to get the coordinates of the current location

The function to calculate the distance to the next waypoint — is used to estimate flight time, keep
a flight log, etc. (Fig. 6).

IndoxoMyHiKamilHI TEXHOJIOTII Ta eJIeKTpOHHA irkeHepis, Bum. 5, Ne 2, C. 49-58 (2025)

Investigation of unmanned aircraft autopiloting methods with real time route correction ... 55

1- def haversine(latl, lonl, lat2, lon2):

2 from math import radians, cos, sin, asin, sqrt

3 R = 6371000 # Earth radius in meters

4 dlat = radians(lat2 - latl)

5 dlon = radians(lon2 - lonl)

6 a = sin(dlat/2)**2 + cos(radians(latl)) * cos(radians(lat2)) * sin(dlon/2)x*x*2
7 return R * 2 *x asin(sqrt(a))

Fig. 6. Code block to calculate the distance to the next waypoint

The function for setting the coordinates of the next route point is used to correct the flight route
or dynamically build a route (Fig. 7).

1- def goto_waypoint(lat, lon, alt):

2 master.mav.set_position_target_global_int_send(

3 @, master.target_system, master.target_component,
4 mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
5 0b0000111111111000, # Position only

6 int(lat * 1e7), int(lon * 1e7), alt,

7 e, 0, o0, o, 0, 0,
8 0, 0)

Fig. 7. Code block to set waypoint coordinates

The code to perform a series of additional operations at defined waypoints along the route. It
first determines the current location’s coordinates, then takes and analyzes an image for suspicious objects.
If an object is detected, the code corrects the route, moves a set distance toward the object, takes and
analyzes new images, sends the results to the server, and then resumes the original route (Fig. 8).

1~ def perform_action_at_waypoint(index):

2 print(f"Performing custom action at waypoint {index}...")

3 pos = get_position()

4 photo = take_a_photo()

5 photo_processing_result = process_photo()

6 send_photo_to_server(photo_processing_result)

7 if photo_processing_result.additional_photo_needed

8 # move toward suspicious object

9 next_point = photo_processing_result.suspicious_object_position

10 goto_waypoint(next_point.lat, next_point.lon, next_point.alt)
11 time.sleep(5)

12 # take photo in details

13 photo = take_a_photo()

14 photo_processing_result = process_photo()

15 send_photo_to_server(photo_processing_result)

16 # back to main route

17 goto_waypoint(pos.lat, pos.lon, pos.alt)

Fig. 8. Code block to perform additional operations at defined waypoints of the route

The overall program cycle, which includes all previous mission stages (Fig. 9).

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 49-58 (2025)

56 1. Bernevek, O. Yaremko

1- for i, (lat, lon, alt) in enumerate(waypoints):

2 print(f"Going to waypoint {i+1}: {lat}, {lon}, {alt}")
3 goto_waypoint(lat, lon, alt)

4 # Wait until arrival

5~ while True:

6 pos = get_position()

7~ if pos:

8 dist = haversine(pos[@], pos[1], lat, lon)

9 print(f"Distance to waypoint: {dist:.2f} meters")
10 - if dist < ARRIVAL_RADIUS:

il print("Arrived at waypoint.™)

12 break

13 time.sleep(1)

14 landing(i+1)

Fig. 9. Full cycle of algorithm execution

Testing the assembly involves the use of two configurations: the Companion Computer provides full
control over the UAV operation process (guided mode) and the Companion Computer works as an
auxiliary module to perform additional operations (hybrid mode).

5. Test results and conclusions

As a result of testing the assembly and analyzing logs from the flight controller and the companion
computer, a slight improvement in the UAV’s operation was found in guided mode compared to hybrid
mode. Specifically, a decrease in the delay of the transition from flight to the execution of resource-
intensive operations by an average of 120-150 ms was observed. This can be explained by the transfer of
not only resource-intensive operations but also the control of their execution to the companion computer.
As a result, the flight controller no longer has to monitor the performance of additional operations; instead,
it only needs to send telemetry data to the companion computer and monitor control commands from it.

The transition delay change for guided and hybrid modes is presented in Fig. 10.

1000

900 ———

800

700
600

delay, ms

500

400

300

200
100

[} T T T T T T T T T T T T T

T T T T T
12345678 9101112131415161718192021222324252627282930
test number

= Delay for guided mode Delay for hybrid mode

Fig. 10. The transition delay from flight to performing resource-intensive operations

IndoxoMyHiKamilHI TEXHOJIOTII Ta eJIeKTpOHHA irkeHepis, Bum. 5, Ne 2, C. 49-58 (2025)

Investigation of unmanned aircraft autopiloting methods with real time route correction ... 57

Based on the results obtained, the choice between guided mode and hybrid mode depends on the
mission’s complexity, as well as the requirements for flexibility and reliability.

In guided mode the Companion Computer provides full control of the UAV, making it ideal for
complex, flexible, and intelligent missions. Advantages: this mode offers on-board information processing,
real-time decision-making, the ability to configure additional actions at specific waypoints, and integration
with specialized sensors and artificial intelligence (e. g., object detection, QR code recognition).
Disadvantages: it requires more development effort detailed testing and has a higher configuration
complexity. Uses: autonomous inspection, precision agriculture with variable-speed actions, drone-based
research, and tasks requiring visual guidance.

Hybrid ArduPilot Mission Planner + Companion Computer configuration — best suited for balanced
missions that require both reliability and periodic additional operations. Advantages: preserves the reliability of
ArduPilot auto mode, allowing the Companion Computer to monitor or intervene as needed (e. g., log data,
trigger actions, handle exceptions). Disadvantages: more complex than ArduPilot auto mode, but safer than full
ArduPilot guided missions, which are completely controlled by user code. Uses: exploration missions with post-
processing, conditional actions, semi-autonomous search and rescue operations.

References

[1] Stephen Lazzaro (2015), “Flying multiple drones from 1 remote controller”, available at:
https://minds.wisconsin.edu/bitstream/handle/1793/72188/TR1818.pdf (Accessed 15 July 2025).

[2] Yaroslav Sheyko, Natalila Kryvko, Oleksandr Shefer (2025), “Enhancement Arduplane Radio Failsafe
Algorithm by Extending with a New Delegation Action”, Electronics and Control Systems 2025. No. 1(83): 42—
49. DOI: 10.18372/1990-5548.83.19873

[3] Dmytro Sazonov (2025), “How to build the Eyes of an Autopilot for FPV Combat Drone”, available at:
https://medium.com/illuminations-mirror/how-to-build-the-eyes-of-an-autopilot-for-fpv-combat-drone-
bbf13d605a9f (Accessed 15 July 2025).

[4] Dmytro Sazonov (2025), “How to build an Autopilot with Computer Vision and Target Following for FPV
Combat Drone”, available at: https://ai.gopubby.com/how-to-build-an-autopilot-with-computer-vision-and-
target-following-for-fpv-combat-drone-3544f482baae (Accessed 15 July 2025).

[5] Dmytro Sazonov (2025), “FPV autonomous operation with Betaflight and Raspberry Pi”, available at:
https://medium.com/illumination/fpv-autonomous-operation-with-betaflight-and-raspberry-pi-Ocaeb4b3ca69
(Accessed 15 July 2025).

[6] “Betaflight — Pushing the Limits of UAV Performance”, available at: https://betaflight.com/ (Accessed 15 July
2025).

[71 “INAV Remote Management, Control and Telemetry”, available at: https://github.com/iNavFIlight/
inav/wiki/INAV-Remote-Management%2C-Control-and-Telemetry (Accessed 15 July 2025).

[8] “Flight Controller Firmware for FPV Drone: Choosing Between Betaflight, iNav, Ardupilot™, available at:
https://oscarliang.com/fc-firmware/ (Accessed 15 July 2025).

[9] Dmytro Sazonov (2024), “FPV Autonomous Flight with MAVLink and Raspberry Pi. Part 1, available at:
https://blog.cubed.run/fpv-autonomous-flight-with-mavlink-and-raspberry-pi-part-i-f7dfa913f505 (Accessed 15
July 2025).

[10] Dmytro Sazonov (2024), “FPV autonomous flight with MAVLink and Raspberry Pi. Part 11", available at:
https://medium.com/illumination/fpv-autonomous-flight-with-mavlink-and-raspberry-pi-part-ii-2d55dcd8d659
(Accessed 15 July 2025).

[11] ““Companion Computers — dev documentation”, available at: https://ardupilot.org/dev/docs/companion-
computers.html (Accessed 15 July 2025).

[12] “Communicating with Raspberry Pi via MAVLiInk - dev documentation”, available at:
https://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html (Accessed 15 July 2025).

[13] “MAVLINK common message set, MAV_CMD_NAV_WAYPOINT - dev documentation”, available at:
https://mavlink.io/en/messages/common.htmi#MAV_CMD_NAV_WAYPOINT (Accessed 15 July 2025).

[14] “Using MAVLink Libraries — dev documentation”, available at: https://mavlink.io/en/getting_
started/use_libraries.html (Accessed 15 July 2025).
[15] “Using Pymavlink Libraries (mavgen) - dev documentation”, available at:

https://mavlink.io/en/mavgen_python/#using-pymavlink-libraries-mavgen (Accessed 15 July 2025).

Information and communication technologies, electronic engineering, Vol. 5, No. 2, pp. 49-58 (2025)

58 1. Bernevek, O. Yaremko

JOCIIIZKEHHA METOAIB ABTOMATUYHOI'O NIJIOTYBAHHA
BE3NIVIOTHUX JITAJIBHUX AITAPATIB 3 KOPEKHIECIO MAPIIPYTY
B PEKUMI PEAJIBHOI'O HACY

IBan BepueBek, Ouer SIpemko

Hayionanvnuti ynieepcumem “*Jlovsiscoxa nonimexuixa’, eyn. C. banoepu, 12, Jlvsis, 79013, Vrpaina

JlocaikeHo TepCleKTUBU BIPOBAKCHHS aBTOMATHYHOTO YIPABIiHHSA O€3MUIOTHUMH JiTalb-
Humu amapatamu (BITJIA), mpoaHanizoBaHO pe3yNbTaTH CydacHHX IOCTIIKCHb Ta HasBHI pea-
mizanii B miif ramysi. OkpeMy yBary NnpuaijIeHO NMOMyJISIPHUM HPOTPaMHUM NTAKeTaM Ha IMpeAMeT iX
31aTHOCTI 3a0e3nedyBatu (GyHKII aBTOMAaTHYHOTO MiJIOTyBaHHS 6e3 moTpedu ocHarienns BITJIA
JIOJATKOBUMH MOJYJISIMH, 2 TaKOX PO3IJIIHYTO OCOOJMBOCTI TaKoi peaiizamii i3 BUKOPHCTaHHIM
CTOPOHHBOTO O0JIAMHAHHS Ta mporpamHoro 3abesmedveHns. Jlns moennanus ArduPilot + Com-
panion Computer po3po6IeHO TECTOBHI AJTOPUTM PO3IIMPEHOr0 aBTOMATHYHOIO IJIOTYBAHHS
BIUTA, sxuii mepenbadae minoryBaHHsS BIIJIA 3a 3amanum mapripyTtoM, BukoHaHHs BIIJIA
JIOZIATKOBHX OTIEpalliil y MEBHUX TOYKAX MapHIPYTY, KOPUTYBaHHs MapIIPYTy B PEKHMI PEaIbHOTO
vacy B pasi HeobOxigHocri. [IpoananizoBano ocobmuBocti mimkmouerns Companion Computer mo
MOJITHOTO KOHTpOJUIepa, BUKOpucTaHHs npotokoiay MAVLInk mms ArduPilot ta Bigmoigaux
6i0imioTek s MOB mporpamyBanHsi, 30kpema Pymavlink (mavgen) mis Python. Binnosiaui eranu
TECTOBOTO aJIrOPUTMY pPEalli30BaHO 3 BHKOpUCTaHHAM MoBH Python Ta 6Gibmioreku Pymavlink,
30KpeMa eTall BCTAHOBJICHHS 3’€[HaHHS depe3 mpotokon MAVLINK, oTpumadHs Bif MOMITHOTO
KOHTpOJUIEpa KOOPAWHAT ITOTOYHOI MO3UIi{, pO3paxyHOK BiZCTaHi 10 HACTYIHOI TOYKH MapIIpyTy,
JIUHAMIYHY 3MiHY MapuipyTy a JOIIOMOTOI0 BCTAHOBJICHHS KOOPAMHAT HACTYITHOI TOYKH Mapii-
PYTY, BUKOHAHHS JOJATKOBHX OIepaliii y NMeBHUX TOYKAaX MapLIpyTy a TaKoXX 30MpaHHs Ta
ompairtoBanHs Texemerpuynoi indopmarii BITJIA. 36ipka ArduPilot + Companion Computer nae
3MOTY ICTOTHO PO3IIMPHUTH (PYHKIiIOHATbHI MoOxmBocTi BITJIA Ta AWHAMIYHO 3MiHIOBAaTH iX,
IIPOTE BUKOPHCTaHHS TAKWX IOE€THAHB JOIUIBHE JINIIE Y BUNAAKaX, SKi HEMOXIIMBO peaji3yBaTH
3a PaxyHOK OOUMCIIOBAIBHUX MOXJIMBOCTEH MOJITHOrO KOHTpOJEpa Ta CTAaHIAPTHOTO MpOrpam-
Horo 3abe3nedyends: BIIJIA. TTopiBHSHO 3 iHIIMMHU MAaKEeTaMHU MPOrpaMHOro 3abesmeuenus, Ardu-
Pilot Hagae wmaiikpammii QyHKIiOHAN Ui peanizalii aBTOMATUYHOTO MiIOTYBaHHS, K 3 BHKO-
pucrannsm ArduPilot Mission Planer, tak i 8 noexnannii ArduPilot + Companion Computer 3i
CTOPOHHIM MPOTPaMHKUM 320€3TeUSHHSM.

Kuio4oBi ciioBa: Oezninomui aimanvui anapamu, asmomamuyne niiomy68anus, NOaim 3a mMapui-
pymom, ArduPilot.

IndoxoMyHiKamilHI TEXHOJIOTII Ta eJIeKTpOHHA irkeHepis, Bum. 5, Ne 2, C. 49-58 (2025)

