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Modern infocommunication technology (ICT) infrastructures such as content delivery networks
(CDNs) must continuously tune low-level parameters to deliver high performance under variable and
non-stationary network conditions. This paper investigates how online controlled experiments —
including classical A/B tests and adaptive multiarmed bandit (MAB) algorithms — can be used to
optimise CDN node selection. We formalise the optimisation problem as minimising a network
performance objective of average latency, one of key metrics used to measure network performance.
After reviewing prior work on A/B testing and MABs, we propose a new Change-Detected Upper-
Confidence-Bound (CD-UCB) algorithm that couples the classical UCB arm-selection rule with a
cumulative sum (CUSUM) change detection statistic. The CD-UCB algorithm rapidly resets its
estimates when performance shifts, enabling faster adaptation to non-stationary environments. A
simulation of CDN node selection with three nodes having different latency distributions is used to
compare four approaches: simple A/B testing, sequential A/B testing with early stopping, standard
UCB, and the proposed CD-UCB. Each algorithm is evaluated using cumulative regret , rolling average
latency, rolling throughput and the percentage of requests sent to the optimal node. In a stationary
setting, all methods eventually identify the best node, but MAB-based approaches converge faster and
exhibit lower regret. When the environment changes abruptly, simple and sequential A/B tests fail to
adapt and incur high regret, whereas standard UCB adapts slowly. CD-UCB detects changes quickly
and nearly matches the instantaneous optimal policy, achieving the lowest cumulative regret and closely
tracking the true optimal latency. The results demonstrate that adaptive MAB algorithms with change
detection are better suited than static A/B tests for optimising dynamic ICT infrastructures. The study
concludes with recommendations for applying MAB-based online experiments to infrastructure
optimisation and suggests future work on multi-objective optimisation, contextual bandits and
evaluations on real world testbeds.
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Introduction

In today’s hyperconnected world, digital platforms and info-communication systems — ranging from
online marketplaces and social networks to telecommunications networks and content delivery infra-
structures — play an increasingly central role in daily life. As these environments become more complex
and user demands grow, organizations must rely on data-driven decision-making to optimize service per-
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formance, enhance user experiences, and refine strategic offerings. However, the inherent complexity of
modern infrastructure, products, and services poses significant questions regarding how best to design,
operate, and continuously improve them.

One widely adopted approach to answering these questions is the use of online controlled expe-
riments — often referred to as A/B tests or randomized controlled trials [1, 2]. By assigning different user
groups to distinct treatment conditions and measuring the outcomes, these experiments enable rigorous
causal inference regarding the impact of specific changes. While traditionally applied to front-end user-
experience enhancements, recommender system adjustments, and content modifications, online controlled
experiments offer far broader utility.

Recent work underscores the potential of this methodology when extended into deeper layers of info-
communication systems. Tasks such as optimizing network parameters, allocating resources, refining routing
strategies, and dynamically adjusting content delivery can all benefit from the insights provided by experimental
data. In information and communication technology (ICT) infrastructure — including network routing,
bandwidth allocation, caching strategies, load balancing, and CDN configurations — performance improvements
often emerge incrementally and are intertwined with broader system complexity. A data-driven framework,
grounded in online controlled experiments, helps verify whether these incremental changes yield measurable
gains in key performance indicators (e. g., latency, throughput, packet loss, or Quality of Service).

Against this backdrop, the present paper explores how online controlled experiments — from
classical A/B tests to more adaptive multi-armed bandit (MAB) algorithms [3] — can be leveraged to
optimize infrastructure-level parameters. We illustrate these methodologies by simulating a CDN Edge
node selection scenario using Python, thereby highlighting the adaptability and practical benefits of MAB
approaches in dynamic, large-scale systems.

2. Online controlled experiments and applicability in information and communication technology

Controlled experiments are systematic methods to determine causal relationships between variables by
manipulating one or more independent variables while keeping other conditions constant. These experiments
aim to measure the effect of specific changes on a dependent variable, typically using statistical rigor to ensure
the validity and reliability of results. This approach is foundational in empirical research across various
domains, as it provides clear insights into causality by isolating the effects of specific factors.

In telecommunications systems, controlled experiments are crucial for optimizing complex and dynamic
environments. Such experiments often employ sophisticated methodologies to simulate real-world scenarios and
evaluate the performance of different strategies under controlled conditions. The use of advanced statistical
models and data-driven approaches ensures that results are not only accurate but also generalizable to broader
applications. For example, the design of controlled experiments in online environments leverages high-fre-
quency data streams to continuously monitor system performance and adapt experimental setups dynamically.

Moreover, the integration of machine learning algorithms into controlled experiments has signify-
cantly enhanced their applicability in telecommunications. These algorithms enable real-time analysis and
adjustments, ensuring that experiments remain relevant even as underlying system dynamics evolve. Re-
search has demonstrated that controlled experiments are indispensable for optimizing resource allocation,
improving network reliability, and enhancing user experience in telecommunications systems. Studies have
shown that these methods lead to measurable improvements in metrics such as latency reduction, band-
width utilization, and overall service quality.

Controlled experiments in telecommunications play a pivotal role in optimizing system performance
and ensuring reliability in dynamic environments. Below are the expanded types of controlled experiments
with theoretical foundations and examples [8, 14]:

A/B Testing. This method involves comparing two versions of a system component, such as a
network protocol or user interface, to determine which performs better. A/B testing relies on ran-
domization to ensure unbiased results and statistical analysis to validate the significance of observed
differences. For example, in adaptive bitrate streaming, A/B testing can compare two algorithms to
identify the one that minimizes buffering while maximizing video quality.
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Multivariate Testing. Multivariate testing evaluates multiple variables simultaneously to identify the
optimal configuration of a system. The theoretical basis lies in factorial experimental designs, which
enable the assessment of interactions between variables. In telecommunications, multivariate testing is
used to optimize parameters like signal strength, channel allocation, and error correction protocols,
often resulting in enhanced data throughput and reduced interference.

Sequential Experiments. These experiments incorporate interim data analysis, allowing dynamic
adjustments during the experiment without compromising statistical validity. Sequential methods,
such as Bayesian adaptive trials, reduce the time and resources required to reach conclusions. In net-
work routing, sequential experiments help identify optimal paths dynamically, adapting to changing
traffic conditions and minimizing latency.

Online Controlled Experiments. Executed in real-time systems, these experiments enable direct
evaluation under actual user conditions. Online experiments often employ advanced methodologies
like Multi-Armed Bandit (MAB) algorithms to balance exploration and exploitation. For instance,
load balancing in cloud networks leverages online experiments to distribute resources efficiently while
maintaining high availability and minimal response times.

Multi-Armed Bandit (MAB) [3, 4] algorithms address the exploration-exploitation trade-off in
optimization tasks by providing a systematic framework to make decisions under uncertainty. The problem
is conceptualized as a set of actions, or “arms”, each associated with a probability distribution of rewards
that are initially unknown. The goal is to maximize cumulative rewards over time by iteratively selecting
actions and updating knowledge about their expected outcomes based on observed rewards.

MAB algorithms tackle the critical challenge of balancing exploration — trying different arms to
gather information about their rewards — and exploitation — leveraging the arm that currently appears to
offer the best reward. This balance is essential in dynamic and complex systems where prior knowledge of
reward distributions is limited or unavailable.

The utility of MAB algorithms extends beyond theoretical constructs, as they are designed to adaptively
learn and improve decision-making over time. The iterative nature of these algorithms ensures that they can
dynamically respond to changes in the environment, making them particularly suited for applications such as
telecommunication systems, where conditions can fluctuate rapidly. Furthermore, the mathematical rigor un-
derpinning MAB allows for provable performance guarantees, such as minimizing regret, which is the
difference between the actual reward obtained and the best possible reward achievable in hindsight.

Epsilon-Greedy [4]. The Epsilon-Greedy algorithm is a simple yet effective strategy for addressing
the exploration-exploitation trade-off in Multi-Armed Bandit (MAB) problems. It operates by selecting the
action with the highest estimated reward (exploitation) with a probability of 1 - epsilon, while exploring
randomly selected actions with a probability of epsilon. This probabilistic balancing ensures that the algorithm
does not prematurely converge on suboptimal solutions, allowing for sufficient exploration of the action space.
The theoretical foundation of Epsilon-Greedy lies in its ability to asymptotically identify the optimal arm by
maintaining a non-zero probability of exploration. The choice of epsilon is critical: smaller values favor
exploitation, accelerating convergence but risking local optima, while larger values ensure robust exploration at
the cost of slower learning. Dynamic or adaptive epsilon strategies, where epsilon decreases over time, are
commonly employed to balance these trade-offs effectively. Research on Epsilon-Greedy has demonstrated its
utility across various domains. In telecommunications, it has been used for adaptive resource allocation, where
the algorithm dynamically assigns resources such as bandwidth or computational power to competing tasks.
Studies have also highlighted its simplicity and computational efficiency, making it suitable for real-time
applications with limited computational resources. Extensions of the basic Epsilon-Greedy strategy, such as
Decaying Epsilon-Greedy and Contextual Epsilon-Greedy, have further broadened its applicability by
addressing specific challenges like non-stationarity and contextual dependencies in dynamic systems.

Upper Confidence Bound (UCB) [17]. UCB prioritizes arms by balancing their estimated
rewards with the uncertainty surrounding those estimates, guided by the principle of optimism in the face
of uncertainty. At each decision step, UCB selects the arm that maximizes the sum of the empirical mean
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reward and a confidence bound that scales inversely with the number of times the arm has been played.
This approach ensures a systematic exploration of less-sampled arms while exploiting those with higher
observed rewards. The theoretical foundation of UCB lies in its ability to bound regret logarithmically with
respect to the number of trials, as demonstrated in seminal work by Auer et al. (2002). This characteristic
makes UCB particularly effective in dynamic environments, such as telecommunication systems, where
efficient adaptation to fluctuating conditions is critical. Variants of UCB, such as UCB1, UCB2, and con-
textual UCB, have further extended its applicability to diverse scenarios, including multi-dimensional
reward structures and contextual bandit settings.

Thompson Sampling [3, 16]. Thompson Sampling is a probabilistic algorithm rooted in
Bayesian inference, designed to address the exploration-exploitation trade-off in optimization problems. At
its core, the method maintains a posterior distribution for the reward of each arm, which is updated
iteratively as new data becomes available. By sampling from these posterior distributions, Thompson
Sampling probabilistically determines which arm to play next, striking a balance between exploring less-
certain arms and exploiting those with higher observed rewards. The theoretical foundation of Thompson
Sampling lies in its use of Bayesian updating to refine reward estimates. Each arm is assigned a prior
distribution, reflecting initial beliefs about its reward potential. Observing the outcomes of selected arms
updates these priors into posterior distributions, which encapsulate both the observed data and inherent
uncertainties. Over time, the algorithm converges to optimal decision-making by gradually prioritizing
arms with higher expected rewards. Thompson Sampling has been proven to achieve near-optimal regret
bounds in many practical scenarios, including dynamic and stochastic environments. Its probabilistic
nature makes it particularly suitable for systems where reward distributions are non-stationary or subject to
abrupt changes, such as telecommunication networks. Recent studies have demonstrated its effectiveness
in adaptive bandwidth allocation, dynamic routing, and 10T sensor configuration, where the ability to
handle uncertainty and variability is crucial. Extensions of Thompson Sampling, such as contextual
Thompson Sampling, further enhance its applicability by incorporating additional context variables into the
decision-making process, allowing for more nuanced and tailored optimization.
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2.1. Multi-Arm Bandits for optimization tasks and related research

MAB algorithms have been extensively researched for application to optimization tasks in dynamic
environments with incomplete information [5, 6]. Key researches in ICT include:
Dynamic Resource Allocation. Recent studies show how multi-armed bandit (MAB) techniques
can address resource allocation challenges in highly dynamic environments. One work [21] leverages a
hybrid NOMA system where Machine Type Devices (MTDs) form multiple coalitions using a MAB-
driven mean field game (MFG) framework. In this setting, devices autonomously adjust transmit power
based on limited base station feedback, ultimately improving resource distribution and showecasing
robustness compared to classical heuristics. In a separate study [22] on integrated space-air-ground
emergency communication networks, an MAB approach employing dynamic variance sampling (DVS)
helps users identify the best network node under uncertain, fluctuating network states. By balancing
exploration and exploitation with a sublinear Bayesian regret, the proposed DVS algorithm outperforms
standard e-greedy, UCB, and Thompson Sampling in terms of higher cumulative rewards, reduced total
regret, faster convergence, and improved system throughput. Both results reinforce the adaptability of
MAB for real-time resource management, even in the presence of complex channel conditions and
unpredictable traffic demands.
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Load Balancing: Recent work by Lai, Shen, and Feng [18] proposes a multi-agent multi-armed
bandit framework for intelligent load balancing and resource allocation in O-RAN (Open Radio Access
Network) architectures. Unlike simpler routing optimizations that rely on static parameters or single-agent
algorithms, their mmLBRA (multi-agent multi-armed bandit for load balancing and resource allocation)
approach dynamically distributes network loads across open radio units (O-RUs) to mitigate congestion
and optimize the overall sum-rate. Another research [12] proposes an adaptive multi-armed bandit (MAB)
formulation for selecting the most effective load balancing policy at runtime, based on user-defined
performance goals. Simulated experiments confirm that this approach remains robust and effective even in
non-stationary scenarios, where the optimization objective shifts over time.

Adaptive routing: Recent research underscores the effectiveness of multi-armed bandit algo-
rithms for dynamically selecting routing paths in networks where link delays vary over time. While both
studies [19, 20] adopt a bandit-based lens, they each propose distinct theoretical frameworks and solution
techniques, illustrating how adaptive routing algorithms can achieve sublinear regret and handle piecewise-
stationary or adversarial environments.

Quality of Service (QoS) Optimization. Balancing bandwidth and throughput using contextual
bandits. This approach leverages contextual information, such as user location and device type, to
dynamically allocate network resources. Contextual MAB algorithms enable fine-grained adjustments to
QoS parameters, ensuring high user satisfaction while optimizing network utilization. Applications include
video streaming platforms, where MAB is used to deliver adaptive bitrates that match user-specific needs,
reducing buffering times and improving playback quality.

3. Content Delivery Network (CDN) Node selection algorithm simulation using OCE algorithms

When optimizing infrastructure — such as selecting the best CDN node configuration — there are
multiple approaches to determine which option performs best. The simulation we created in Python models
how different experimental methods (A/B tests and Multi-Armed Bandit (MAB) algorithms) behave in a
controlled environment. It assumes multiple CDN nodes, each with a specific latency distribution, and
simulates repeated requests. The chosen algorithm decides which CDN node to send each request to,
collects resulting latency data, updates its understanding of each node’s performance, and aims to select the
node that minimizes overall latency.

A/B Testing Approach [7, 8]:
The simulation shows that traditional A/B tests split traffic between a control node and a treatment node
and run until a statistically significant difference is observed. This method can be slow and may continue
sending traffic to underperforming nodes for a long period, resulting in higher cumulative cost or “regret”.
MAB Algorithms (Thompson Sampling, UCB) [3]:
The simulation also demonstrates the behavior of MAB algorithms, specifically a Standard Upper Con-
fidence Bound (UCB) algorithm and our proposed Change Detection UCB (CD-UCB) algorithm. These
algorithms adaptively route requests to nodes showing better performance based on real-time feedback.
They quickly learn which CDN node vyields lower latency and allocate more traffic to it, minimizing
unnecessary exposure to poor-performing nodes. The CD-UCB is designed to specifically handle non-
stationarity by detecting significant performance shifts and adapting its strategy.

In contrast to standard A/B tests that split traffic equally and measure outcomes after a set period,
Multi-Armed Bandit (MAB) methods are designed for sequential decision making and continuous adap-
tation. MABs have been researched for scenarios where one must learn online which actions yield the best
results under uncertain and potentially non-stationary conditions.

3.1. Definition of regret and cumulative regret

Cumulative regret is a key performance metric in Online Controlled experiment algorithms,
quantifying the total “loss” or “missed reward” incurred by not always selecting the optimal solution.
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The regret [15] for a single round t is the difference between the expected reward of the optimal arm

and the expected reward of the arm chosen by the algorithm [3, 15].
Let:
— K —number of arms;
— T —total number of rounds;
- I, —reward received by playing arm a at time t;

- mu, - expected reward of arm a, i.e., mu, = Elrt'aJ;
— @, —the arm chosen by the algorithm at time t;

a’” —theoptimal arm, i.e., @  =arg _max .m .
af{L.2...K} @

0

R =R = é(m -m, ).

t=1 t=1

In infrastructure optimization, “cumulative regret” represents the total performance penalty incurred
by not always selecting the best option. For example, every time the system sends requests to a slower
CDN node rather than the optimal one, it experiences a latency cost that accumulates over time.
Minimizing cumulative regret is crucial because:

— User Experience and Reliability — lower latency translates directly into better user experiences.
Reducing regret ensures that users are not subjected to slower response times, improving satisfaction and
retention.

— Resource Efficiency — infrastructure costs — such as bandwidth, compute resources, and ope-
rational overhead — are often linked to system performance. Minimizing the time spent on suboptimal
choices reduces waste and improves cost-effectiveness.

— Faster Iteration and Improvement — the faster an algorithm converges on the best configuration,
the quicker teams can proceed to the next optimization task. Minimizing regret accelerates a continuous
improvement cycle.

Cumulative regret, therefore, provides a quantifiable way to measure the cost of experimentation.
Methods that quickly identify and exploit the best option show lower cumulative regret, proving their
superiority in practical, real-world infrastructure scenarios.

To gain a more granular understanding of algorithm performance and adaptation speed beyond the
aggregated cumulative regret, we employ two additional metrics visualized over time using a sliding
window average: the rolling average latency and the rolling percentage of requests sent to the true optimal
node. The rolling average latency provides a smoothed view of the actual end-user experience by showing
the average latency experienced by recent requests. A rapid decrease and subsequent stabilization of this
metric close to the true optimal latency level (if known) indicates quick convergence to a high-performing
state. Conversely, a high or slowly decreasing rolling average latency suggests either persistent exploration
of suboptimal options or slow adaptation after environmental changes. The rolling percentage of requests
sent to the true optimal node directly quantifies how effectively each algorithm identifies and exploits the
best available option at any given point in time. This metric clearly illustrates the algorithm's ability to
concentrate traffic on the currently optimal node after the initial exploration phase and, crucially in non-
stationary environments, how quickly it identifies and switches to a new optimal node after an environ-
mental change. Together, these rolling metrics offer valuable insights into the transient behavior of the
algorithms, showing not just the final accumulated performance difference (regret) but how that perfor-
mance was achieved and how dynamically the algorithms responded to changing conditions.
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3.2. Proposed Change Detection Multi-Armed Bandit (CD-MAB) Approach

To address the limitations of traditional A/B testing and standard Multi-Armed Bandit (MAB)
algorithms in optimizing ICT infrastructure parameters within dynamic, non-stationary environments, we
propose a Change Detection Multi-Armed Bandit (CD-MAB) approach. This method combines a standard
MAB algorithm with an online change detection mechanism, enabling faster adaptation to abrupt shifts in
the environment’s reward distributions. Our specific instantiation of the CD-MAB uses the Upper
Confidence Bound (UCB) algorithm for decision-making and the Cumulative Sum (CUSUM) algorithm
for change detection. The CD-MAB framework utilizes a standard UCB algorithm [17] as its core
decision-making component during periods assumed to be stationary. UCB is a widely used and theo-
retically grounded MAB algorithm that balances exploration (trying less-known arms) and exploitation
(choosing the arm with the highest estimated reward).

Fort=1.T

CUSUM update
Qfa_theQ {ath+(1/N_{a_th) *(r_ta_t}-Q_{a_t}) PR oy TS

Fora=1.K

Selectarm a_
a_t=argmax_a (Q_a+c* sqrt(2Intotal_pulls+1) / (N_a+1e-9)) )

Proceed tonextt

Fig. 1. Adaptive Multi-Armed Bandit Strategy: CD-UCB with Change Detection

To detect potential shifts in the reward distributions (e.g., due to a CDN node’s performance
degrading or improving), the CD-MAB employs the Cumulative Sum (CUSUM) change detection
algorithm. CUSUM is a sequential method designed to detect a shift in the mean of a data stream from a
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baseline value. In this context, we are primarily interested in detecting significant decreases in reward,
which correspond to increases in latency — indicative of a node degrading. In a stationary environment, the
CD-UCB will behave much like a standard UCB. The CUSUM statistics will fluctuate near zero, and
resets will be rare (only due to false positives). In a non-stationary environment, specifically one composed
of piecewise-stationary segments with abrupt transitions:

— After a change occurs that makes a previously suboptimal arm the new optimal one, the
Standard UCB will be slow to switch because its estimates are heavily weighted by past data. Its regret will
grow linearly based on the performance difference.

— The CD-UCB’s CUSUM mechanism will monitor the performance of the pulled arms. When an
arm's true performance drops (or another arm's relative performance improves, leading to the chosen arm
appearing worse than the new optimum), the deviations from the UCB’s current estimate will accumulate
in the CUSUM statistic.

— Upon exceeding the threshold the CD-UCB detects the change and resets. This resets the
“memory” of the UCB, effectively allowing it to start exploring the arms again.

3.3. Simulation summary

This section outlines the simulation framework used to evaluate both A/B testing and multi-armed
bandit (MAB) algorithms for CDN node selection under realistic latency conditions. Three CDN nodes are
modeled with distinct average latencies — 100, 120, and 130 ms — and a 10 ms standard deviation in
performance variability. Each experiment consists of 5,000 requests, during which a given approach selects
a node to minimize overall latency. By predefining the average latencies, the simulation can identify a
“best node,” thereby quantifying regret as any excess latency relative to that best-performing choice.

Start Simulation

Init

‘ Initialize CDN Nodes & Latency Distributions }—D{ Initialize Algorithm

Loop Stop and Analyze Results
ESGIEC‘ cnj" o ‘—@

Update Algorithm }—‘
Send Request

Fig. 2. CDN Node selection simulation based
on A/B testing and Multi-Arm Bandit algorithms
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The MAB algorithms (UCB and Thompson Sampling) seek a more adaptive strategy. In UCB, each
node receives an “upper confidence bound” that factors in both observed reward (negative latency) and the
uncertainty stemming from limited sampling. Thompson Sampling employs a Bayesian update mechanism,
sampling node performance from posterior distributions and thus balancing exploration of less-tested
nodes with exploitation of promising ones. Neither MAB method terminates early by default; they con-
tinuously refine estimates throughout the run.

The resulting cumulative regret curves — plotted against the number of requests — offer a visual snap-
shot of how effectively each approach converges on the fastest node. A flatter curve signifies quicker adap-
tation and less wasted latency. Across 5,000 requests, the A/B tests demonstrate slower convergence, often
maintaining significant regret for extended periods, whereas UCB and Thompson Sampling generally
adapt faster and keep regret lower. These findings emphasize the practical benefit of MAB algorithms in
real-world network scenarios, where traffic patterns may shift unpredictably. Future efforts could expand
on this work by exploring reinforcement learning, contextual bandits, or evolutionary algorithms to handle
even more complex or non-stationary environments.

Fig. 3 (the cumulative regret chart) illustrates the differing behaviors of A/B tests versus multi-
armed bandit (MAB) algorithms under a relatively stable latency environment. Despite limited fluctuations
in node performance, the A/B test approaches (both simple and sequential) often continue routing requests
to a suboptimal configuration for a significant portion of the experiment. This shortcoming is reflected in
their steadily growing cumulative regret curves, indicating the excess latency incurred by staying with the
lesser-performing option.

Cumulative Regret Over Time

—— Simple A/B Test
5000 - Sequential A/B Test
— UCB

—— Thompson Sampling

—-== Seq A/B Stop
4000 1

3000 1

2000 +

Cumulative Regret (ms)

1000 A

?

Requests

Fig. 3. Cumulative regret metric based on CDN Node selection simulation

By contrast, the MAB algorithms (UCB and Thompson Sampling) rapidly balance exploration and
exploitation, efficiently identifying the lower-latency nodes and progressively reducing the accumulated
performance penalty. Even in this less dynamic scenario, they converge faster on the optimal node and
maintain lower overall regret. In practical terms, this means fewer wasted resources, less user-facing
latency, and a more adaptive, data-driven method for managing infrastructure parameters.

To evaluate the effectiveness of Multi-Armed Bandit (MAB) algorithms, particularly our proposed
CD-UCB approach, against traditional A/B testing methods in a dynamic ICT infrastructure context, we
conducted simulations based on the CDN node selection problem as described in Section 3. The simulation
environment was designed to be non-stationary, featuring two abrupt changes in the underlying
performance characteristics of the CDN nodes at predetermined trial numbers (Trial 1500 and Trial 3500),
mimicking real-world fluctuations in network conditions or node load. We compared the performance of
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Standard UCB, CD-UCB, a Simple A/B test (fixed duration), and a Sequential A/B test (with early
stopping). The results are analyzed across three key metrics: cumulative regret, rolling average latency, and
rolling percentage of optimal arm pulls.

Cumulative Regret Comparison

—— Standard UCB
CD-UCB |
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Fig. 4. Cumulative regret metric comparison in non-stationary environment

In the initial phase (Trials 0-1500), before the first environment change, both Standard UCB and
CD-UCB demonstrate rapid learning, with their regret curves quickly flattening out. This signifies that
they successfully identified and primarily exploited the initial optimal node (Arm 0, latency 100 ms),
incurring minimal regret after the initial exploration period. In contrast, the Simple and Sequential A/B
tests, by design, continue to split traffic between their test arms (Arms 0 and 1) during their respective
testing phases. This forced exploration of a potentially suboptimal arm leads to a steady increase in regret
during the testing period. The Simple A/B test makes a decision at Trial 1000, while the Sequential A/B
test, leveraging statistical monitoring, makes an earlier decision (around Trial ~100). Both A/B tests decide
that Arm 0 is the better option, which is true in the initial stationary period.

The impact of non-stationarity becomes starkly evident after the first environmental change at Trial
1500, where Arm 1 becomes the new optimal node (latency 95 ms). The regret curves for Simple A/B and
Sequential A/B show a steep, linear increase thereafter. This is because, having made a decision based on
the previous environment state, they are locked into routing traffic primarily to Arm 0, which is now
suboptimal. They completely fail to adapt to the new optimal configuration. Standard UCB, while
eventually learning about the new optimal Arm 1, is slower to adapt. Its regret curve shows a noticeable
increase in slope after Trial 1500 as it gradually shifts traffic. The CD-UCB algorithm, however, shows a
significantly different behavior. Upon detecting the change (which typically occurs shortly after Trial 1500
as performance deviations accumulate), it resets its learning state. This allows it to quickly re-explore and
identify the new optimal Arm 1. As a result, its regret curve flattens out much faster than Standard UCB
after the change point, leading to the lowest overall cumulative regret by the end of the simulation. The
second environmental change at Trial 3500 (Arm 0 slowing down, but Arm 1 remaining optimal) has little
impact on the regret slopes of the algorithms, as the primary differentiation occurs due to adaptation (or
lack thereof) to the change in the optimal arm at Trial 1500.

Fig. 5 shows the rolling average latency experienced by users over a window of 100 trials. This metric
provides insight into how quickly each algorithm converges to and maintains low-latency performance. The
black dotted line represents the true optimal latency possible in the environment at any given trial.

In the initial phase, both Standard UCB and CD-UCB rapidly reduce the average latency, conver-
ging towards the initial true optimal latency of 100 ms. Simple and Sequential A/B start with a higher
average latency (reflecting their 50/50 split between 100 ms and 120 ms arms). After making their decision
(at ~1000 trials and ~100 trials respectively), their average latency drops to stabilize around the 100 ms
mark, as they correctly identified Arm 0 as the best in that initial period.
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Rolling Average Latency Comparison

125 1 : —— standard UCB
— CD-UCB

! —— Simple A/B (Arms (0, 1), Duration 1000)
120 :r —— Sequential A/B (Arms (0, 1), Max 2000)
----- True Optimal Latency

--- Env Change

115 4

110 +

105 A

100 A

Rolling Average Latency (100-trial window) (ms)

95 A

0 1000 2000 3000 4000 5000
Number of Requests (Trials)

Fig. 5. Rolling average metric comparison in non-stationary environment with relation to optimal

Following the first environmental change at Trial 1500, the true optimal latency drops to 95 ms.
Standard UCB’s rolling average latency decreases only gradually, reflecting its slow adaptation to the new,
faster optimal node (Arm 1). In stark contrast, CD-UCB's rolling average latency shows a sharp decrease
shortly after Trial 1500, closely tracking the new true optimal latency of 95 ms. This rapid drop is a direct
consequence of the change detection triggering a reset and allowing CD-UCB to quickly converge on the
new optimal arm. Simple and Sequential A/B, having committed to Arm 0, maintain their average latency
around 100 ms, completely failing to leverage the now faster Arm 1. The second change at Trial 3500
(Arm 0 slows to 115 ms) doesn’t change the optimal (Arm 1 is still 95 ms) and the plot shows this, with
MABSs continuing to perform optimally while A/B tests remain on the suboptimal arm.

Rolling Percentage of Optimal Arm Pulls Comparison
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Fig. 6. Percentage of optimal node selection

Figure 6 displays the rolling percentage of requests routed to the true optimal arm over a 100-trial
window. This metric directly illustrates how effectively each algorithm identifies and exploits the best
option in the current environment state.
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In the initial stationary phase, both Standard UCB and CD-UCB quickly increase their percentage of
optimal arm pulls (Arm 0) to 100 % after a brief exploration phase. Simple A/B starts at 50 % (due to
50/50 split) and jumps to 100 % at its decision point (Trial 1000). Sequential A/B also starts at 50 % and
jumps to 100 % much earlier (around Trial ~100), confirming its early decision for Arm 0.

After the first environmental change at Trial 1500 (where Arm 1 becomes optimal), the true optimal
arm index changes. Standard UCB's percentage of new optimal arm pulls (Arm 1) drops to 0 % and then
slowly increases as it gradually identifies Arm 1 as better. CD-UCB’s percentage of new optimal arm pulls
drops momentarily after the change (potentially due to the reset and re-exploration phase) but then rapidly
climbs back to 100 %, demonstrating its ability to quickly identify and exploit the new optimal arm.
Simple and Sequential A/B, fixated on their initial decision, see their percentage of optimal arm pulls drop
to 0 % at Trial 1500 and remain there for the rest of the simulation, as they continue to route traffic to the
now suboptimal Arm 0.

Collectively, these results underscore the severe limitations of traditional A/B testing for infra-
structure optimization in non-stationary environments. While A/B tests can identify the optimum in a fixed
state, they are incapable of adapting to changes. Standard MABs are more adaptive but can be slow to react
to abrupt shifts. The CD-UCB approach, by incorporating change detection, demonstrates superior per-
formance in non-stationary settings, achieving faster adaptation to new optimal configurations and signi-
ficantly reducing cumulative regret compared to both traditional A/B tests and standard, non-adaptive
MABS.

Conclusion

While A/B testing remains a powerful tool for optimizing front-end user experience, its static nature
and reliance on assumptions of stable environments present significant limitations for tuning dynamic,
infrastructure-level parameters in Information and Communication Technology (ICT) systems. Such
environments are inherently non-stationary, with network conditions, traffic patterns, and component per-
formance fluctuating significantly over time. This volatility undermines traditional A/B test results and
leads to substantial accumulated suboptimal performance (cumulative regret) when applied to continuous
optimization tasks [3, 15].

This study demonstrated the advantages of Multi-Armed Bandit (MAB) algorithms as a more sui-
table approach for these challenges. Our simulation, centered on CDN node selection, highlighted how
standard MABs like UCB adaptively learn and route traffic based on real-time performance feedback,
thereby reducing cumulative regret compared to traditional A/B tests. Furthermore, we introduced and
evaluated a Change Detection UCB (CD-UCB) approach, which explicitly addresses non-stationarity by
employing a CUSUM change detection mechanism to identify shifts in arm performance and dynamically
reset the learning process. The simulation results illustrate that the CD-UCB's ability to detect and react to
environmental changes leads to faster adaptation and further reductions in cumulative regret in non-statio-
nary scenarios, making it particularly relevant for the volatile conditions of modern ICT infrastructure.

The practical benefits observed in the simulation underscore the potential of adaptive MAB techni-
gues, including CD-MAB, for a wide range of infrastructure optimization problems such as dynamic
resource allocation [21, 22], load balancing [12, 18, 13], adaptive routing [19, 20], and QoS optimization
[Section 2.1].

Looking ahead, several avenues for future research emerge to further enhance the applicability and
effectiveness of MAB-based approaches in ICT infrastructure tuning:

Multi-Objective Optimization. Real-world infrastructure optimization often involves balancing
competing objectives (e. g., minimizing latency while also minimizing cost or maximizing throughput
while maintaining reliability). Future work could explore MAB algorithms designed for multi-objective
optimization to find solutions that represent favorable trade-offs across relevant ICT metrics [24].
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Evaluation on Realistic Distributed Setups. Validating these algorithms on more realistic, large-
scale distributed testbeds, such as cloud-based emulation environments [23] or utilizing traces from diverse
real-world workloads, is crucial to assess their performance, scalability, and robustness under varied and
complex conditions.

Handling Seasonal and Periodic Non-Stationarity. While CD-MAB reacts to arbitrary changes,
ICT systems often exhibit predictable non-stationarity (e. g., diurnal or weekly traffic patterns). Future
research could investigate MAB variants that incorporate memory or model these periodic patterns to
anticipate changes and adjust exploration / exploitation strategies more efficiently, potentially avoiding full
resets [cite a paper on seasonal / periodic bandits or forecasting for bandits].

Exploring Alternative Change Detection Methods. Evaluating other sequential change detection
techniques (e. g., EWMA, Bayesian online change point detection) within the CD-MAB framework, and
comparing their sensitivity, detection delay, and false alarm rates in the context of infrastructure metrics,
could lead to more robust or efficient detection mechanisms.

Contextual Bandits with Infrastructure Context. Further exploring Contextual Bandit algorithms
that leverage infrastructure-specific context (e. g., current network load, time of day, geographic location,
resource utilization levels) can enable more nuanced and effective decision-making, tailoring optimization
strategies to the specific conditions of each request or decision point [25].

By advancing MAB-based strategies to address these complexities, we can pave the way for more
intelligent, adaptive, and automated optimization of critical ICT infrastructure, ultimately leading to impro-
ved performance, efficiency, and user experience.
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AJIAITUBHUM BUBIP BY3JIIB CDN
Y IMHAMIYHUX IHOOPMALHIMHO-KOMYHIKAIIHAHUX CUCTEMAX
3ACOBAMHY OHJIAVH KOHTPOJIbOBAHUX EKCIIEPUMEHTIB
TA AJITOPUTMY BAT'ATOPYKUX BAH/IUTIB 3 BUABJIEHHAM 3MIH

IOpiii 3aniuxoBcbkuii, Bosogumup ®acr, Anapiii Maclok

Hayionanvnuti ynieepcumem **Jlvsiscoka nonimexuixa’, yn. C. banoepu, 12, Jlveis, 19013, Vkpaina

CydacHa iH(QpacTpyKTypa iH(pOpMamiiHO-KOMYHIKAIITHAX CHCTEM, 30KpeMa MepeXi JAOCTaBKH
kourenty (CDN), mnorpebye MOCTIHHOrO HalalmITyBaHHS HHU3bKOPIBHEBUX IapaMeTpiB Jist
3a0e3MeueHHs] BUCOKOI IPOAYKTHBHOCTI B yMOBAX JAWHAMIYHOTO HAaBAHTAKCHHS Ta HECTAOUILHOTO
MEpEXEBOTO CEpeloBHIA. Y CTATTI JAOCIIHKEHO 3aCTOCYBAaHHS Ta HABEICHO INOPIBHSHHS KOHT-
pPOTBOBAaHUX EKCIICPUMEHTIB PI3HUX THIB Uil omTuMizarii BuOopy By3miB CDN. Meta ontu-
Mi3allii — 3MEHILEHHS CepeIHbOI 3aTPUMKH, 1[0 BBAXKAETHCS OJHUM i3 0a30BUX MOKAa3HHUKIB e(ek-
THBHOCTI MepeskeBoi iHppacTpykrypu. Ha ocHoBi monepeanix pobit 3 A/B tecryBanns ta MAB-
aNropuTMiB 3ampornonoBaHo HoBui aiaroputMm Change-Detection Upper Confidence Bound (CD-
UCB), sikuii TIO€AHYE KIaCHYHE MPaBuiio BHOOPY pyku B MAB i3 anroputMom BHSBICHHS 3MiH
(CUSUM). 3aBasku mbomy CD-UCB anroputM jgae 3Mory HIBHIIIE aganTyBaTHCS 10 HeCTa-
IIOHApHUX yMOB. JIJIs OIliHIOBAHHS AJITOPHMTIB BHKOHAHO CHMYJIAli0 BHOOpy By3ma CDN 3
JIEKITPKOMa CepBepaMH, II0 BiAPI3HSIIACS PO3MOAUIOM 3aTpUMOK. [TOpIBHSHO YOTHPH IMiIXOMH:
npocte A/B TectyBanns, nocninosae A/B tectyBanus Ta MAB anroput™ i3 knacuunum UCB Ta
3arponioHoanuit CD-UCB. KoxeH MeTon OIiHIOBaNM 3a CYKYITHHM IIpOTparieM, KOB3HHM Ce-
pEIHIM 3aTPUMKH Ta BiJICOTKOM 3allUTiB, CHPSMOBAaHUX HAa ONTUMAaJbHUI By30I1. Y CTalliOHApHUX
yMOBax yci METOIM 3peITor HaOyBaroTh Haikparmioi koH¢irypamii, mpore MAB amropurmu
JIOCSITAIOTh L[LOTO IIBHUJIIE Ta 3 MEHIIMM BIUIMBOM Ha 3aTPUMKY. Y BHIAIKy PIi3KHX 3MiH cepe-
nosumia A/B tecty, sk 3BWUaiiHi, Tak 1 MOCHITOBHI, HE 3[aTHI amanTyBaTHC i TOMY Hee()eKTHUBHI.
Crangaptauii UCB 1pUCTOCOBYETHCS, ajie¢ HEJOCTATHHO MIBHAKO JJIS ITOCTABJICHOIO 3aBIaHH,
toni sk CD-UCB omepernBHO BHsBIs€ 3MiHM Ta 3a0e3nedye BHKOPHCTaHHS KOHQirypauii,
OJU3BKOI IO ONTHUMAJBHOI, IO 3yMOBIIOE€ HAWHIDKYMM CYKyIHHH HpOTrpaml i BiAOBIAHO ONTH-
MaJlbHy CEPEeHIO 3aTPUMKY JJIsl KOPUCTYBalbKUX 3anuTiB. OTpUMaHi pe3ysibTaTH IOBOIATH, IO
agantuBHI MAB-anroputMu 3 MexaHi3MaM{ BUSBICHHSA 3MiH 3HaYHO C(QCKTHBHINI I ONTHU-
Mizarii Ta TecTyBaHHsA KOH(QIrypaiii TUHAMIYHOI iHQpacTpyKTypH, HiX cratuuni meromu A/B
TecTyBaHHS. Ha OCHOBI OCIIPKEHb OKPECIICHO NEPCIICKTHBHI HANPsIMU MOJATBIINX JOCIIKEHb!
ONTHMI3aIlsl JIEKUTBKOX MapaMeTpiB Mepexi (Hampukian, 3aTPUMKH 1 MPOMYCKHOI 3AaTHOCTI),
MAB anropuTmu i3 KOHTEKCTOM Ta BUIPOOOBYBAHHS aJrOPUTMY Ha pEaATbHUX CUCTEMAX.

Keywords: AB mecmyeanus, ancopummu 6azamopyxoco 6anouma, IKC, onmumizayis.
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