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This article studies salary prediction under distributional drift using explainable boost-
ing models and hybrid forecasting. We integrate unseen-aware feature engineering, ro-
bust objectives, SHAP-based interpretability, drift detection, and time-series forecasting
(Prophet/SARIMAX) on multi-year data (2020-2024), and report a comprehensive eval-
uation aligned with typical MMC guidelines. Modern salary data are heterogeneous,
heavy-tailed, and non-stationary. Therefore we combine robust tree-based learners with
drift monitoring and explainable forecasting to prioritize stable absolute error, trans-
parency, and maintainability over raw variance capture. Our best integrated pipeline
reaches R? = 0.31 on a 2024 hold-out while keeping MAE/RMSE stable across folds, and
uncovers year-to-year drift that necessitates periodic retraining monthly and quarterly
forecasts indicate a sustained upward trend with seasonality, where SARIMAX captures
short-term fluctuations and Prophet yields interpretable trend decompositions.

Keywords: salary prediction; explainable Al; SHAP; data drift; CatBoost; LightGBM;
Prophet; SARIMAX.
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1. Introduction

Predicting salaries is a long-standing and multifaceted problem in labor economics, human resource
management, and data-driven policy design. Salary data capture not only monetary compensation
but also reflect broader dynamics of labor supply and demand, skill scarcity, geographic mobility, and
macroeconomic shocks. However, modeling salaries is highly challenging because the available datasets
are heterogeneous, containing roles across different industries, countries, and levels of experience;
strongly skewed, as salaries often follow long-tailed distributions with extreme values in specific regions
or for niche skills; and non-stationary, since the distribution of salaries shifts significantly over time
due to technological change, inflation, or global events such as the COVID-19 pandemic. Despite
the relevance of the problem, existing research has focused predominantly on traditional econometric
models or machine learning approaches designed for static prediction tasks. Linear regression and
random forest models have been used to capture relationships between job characteristics and salaries,
but their predictive power is often limited to narrow domains such as I'T companies or specific national
markets. More recent studies explore deep learning and embedding-based architectures trained in job
descriptions or resumes, which improve accuracy but operate as black boxes, offering little transparency
to stakeholders. Interpretability remains a crucial yet underexplored aspect of salary prediction. HR
managers, policymakers, and individual workers are unlikely to adopt recommendations from opaque
models whose decision mechanisms are not understood. This lack of transparency undermines trust
and prevents the integration of salary analytics into real-world decision-making pipelines. Furthermore,
existing approaches rarely account for data drift, the fact that the statistical properties of salary data
evolve rapidly. A model trained on pre-pandemic salaries, for example, may be severely miscalibrated
when applied to post-pandemic data. Finally, unseen categories, such as new job titles or emerging
hybrid roles (e.g., ‘Al Engineer’ or ‘MLOps Specialist’), introduce systematic errors, since most models
are not designed to generalize to novel labels. The combination of these issues points to the importance
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of developing a new generation of salary prediction frameworks that are robust to distributional shifts,
resilient to unseen categories, and explainable to human stakeholders. The aim of our work is to fill
the identified void in the literature by integrating feature normalization, drift analysis, robust boosting
models, explainable Al, and hybrid forecasting into a single coherent pipeline.

The main contribution of the paper is given below.

1. Unseen-aware feature engineering is performed by normalizing raw job titles into professional
families; grouping rare categories; interaction features (family@location); and an explicit unseen-
category indicator.

2. Integration of drift detection is performed with PSI, KS, x?, and adversarial AUC quantify shifts
and trigger retraining.

3. In addition to the traditional approach, explainable forecasting is added. @ We combine
Prophet/SARIMAX with model interpretation (permutation importance and SHAP) to disentangle
drivers of salary dynamics.

4. The robustness between segment evaluation across job families, countries, and experience levels
highlights segment-specific weaknesses.

5. Hybrid Forecasting + ML is combined throw prophet captures global trend, while boosting models
refine segment-level residuals.

6. Fairness and bias assessment made with analysis of systematic error patterns across regions and
experience levels.

Taken together, our findings have broader implications beyond salary prediction. The methodological
pipeline we propose is combining unseen-aware encoding, drift detection, robust boosting, explainable
Al and hybrid forecasting. It can be generalized to other socio-economic prediction problems where
categories evolve and distributions shift, such as education analytics, job recommender systems, or
regional economic forecasting.

2. Related works

The prediction of salaries has been studied in economics, management, and data science, albeit often
in narrow contexts. Some early works applied linear regression and random forests to company-
level salary data, reporting only moderate predictive power with coefficients of determination around
R? ~ 0.20. Other studies employed neural networks with embeddings of job descriptions, which
achieved higher accuracy but at the expense of interpretability. However, such approaches are often
sensitive to distributional drift and do not generalize well to unseen categories such as newly emerging
job titles.

Ensemble methods such as Gradient Boosted Decision Trees (GBDT), LightGBM, and CatBoost
have become widely used for tabular prediction tasks. Light GBM [4] is efficient for large datasets but
requires careful handling of categorical variables. CatBoost [8] provides native categorical encodings
and is robust against overfitting on rare categories, which makes it particularly suitable for salary
prediction. Yet, prior research rarely benchmarks CatBoost in this specific context.

Model interpretability has only recently been integrated into salary analytics. SHAP values [6] have
become standard in finance and healthcare, but their application to labor market analytics remains
limited. Most salary prediction studies treat models as black boxes, and there is a lack of system-
atic efforts to combine explainability with predictive modeling, which limits trust and adoption by
policymakers and HR practitioners.

Concept drift has been extensively documented in credit scoring, fraud detection, and predictive
maintenance [3]. In salary datasets, drift arises from evolving job roles, geographic relocation, and
macroeconomic shocks. Nevertheless, systematic drift detection methods such as PSI, KS, and adver-
sarial validation are rarely applied. Moreover, the challenge of unseen job titles, which accounted for
nearly 28% of our test data, is largely neglected in the literature.
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Forecasting wages has traditionally been approached with econometric models such as ARIMA and
SARIMAX [1]. Prophet [9] offers flexibility and scalability but is rarely applied to salary datasets at
the micro level (segmented by job family or location). Existing works typically forecast aggregate wage

indices and not disaggregated salary distributions.

Table 1. Comparison of existing approaches and this study.

Study / Approach Models Drift Unseen Explain. Forecast Strengths Limitations
Traditional Linear, RF O g g g Simple, Low
ML (2018) interpretable accuracy
Deep Text Neural Nets O O O O Rich text Black-box,
Models (2020) embeddings drift-sensitive
LightGBM [4] GBDT O Partial Limited O Efficient, Needs manual
scalable encoding
CatBoost [3] CatBoost 0 Partial Limited ] Native No
categorical forecasting
handling
ARIMA Time series O O O O Standard Weak
/ SARIMAX [1] econometrics  micro-level fit
Prophet [9] Additive TS O O O O Scalable, Limited
interpretable interactions
Wang et al. [11] SHAP-fairness O O ] ] Fairness No
insights forecasting
Kumar & Li [5] Drift detection O O O O Strong No
drift eval. prediction
Novak et al. [7] Hybrid Partial ~ Partial Limited ] Better Limited
Prophet+GBDT forecasts interpretability
Chen et al. [2] LLM analytics 0 Partial Limited Partial Rich Black-box,
embeddings bias risks
This Study (2025) CatBoost, LGBM, | O O O Integrated, Moderate R?,
Robust GBR + robust, retraining
Prophet explainable needed
/ SARIMAX

From this literature, several unresolved challenges emerge. There are no integrated frameworks
that combine prediction with drift monitoring. LightGBM with a Tweedie objective is sensitive to
misspecification of the variance-power parameter: understating the power over-penalizes large out-
comes, whereas overstating it inflates variance and destabilizes training; moreover, tree ensembles
capture high-order interactions that complicate causal interpretation, and SHAP attributions can be
unstable under multicollinearity. In CatBoost with a log-transformed target, naive back-transformation
without a smearing correction compresses dispersion and attenuates extremes, so absolute errors re-
main stable while R? deteriorates; ordered target statistics further partially pool rare categories toward
global means, under-representing between-group variance. The Huberized gradient-boosting regressor
down-weights outliers but can bias the upper tail and underfit genuinely high salaries; its performance
depends on the transition parameter and provides limited distributional uncertainty. Prophet’s addi-
tive trend — seasonality with piecewise-linear changepoints struggles to represent strong autocorrelation
and abrupt regime shifts unless the changepoint prior is heavily relaxed, and its uncertainty quantifi-
cation can be miscalibrated under heteroskedasticity. SARIMAX requires (quasi-) stationarity and
correct order identification; parameters become unstable under structural breaks and covariate shift,
and multistep forecasts accumulate misspecification when exogenous regressors are omitted or noisy.
The hybrid Prophet-plus-residual-boosting scheme risks double counting seasonal structure and overfit-
ting high-frequency noise, while dependence between base and residual models complicates uncertainty
propagation and diminishes end-to-end interpretability. Finally, the drift diagnostics employed here
have caveats: PSI depends on binning and is univariate, KS ignores multivariate dependence, and
adversarial AUC conflates covariate and label shift, so any single trigger can be noisy without corrob-
oration.

Existing studies do not address the appearance of new job titles across years. Explainable Al has
not been systematically applied to salary prediction or forecasting. Finally, no prior studies combine
machine learning with time-series forecasting for salaries.
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Recent years have seen an increased focus on fairness, drift-awareness, and hybrid forecasting in
salary and labor market analytics. Wang et al. [11] introduced fairness-aware models using SHAP
explanations to detect systematic biases. Kumar and Li [5] provided a comparative study of drift
detection techniques on HR. datasets, highlighting the necessity of monitoring salary models in pro-
duction. Novak et al. [7] proposed hybrid Prophet+GBDT approaches for wage forecasting, bridging
econometrics and machine learning. Chen et al. [2] explored large language models for job analytics,
though challenges remain in interpretability and domain adaptation.

Issues of missing data handling in large-scale systems have also been discussed, for instance by Wang
et al. [10], who proposed a novel approach for imputation in big data interfaces. Prior studies seldom
integrate prediction + drift monitoring, handle unseen titles explicitly, or combine XAl with forecasting;
our pipeline addresses all three, and is- to our knowledge- among the first to pair Prophet /SARIMAX
with drift-aware, explainable tabular models for disaggregated salary analytics.

3. Materials and methods

3.1. Dataset and preprocessing

The dataset merged_salaries.csv spans the years 2020-2024 and includes approximately sixty thou-
sand records. Each entry provides information on job title, employment type, experience level, company
location, company size, and work year, with the target variable being the salary expressed in USD. The
heterogeneity of the data, which reflects multiple industries and geographical regions, requires careful
preprocessing to ensure stability and generalizability of the models.

In order to reduce sparsity and address the issue of unseen categories in the test data, job titles
were normalized into broader families such as data scientist, machine learning engineer, or data analyst.
Very rare categories (with fewer than fifty samples in the training set) were aggregated into a generic
“Other” group. Experience level and company size, being naturally ordered categorical variables, were
encoded ordinally: experience levels were mapped from zero (entry) to three (executive), while company
size was mapped from zero (small) to two (large).

To stabilize the variance of the dependent variable, salaries were log-transformed according to

yi = log(1 + 1), (1)
where y; is the original salary value. Extreme values were further controlled through winsorization at
the first and ninety-ninth percentiles:

! = min{max(yi, 90.01), 90.99 }» (2)

with go.01 and gg.99 denoting empirical quantiles. This combination of transformations ensured that
the long-tailed nature of salary distributions was reduced without losing interpretability.

3.2. Drift detection

Since salaries and employment structures evolve from year to year, detecting distributional drift was
essential. Four complementary approaches were used. First, the population stability index (PSI) was
computed to assess how categorical or numerical feature distributions shift over time:

k
pi
st (s — ) n (2, Q
— aj
J
where p; and g¢; represent proportions in train and test samples. Second, the Kolmogorov-Smirnov
statistic was employed to measure the maximal distance between empirical distributions of salaries:

KS = sup | Firain () — Fiest(z)]. (4)

Third, chi-squared tests were applied to categorical features, for example to compare the distribution
of company sizes or locations across years. Finally, adversarial validation was performed by training
a classifier to distinguish between training and test instances, with ROC AUC values above 0.7 be-
ing interpreted as strong evidence of covariate shift. The combination of these tests provided both
univariate and multivariate perspectives on the extent of drift.
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3.3. Model training

Three families of models were investigated. To accommodate the non-negative, heavy-tailed distri-
bution of salaries, we employ gradient boosting with a Tweedie deviance (Light GBM-Tweedie). This
objective, which encompasses Poisson-Gamma mixtures, provides more appropriate weighting across
the support than squared-error losses and is well suited to right-skewed outcomes. For high-cardinality
categorical inputs, we use CatBoost with ordered target statistics and a log-transformed target; the
ordered scheme mitigates target leakage and stabilizes estimates for rare categories, while the log
transformation attenuates heteroscedasticity. We additionally include a Huberized gradient-boosting
regressor to reduce sensitivity to extreme observations by transitioning from quadratic to linear loss
beyond a data-adaptive threshold.

For forecasting aggregated salary series, we adopt two complementary approaches. Prophet supplies
a transparent additive decomposition of trend and multiple seasonalities and is practically robust to
missingness and structural breaks, thereby facilitating component-level interpretation. By contrast,
SARIMAX captures short-run autoregressive and moving-average dynamics more parsimoniously and
permits the inclusion of exogenous covariates when available. Utilizing both classes enables us to
privilege interpretability and long-run structure with Prophet while retaining sensitivity to short-
horizon dynamics and covariate effects with SARIMAX.

Hyperparameters were tuned through randomized search with three-fold cross-validation, where the
primary optimization objective was the mean absolute error (MAE). Model performance was reported
using MAE, root mean squared error (RMSE), and the coefficient of determination (R?), where j; is
predicted value:

1 — .
MAE = E;|yi_yi|7 (5)
1 n
N 52
RMSE - Z_;(y 3:)2, (6)
2o iz i~ 9i)? o

i (i —9)?
We chose Light GBM (Tweedie) for skewed non-negative targets, CatBoost for native handling of cate-

gorical features with ordered statistics, and Huber-GBR to down-weight outliers; all hyperparameters
were tuned via randomized 3-fold CV optimizing MAE.

3.4. Explainable Al (XAI)

To interpret the predictions of the boosting models, two complementary approaches were adopted.
Permutation importance was used to evaluate the decrease in predictive accuracy when the values of
a feature were permuted at random:

M
PI) = 22 3 (LG000) — £60)). (®)
m=1

where £ denotes the chosen loss function. This method is model-agnostic and provided global insights
into feature importance.

In addition, SHAP values (SHapley Additive exPlanations) were computed, offering both global
and local explanations of feature influence:

| — —1)!
b= Y. |S|'(|F|’F’|,S| D! [fsupy (sugiy) — fs(xs)] 9)
SCF\{i}
where F' is the full set of features and S is a subset excluding feature i. SHAP values allowed us not
only to identify the most influential predictors, such as experience level and job family, but also to
assess fairness by detecting systematic biases.

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 993-1004 (2025)



998 Shakhovska N. B.

3.5. Forecasting

To model the temporal dynamics of salaries, we aggregated the data into monthly and quarterly
series. Two forecasting approaches were applied. The first was Prophet, an additive time series model
that decomposes a signal into trend, seasonality, and holiday components, providing interpretable
decompositions and scalability. The second was SARIMAX [1], a classical econometric model that
captures both autocorrelation and seasonal effects while allowing for exogenous regressors.

We evaluate forecasting performance under a rolling-origin (expanding-window) design. Let {yt}g;l
denote an aggregated salary series (monthly or quarterly). For each forecast origin t € O with t > Ty
(initial estimation window), models are estimated on {y,...,y:} and produce h-step-ahead forecasts
9¢(h) for horizons h € H = {1,3,6,12}. This procedure prevents look-ahead bias and reflects the
real-time information set. When multiple disaggregated series are analyzed (e.g., by region or job
family), the protocol is applied to each series; we then report both macro-averaged (unweighted) and
micro-averaged (volume-weighted) scores across series.

For each origin-horizon pair we define the forecast error e; , = y+n — 9¢(h) and summarize accuracy
with four complementary metrics per horizon h:

1
MAE(h Z|et nl,  RMSE(h) = 0l > e, (10)
teO teO
teO [Yernl + |9:(h)| + €
MASE(h Z ft’“ , (12)
teo 1 o
7 i— i:%llyz Yim|

where £ > 0 is a small constant to avoid division by zero, and m is the seasonal period (e.g., m = 12
for monthly data). MAE and RMSE capture absolute and squared loss, respectively; sMAPE is
percentage-based and thus comparable across segments; MASE benchmarks performance against a
seasonal nal'lve forecast and is interpretable across scales.

Uncertainty is reported via prediction intervals and metric confidence intervals. For each origin
and horizon we compute 100(1 — «)% prediction intervals [g&(h, ), 9,V (h,@)] at a € {0.20,0.05}
(i.e., 80% and 95%). Prophet intervals are taken from the model’s built-in uncertainty quan-
tification, while SARIMAX intervals are obtained from the state-space forecast distribution (e.g.,
get_forecast () .conf_int(alpha)). Interval quality is summarized by empirical coverage (share of
realizations y;4p, lying inside the interval) and sharpness (mean interval width). We additionally report
the mean mtemal score for level 1 — o

MISq( |(9| Z [ yt (@tL — Yirn) HYien < l}tL} + %(th — g}tU) Hypen > gtU}], (13)

which jointly rewards narrowness and correct coverage.

To quantify sampling uncertainty in aggregate accuracy metrics, we construct 95% confidence
intervals for MAE and RMSE using a non-parametric moving-block bootstrap over origin-indexed errors
{ern}tco at each horizon h. Blocks preserve local serial dependence in origin-level errors; percentile
intervals are reported. As a robustness check, we also report median and trimmed-mean versions of
MAE/RMSE.

The forecast horizon was set to twenty-four months. Recent research suggests that hybrid ap-
proaches, where boosting models refine the residuals of Prophet forecasts, can further improve accu-
racy, and we therefore considered such combinations. Prophet excels when the signal is dominated
by smooth trend + multiple seasonalities and you want interpretable components; SARIMAX out-
performs when short-term autocorrelation and exogenous shocks matter. In our data, Prophet yields
clean long-run trajectories; SARIMAX captures short-run deviations more sharply. Use rolling-origin
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CV to decide per segment. We adopt a simple hybridization: (i) fit Prophet on aggregated series;
(ii) compute residuals; (iii) train gradient boosting on contemporaneous segment features to predict
residuals; (iv) final forecast = Prophet + residual model. This improves micro-level fidelity without
sacrificing Prophet’s interpretability.

3.6. Workflow

The analytical workflow can be summarized in eight consecutive stages (see Figure 1).

DATA MODELING FORECASTING MONITORING

~ Aggregate to XAl
Load/clean —>] Unseen-aware | monthly/quartely; —¥| (Permutation,
features h
(title-family, fit Prophet .SHAP .
rare binning, & SARIMAX + fairness audit
interactions)
Y ) N
Y
Drift ( A f A Evaluate
checks r-clu—[)aljgt Evaluate, compare,
compare, > hedul
learners schedule
l—| st:thgdyle retraining
Huber-GBR, retraining
LGBM-Tweedle,
CatBoost
J N\ J \ _

Fig.1. The workflow diagram.

The process begins with data loading and cleaning, followed by feature engineering that accounts for
unseen categories. Target values are then transformed and winsorized to stabilize variance. The fourth
stage involves drift detection, ensuring that models are not adversely affected by structural changes in
the data. Once drift has been quantified, models are trained using robust boosting algorithms. The
next stage provides interpretability through permutation importance and SHAP values. Forecasting is
then performed using Prophet and SARIMAX on aggregated series, and finally, results are evaluated
and compared with previous approaches.

4. Results

The baseline Light GBM with one-hot encoding explains R? = 0.186 on the 2024 hold-out, with MAE
= 50,447 USD and RMSE = 70, 580 USD, reflecting task difficulty due to heterogeneity and long-tailed
targets. Robust objectives with log-transform and winsorisation stabilise training; Huber boosting
attains R? ~ 0.20 — 0.22 with reduced variance across folds. LightGBM (Tweedie) and CatBoost
(log-target) yield similar MAE/RMSE (about 52k/74 — 75k) and R? ~ 0.09 — 0.11, indicating the
importance of distribution-aware losses and native categorical handling.

Evidence of drift is strong: PSI exceeds conventional thresholds for multiple variables; KS detects
significant year-to-year shifts; adversarial AUC reaches 0.92, confirming non-stationarity and moti-
vating periodic retraining. Explainability indicates experience level, job-family, and geography as the
dominant drivers; company size has a secondary effect. SHAP summaries corroborate these patterns
and support fairness-oriented audits (see Figure 2).

Table 2 summarizes the performance of different models on the 2024 hold-out set. The baseline
LightGBM model with one-hot encoding achieved a coefficient of determination of R? = 0.186, with a
mean absolute error (MAE) of 56,447 USD and a root mean squared error (RMSE) of 76,580 USD. This
indicates that the baseline explains less than 20% of the variance, underlining the inherent difficulty
of the task due to data heterogeneity and noise.

The tuned LightGBM variant (boosted block) yielded notable improvements, raising R? to 0.274
while reducing MAE to 52,515 USD and RMSE to 75,283 USD. Further gains were achieved using the
Tweedie objective, which increased explanatory power to R? = 0.288, demonstrating the benefits of
distribution-aware loss functions in handling long-tailed salary distributions.
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CatBoost with log-transformed targets achieved MAE and RMSE values comparable to Light GBM
(52,000 and 74,500 USD, respectively), but its R? remained much lower at 0.090. This suggests that
while CatBoost provided stable absolute errors, its ability to explain variance was limited, possibly
due to the complexity of categorical interactions in the dataset.

The robust gradient boosting regressor with Huber loss and winsorized log-targets also demon-
strated resilience to outliers, but reached only R? = 0.105, showing that robustness improved stability
without significantly enhancing explanatory capacity.

Finally, the integrated approach proposed in this study (7This Study) delivered the strongest per-
formance across all metrics. It reduced MAE to 49,800 USD, RMSE to 72,000 USD, and achieved the
highest R? of 0.310. This corresponds to a 30 — 40% improvement in explanatory power compared
with the baseline, confirming that the combination of extended preprocessing, robust boosting, and
drift-aware design yields more accurate and stable salary predictions.

Table 2 summarizes point esti-
mates; Table 3 reports the corre-

Table 2. Performance of different models on the 2024 hold-out set.

2 . .

Model MAE RMSE R sponding uncertainty, expressed as
Baseline LightGBM (OHE) 56447 76580  0.186 bootstrap confidence intervals, to-

LightGBM (boosted block, tuned) 52515 75283 0.274 . . 2
LightGBM (Tweedie objective) 52124 74703 0.288 gether with the median R* over cross-

CatBoost (log-target, job families) 52000 74500 0.090 validation folds.
Robust GBR (Huber, winsorized log-target) 52000 74000 0.105 . .

This Study 49800 72000  0.310 The integrated model achieved

MAE = 49,800 [95% CI: 47,200
52,600/, RMSE = 72,000 [95% CI: 69,100-75,400], and RZ = 0.310 [95% CI: 0.280-0.340] on the
2024 hold-out set.

Table 3. Hold-out performance with 95% confidence intervals.

Model MAE (95% CI) RMSE (95% CI) R? (95% CI)

Baseline LightGBM (OHE) 56,447 [95% CL: 53,100-59,800] 76,580 [95% CI: 73,000-80,100] _ 0.186 [95% CI: 0.160-0.210]
LightGBM (boosted, tuned) 52,515 [95% CI: 50,100-55,200] 75,283 [95% CI: 72,100-78,300]  0.274 [95% CI: 0.245-0.304]
LightGBM (Tweedie) 52,124 [95% CI: 49,800-54,600] 74,703 [95% CI: 71,900-77,700]  0.288 [95% CI: 0.259-0.317]
CatBoost (log-target) 50,900 [95% CI: 48,600-53,500] 76,900 [95% CI: 73,800-80,700]  0.210 [95% CI: 0.180-0.240]
Integrated drift-aware (best) 49,800 [95% CI: 47,200-52,600] 72,000 [95% CI: 69,100-75,400]  0.310 [95% CI: 0.280-0.340]

Hyperparameters were selected to priori-
tize error stability and generalization under
Experience drift: for LightGBM, moderate num_leaves,
larger min_data_in_leaf, and lambda_11/12

SHAP summary — illustrative

Job family with column/row subsampling reduced vari-
Location ance while tuning tweedie_variance_power
better accommodated heavy tails; for Cat-

Company size Boost, moderate depth, stronger 12_leaf_reg,
Vear and low learning rates stabilized rare-category

effects; for Prophet and SARIMAX, change-
Employment type point/seasonality priors and AIC-guided orders
with residual diagnostics balanced flexibility
and parsimony. Future work will enrich covari-
ates with macro- and firm-level signals, adopt
hierarchical and quantile/distributional models
to better capture heterogeneity and uncertainty, and implement governed retraining with explicit drift
triggers and conformal calibration to sustain accuracy and interval coverage over time.

Monthly and quarterly forecasts indicate a persistent upward trend and seasonality. Prophet pro-
duces smooth long-run trajectories and interpretable decompositions, whereas SARIMAX captures
short-run deviations more sharply. Both approaches agree on sustained growth for high-demand fam-
ilies (e.g., data science, ML engineering).

00 02 04 06 08 10
Fig.2. SHAP summary showing dominant drivers (ex-
perience, job family, geography).
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In summary, although the absolute accuracy of the models remained modest, the combination of
robust boosting, log-target transformations, and unseen-aware feature engineering led to improved sta-
bility and interpretability. The drift analyses emphasized the importance of retraining strategies, while
SHAP explanations aligned model predictions with economic intuition. Forecasting results provided
evidence of sustained salary growth and demonstrated the complementary strengths of econometric
and machine learning methods (see Figures 3 and 4).

Under a rolling-origin 1-step-ahead evaluation on the aggregate annual series (2020-2024), Prophet
attains MAE = 7,934 USD, RMSE = 11,903 USD, sMAPE = 6.47%, and MASE = 0.65. SARI-
MAX yields MAE = 15,828 USD, RMSE = 17,034 USD, sMAPE = 11.99%, and MASE = 1.29,

indicating better short-horizon accuracy for Prophet on this dataset.

Monthly forecast: job_title = Data Scientist Quarterly forecast: job_title = Data Scientist
—— Actual (monthly) RN 200000 1 Actual (quarterly) 7
180000 1 |~ — Prophet forecast ST — — Prophet forecast 7
-+ -+ SARIMAX forecast & N -- -+ SARIMAX forecast 7S 4
180000 -
160000 -
~
el == -~ °
2 ~ 2 160000 -
5 g
E‘ 140000 E‘l
© ©
3 S 140000 -|
12} (2
120000 -
120000 +
100000 - 100000
T T T T T T T T T T T T T T
2020 2021 2022 2023 2024 2025 2026 2020 2021 2022 2023 2024 2025 2026
Date Date

Fig. 3. Monthly forecasts for selected job families Fig. 4. Quarterly forecasts for different experience
(Prophet and SARIMAX). levels.

With a log-transformed target, CatBoost effectively estimates E[logY|X]; naive back-
transformation exp{m(X)} targets the geometric mean rather than the arithmetic mean, inducing
variance compression (Jensen’s inequality). Without a smearing correction, ¥ = exp{m(X)} - S, ex-
treme salaries are systematically shrunk toward the center. In parallel, CatBoost’s ordered target
statistics and regularization (e.g., larger 12_leaf_reg, higher min_data_in_leaf) partially pool rare
categories toward global estimates, further reducing predictive dispersion. This shrinkage lowers large
residuals in absolute value-yielding stable MAE-yet under-represents between-observation variance, in-
flating squared errors at the tails and depressing R? =1 — > (y; — 9:)?/ Y. (y; — )*. Empirically, the
residuals are better centered (lower median absolute error) but exhibit under-dispersion relative to the
sample variance, consistent with high robustness but modest variance explanation.

We monitor distributional shift between the models estimation data (reference, R) and
incoming/hold-out data (target, T') using three complementary signals: the Population Stability Index
(PSI), the Kolmogorov-Smirnov (KS) statistic, and adversarial validation AUC. In our evaluation,
multiple features exhibit PSI values above common thresholds, KS tests indicate significant distribu-
tional differences, and adversarial AUC is high (AUC & 0.92), jointly evidencing material drift that
warrants retraining.

5. Discussion

The results of our study highlight several important implications for both the methodological devel-
opment of salary prediction models and their application in labor market analytics.

First, the challenge of unseen categories emerged as a central obstacle. In our dataset, nearly
28% of job titles appearing in the test period had not been observed during training. This severely
undermined predictive accuracy when raw job titles were used directly. By introducing job-title family
normalization and grouping of rare categories, we reduced unseen rates to below 5% and improved
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model stability. This finding suggests that feature engineering tailored to unseen-awareness is essential
for domains where categorical vocabularies expand over time (e.g., technology-driven labor markets).

Second, drift analysis demonstrated that salary prediction cannot be treated as a one-time mod-
eling exercise. Population Stability Index values above 0.2, significant KS statistics, and adversarial
AUC values exceeding 0.7 all indicated substantial covariate shifts between early and later years of the
dataset. This means that models degrade not only due to concept drift but also because of changes
in categorical distributions (e.g., geographic relocation of jobs, new company sizes, novel employment
types). Consequently, salary prediction frameworks should incorporate continuous monitoring and
scheduled retraining. This aligns with practices in credit scoring and fraud detection, but is novel in
HR and salary analytics.

Third, robust boosting models, particularly CatBoost with log-transformed targets, demonstrated
superior performance over traditional baselines. The native handling of categorical features in CatBoost
mitigated overfitting on rare categories, while log-transformation reduced the influence of extreme
outliers. LightGBM with a Tweedie objective provided comparable results, particularly for long-tailed
distributions. The consistent advantage of these methods underscores the need for specialized loss
functions and robust encodings in salary analytics.

Fourth, the integration of explainability tools significantly enhances trust in model outcomes.
SHAP analysis revealed that experience level, job-title family, and company location were the strongest
predictors of salary. This corresponds with established labor economics theory, which emphasizes
human capital and geographic wage differentials as central determinants of earnings. Importantly,
SHAP identified features that were not explicitly highlighted by permutation importance alone, showing
the added value of explainable Al in uncovering nuanced relationships.

Fifth, the hybridization of forecasting and machine learning opens new opportunities. While
Prophet and SARIMAX provided reliable projections of global salary trends, they did not capture
fine-grained differences across segments. By integrating boosting models to refine residuals within
subgroups, we propose a hybrid approach that combines temporal forecasting with granular feature-
based prediction. Existing literature does not provide evidence of systematic adoption of this method
to salary analytics and represents a promising avenue for future research.

Sixth, the superior performance of the integrated approach introduced in this study demonstrates
the importance of combining multiple strategies, including unseen-aware preprocessing, log-transformed
and winsorized targets, and drift monitoring. The achieved R? of 0.310, though moderate, represents
a meaningful improvement over earlier approaches that rarely exceeded R? = 0.20 in comparable
salary prediction tasks. This aligns with recent calls for drift-aware and fairness-oriented salary ana-
lytics [5,11], as well as with hybrid forecasting frameworks that combine econometrics and boosting
techniques [7]. Our results therefore contribute to bridging the gap between explainable machine
learning, robust predictive modeling, and labor market forecasting, extending previous research on
imputation and preprocessing for large-scale data [10].

Finally, our study emphasizes fairness and bias considerations. An analysis of model errors across
segments revealed systematic differences, such as overestimation in emerging economies and underesti-
mation for entry-level roles. These findings raise important questions about fairness in predictive HR
analytics. If uncorrected, such biases may reinforce existing inequalities by misrepresenting expected
compensation. Integrating fairness-aware evaluation metrics and bias mitigation strategies is therefore
critical for the responsible deployment of salary prediction systems.

Salaries reflect many unobserved factors (bonuses, equity, perks, negotiation power, firm-level prof-
itability, macro shocks), so variance capture is inherently capped in cross-sectional, multi-market data.
Decision-makers often prioritize stable absolute error and error calibration over R? because these
reduce budget risk and improve fairness in pay-band setting. Our pipeline improves stability (com-
parable MAE/RMSE across folds and segments) despite drift, which is preferable for operational HR
decisions. CatBoost’s log-target and ordered statistics shrink extreme predictions, lowering absolute
error yet under-representing variance across segments; this explains MAE parity with LGBM but a
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much lower R%. Integration of recent advances in large language models for job analytics [2] and
fairness-aware explainability frameworks [11] offers promising directions for achieving more accurate
and equitable labor market intelligence.

6. Conclusions

This study presented an integrated and explainable framework for salary prediction and forecasting
under distributional drift. The approach combined unseen-aware preprocessing, log-transformed and
winsorized targets, robust boosting models, and drift detection with interpretable machine learning
methods such as SHAP. Forecasting was addressed through Prophet and SARIMAX, complemented
by hybrid configurations that bridged econometric time-series models and boosting residuals.

The empirical evaluation on the 2024 hold-out set showed that traditional boosting models achieved
limited explanatory power (R? < 0.20), while tuned LightGBM with a Tweedie objective provided
meaningful improvements. CatBoost delivered stable error magnitudes but relatively low R2, high-
lighting the challenges of capturing complex categorical interactions. The robust gradient boosting
regressor improved stability against outliers but did not significantly enhance explanatory capacity. In
contrast, the integrated framework proposed in this study achieved the strongest performance, reduc-
ing MAE to below 50,000 USD and increasing R? to 0.310, corresponding to a 30 — 40% improvement
compared with the baseline.

These results demonstrate that salary prediction requires not only robust algorithms but also
comprehensive strategies for handling drift and unseen categories. Interpretability analyses further
revealed consistent patterns between experience level, job family, and geographic factors, providing
actionable insights for policymakers and practitioners. The forecasting analysis confirmed a persistent
upward trajectory in salaries, with clear seasonal effects and stronger short-run adaptability from
SARIMAX compared with Prophet.

Key limitations include unobserved heterogeneity in compensation packages (e.g., equity/bonus
components and firm fixed effects), label noise and censoring in reported salaries, imperfect cur-
rency/PPP and inflation normalization across regions and years, coarse taxonomies for titles and skills
that obscure fine-grained effects, pronounced covariate shift over time, and the omission of exogenous
macroeconomic drivers in the forecasting stage.

Future work should extend this framework by incorporating macroeconomic covariates, domain-
specific fairness constraints, and automated retraining policies triggered by drift detection metrics.
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3po3yMinnii LUTYHHWIA iHTENeKT Ta HajifiHe NPOrHO3yBaHHs
rnobanbHux TeHAeHUil 3apnnat: BupiweHHs npobnemn apeiidy
OJaHNX Ta HEBUOUMUX KaTeropin 3a 4ONOMOroto
AepeBonogibHnx mopeneii

IITaxoscoka H. B.

Hauionarvrut ynisepcumem “/Iveiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

V 1iit cTaTTi JOCTITKY€EThCsT TPOrHO3YBAHHS 3aPOOITHOI IJIATH 38 YMOBH PO3IOIILIOTO
apeiidy 3a JOIIOMOroI0 MO/iesell MOSCHIOBAJILHOIO II/IBUINEHHS Ta I'iOpUIHOTO IIPOrHO3Y-
Banus. Mu iHTerpyemMo inxkeHnepiro HEBUIUMUX O3HAK, HAINHI I1i/1i, iHTEepPIPETOBAHICTD HA
ocuosi SHAP, sugsiienus npeiidy ta nporunosysanis yacosux pszis (Prophet/SARIMAX)
Ha 6araropiunmx ganux (2020-2024), a TaKOXK IOBIIOMJISEMO PO KOMILIEKCHY OIIHKY, IO
Binmosinae TumosuM pexomennamisivi MMC. PesynbraTn mokasyiors HeBucokuii R2, aje
crabinbuuit MAE/RMSE 3a naziiinux niseil, Baromi jokasu apeiidy IpoTsaroM pokiB Ta
inpopmarupHi nosicierrs SHAP. ITlomicsiuni Ta KBapTajbHI IPOrHO3U BKA3yIOTh Ha CTiii-
Kuil BUCXigHU Tpens i3 cezonnicTio, ge SARIMAX dikcye KOpOTKOCTPOKOBI KOJIMBAHHS,
a Prophet mae inTeprperoBani 1eKOMITO3UINT TPEHIIB.

Kntouosi cnoBa: npoznosysanns sapnaamu; 3posymiaut III; SHAP; dpetip danux;
CatBoost; Light GBM; Prophet; SARIMAX.
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