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This paper presents a mathematical modeling approach for fall detection using a 3D vision-
based contrastive learning framework. Traditional models struggle with high false positives
and poor generalization across environments. To address this, we propose a self-supervised
contrastive learning model that maps 3D skeletal motion sequences into a low-dimensional
embedding space, optimizing feature separation between falls and non-falls. Our method
employs spatial-temporal modeling and a contrastive loss function based on cosine sim-
ilarity to enhance discrimination. By leveraging graph-based feature representation, the
model ensures robust performance even with missing or noisy data. Experimental results
on benchmark fall detection datasets demonstrate a significant reduction in false posi-
tives while maintaining high accuracy, making the framework well-suited for real-world
healthcare applications.

Keywords: mathematical modeling; contrastive learning; 3D vision; skeletal motion anal-
ysis; healthcare; fall detection.
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1. Introduction

Falls represent a significant health risk for elderly individuals, often leading to severe injuries, long-term
disabilities, and increased hospitalization rates. According to the World Health Organization (WHO),
falls are the second leading cause of unintentional injury deaths worldwide, with individuals over the
age of 65 at particular risk [1]. The consequences of falls can be devastating, leading to a decreased
quality of life, higher healthcare costs, and a reduced ability to maintain independence. As a result,
developing effective and reliable fall detection systems become a critical area of research in healthcare
and assistive technologies. Existing solutions primarily fall into two categories: wearable sensor-based
and vision-based approaches. Wearable sensor-based methods utilize accelerometers and gyroscopes
to detect sudden changes in motion; however, they require individuals to wear devices continuously,
which can be inconvenient and may lead to low adherence rates [2|. Conversely, vision-based systems
offer a non-intrusive alternative by monitoring human motion through RGB cameras, depth sensors,
or 3D skeletal tracking. Recent surveys, including those from our ongoing research [3|, highlight the
increasing adoption of vision-based methods due to their non-contact nature and potential for real-time
fall detection [4].

Despite the advancements in vision-based fall detection systems, several challenges remain. One of
the primary difficulties is distinguishing between falls and other common daily activities, such as sitting
down abruptly, bending over, or picking up objects. These activities can resemble falls in terms of
body movement, leading to false positives that compromise the reliability of the system. Furthermore,
variations in lighting conditions, occlusions (e.g., furniture or other objects blocking the camera’s
view), and differing camera viewpoints further complicate the fall detection task [6]. In our previous
work [5], we explored novel techniques aimed at improving both fall detection accuracy and predictive
capabilities. These studies provide a comprehensive overview of state-of-the-art technologies while also
addressing the persistent challenges associated with implementing vision-based fall detection systems
in dynamic environments |7].

1012 (© 2025 Lviv Polytechnic National University



Self-supervised contrastive learning for fall detection using 3D vision-based body articulation 1013

To overcome these limitations, one promising approach is contrastive learning, a self-supervised
technique that enhances feature representation by leveraging similarities and differences between data
samples [8]. By training models to contrast positive pairs (e.g., two frames depicting the same fall)
against negative pairs (e.g., a fall versus a non-fall activity), contrastive learning enables the system
to learn more discriminative and robust feature embeddings. This approach has been shown to signif-
icantly improve the accuracy and generalization capabilities of vision-based models, allowing them to
distinguish falls from non-fall activities even in complex or ambiguous scenarios [9].

In addition to improving fall detection accuracy, precise head position estimation plays a crucial role
in human motion analysis. Head movement patterns provide valuable cues for predicting falls, assessing
postural stability, and enhancing pose estimation models [10]. In this work, we introduce a contrastive
learning-based model that learns 3D embeddings of head position using XYZ coordinate variations.
The proposed model applies contrastive loss functions to differentiate between similar and dissimilar
head positions, thereby improving its ability to generalize across different individuals, environments,
and camera angles. By incorporating contrastive learning for both motion classification and head
position estimation, our approach aims to deliver a highly reliable, real-time fall detection system that
minimizes false alarms and enhances deployment feasibility in real-world healthcare settings.

Self-supervised contrastive learning has emerged as a promising approach for fall detection, par-
ticularly when integrated with 3D vision-based body articulation techniques. This method leverages
the ability to learn discriminative features from skeletal data, significantly enhancing the accuracy and
efficiency of fall detection systems. Unlike traditional supervised learning, contrastive learning does
not require labeled data and instead focuses on learning the underlying structure of the data through
comparison. By training the model to distinguish between similar and dissimilar samples, it becomes
better equipped to identify subtle yet critical differences between fall and non-fall events. This tech-
nique has shown considerable promise in recognizing falls from normal activities, where traditional
methods often struggle [12]. The ability to learn such representations without relying on explicit labels
is especially valuable in real-world applications where labeled data is scarce or expensive to acquire.

Furthermore, utilizing skeleton-based action recognition specifically with 3D skeleton data enhances
this model can detect even the smallest movements associated with falls. Human movements like
bending down, sitting abruptly, or reaching for an object can easily be mistaken for a fall if the system
does not adequately capture the subtleties of body posture. By incorporating 3D skeleton data, which
provides a detailed understanding of the movements of human body in three-dimensional space, fall
detection systems can discern these subtle shifts with greater accuracy, thus improving detection rates
even in complex and dynamic environments [13]. This is particularly important in uncontrolled real-
world environments where background noise, lighting conditions, or occlusions can make it challenging
to detect falls reliably.

In terms of integrating 3D vision, human pose estimation (HPE) techniques like MoveNet play
a pivotal role. MoveNet, an advanced deep learning model for human pose estimation, is capable
of extracting high-fidelity features from human gestures. These features are crucial for identifying
fall events, as the system can track the exact position and movement of key body joints in real-
time. The enhanced resolution and accuracy of pose estimation ensure that even quick or subtle
falls are detected before they result in harm [12]. For instance, a fall event may involve rapid and
often irregular movements, making it imperative to detect the onset of a fall as early as possible.
MoveNet’s capabilities allow the system to quickly adapt to different body shapes, motion speeds, and
environmental conditions, making it a robust tool for fall detection.

Additionally, combining multiple image streams and applying segmentation techniques improves
the model’s ability to classify actions accurately and reduce false positives. By fusing images from
different viewpoints or sensors, the system gains a more holistic view of the scene, mitigating issues
like occlusions or partial visibility. Image segmentation helps isolate the person from the background,
enhancing the model’s focus on human movements rather than irrelevant environmental factors. This
multi-modal approach not only increases accuracy but also helps the system make more timely and
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reliable fall detection decisions [14]. The ability to segment and merge multiple data sources ensures
that the system is not only detecting falls but also distinguishing between different types of motions
that may resemble a fall, such as sitting down or bending over [15].

Together, these approaches provide a more sophisticated and reliable framework for real-time fall
detection systems. By integrating self-supervised contrastive learning, skeleton-based recognition, hu-
man pose estimation, and image fusion, the system becomes highly adaptable to diverse environments
and capable of operating effectively in real-world healthcare settings. This combination of techniques
ensures that the fall detection system is not only accurate but also resilient to the many challenges
posed by dynamic and unpredictable conditions. As a result, the model is better equipped to minimize
false alarms and provide timely alerts, improving both safety and quality of life for elderly individuals
and others at risk of falls.

2. Related work

Previous research in fall detection can be categorized into two primary approaches: sensor-based and
vision-based methods. Sensor-based techniques utilize accelerometers and gyroscopes to detect abrupt
motion changes, offering high sensitivity but often posing practical challenges for elderly individuals
who may find continuous device usage inconvenient. Additionally, these methods can generate false
positives, as sudden but non-harmful movements may trigger alarms [11].

Vision-based fall detection, in contrast, relies on visual data captured by RGB cameras, depth sen-
sors, or 3D skeleton tracking. These approaches eliminate the need for wearable devices but introduce
new challenges such as variations in lighting conditions, occlusions, and similarities between fall and
non-fall activities [16]. Traditional computer vision techniques relied on handcrafted feature extraction
methods, which struggled to generalize across diverse real-world scenarios. The introduction of deep
learning, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs),
has significantly improved fall detection accuracy by automatically extracting spatial and temporal
features [17]. However, deep learning models often require large, annotated datasets, making them
susceptible to overfitting, especially when trained on small or biased datasets [18].

To overcome these limitations, contrastive learning has emerged as a promising approach for im-
proving vision-based fall detection. This self-supervised technique enhances the model’s ability to
learn discriminative feature representations by contrasting positive (fall) and negative (non-fall) sam-
ples. Unlike fully supervised learning, contrastive learning does not rely heavily on labeled data,
making it more adaptable to diverse environments [8]. Studies have shown that integrating contrastive
learning with deep learning architectures, particularly CNNs, can yield significant performance im-
provements, with some models achieving accuracy rates exceeding 99% in fall detection tasks [19,20].
By learning compact feature embeddings, contrastive learning facilitates more effective differentiation
between fall-related and non-fall movements, reducing false positives and improving overall system
robustness [21].

Despite these advancements, contrastive learning presents certain challenges. The method typ-
ically requires large batch sizes during training to effectively contrast multiple samples, increasing
computational demands. Additionally, the quality of learned representations heavily depends on the
selection of positive and negative pairs inadequate selection may lead to suboptimal feature extraction.
Moreover, biases in the training dataset can affect the model’s ability to generalize across different en-
vironments and camera perspectives, necessitating careful dataset curation [22]. Recent advancements
in contrastive learning have significantly enhanced 3D vision-based fall detection systems by improv-
ing feature representation, robustness, and generalization. These improvements stem from innovative
architectures and data augmentation techniques, which allow for better discrimination between falls
and regular activities, addressing the challenges posed by the complexity of human motion in diverse
environments. Specifically, contrastive learning has been shown to improve feature representation by
learning more discriminative features through the comparison of positive (similar) and negative (dis-
similar) samples, which is crucial for accurately identifying falls. The Group3AD model, for example,
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uses an Intercluster Uniformity Network to cluster point cloud data, boosting the model’s capacity to
identify abnormal behaviors like falls from routine actions [23]. Moreover, multi-stream frameworks
leveraging both spatial and temporal features have been proposed, utilizing human skeleton data and
motion history, which have proven to enhance the accuracy of fall detection systems [24].

To further improve the robustness of these models, Generative Adversarial Networks (GANs) have
been utilized to augment training datasets, which help the model adapt to diverse fall scenarios [25].
In addition, lightweight 3D residual networks have been developed to reduce computational complexity
while maintaining high accuracy, thus improving the robustness of fall detection systems, particularly
in real-time applications [26]. These lightweight models allow for more efficient processing of large-scale
video data, ensuring real-time fall detection without sacrificing performance.

Furthermore, efforts to enhance the generalization capabilities of these systems have focused on
creating diverse training datasets, incorporating various angles and environmental conditions. By
using more comprehensive datasets, models have been able to generalize better to real-world scenarios,
as demonstrated by the high accuracy rates achieved in studies conducted in varied settings [26,27].

Despite these advancements, challenges remain, particularly in ensuring that models can adapt
to new environments and variations in human behavior. For instance, variations in how individuals
fall and environmental factors such as lighting conditions or occlusions can still lead to false positives
or missed detections. Future research should focus on enhancing the adaptability of these systems,
especially in terms of ensuring high performance across diverse settings and addressing computational
constraints that may limit the scalability of these methods.

3. Method

This study utilizes a contrastive learning-based model for fall detection, leveraging 3D body articulation
data from depth cameras. The task is framed as binary classification, distinguishing falls from other
activities. The model’s core innovation lies in the contrastive loss function, which encourages the model
to cluster fall instances (positive samples) together and separate them from non-fall activities (negative
samples). By learning from 3D coordinate sequences, the model builds a rich embedding space that
improves the representation of human actions, enhancing both feature extraction and classification
performance. We generalize the workflow in Figure 1.
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Fig. 1. Workflow for Contrastive Learning-Based Fall Detection.

A Siamese network with a shared base model processes pairs of 3D data from different perspectives,
increasing the accuracy of fall detection. The architecture is well explained in Figure 2. This self-
supervised approach reduces the need for large labeled datasets, allowing the model to be trained on
various fall scenarios captured from multiple angles. However, challenges related to computational
efficiency and large batch sizes may affect real-time applications in healthcare environments.

The model processes 3D vision-based data, specifically the XYZ coordinates of human body joint
movements. The dataset was collected using a ZED2 stereo camera to capture simulated actions
performed by individuals of varying genders and ages. It consists of 12 videos, including 5 females
and 7 males from MAScIR, who simulated both falls and normal activities of daily living (ADLs) [5].
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Over 3000 frames were recorded per video in a controlled environment with consistent lighting and
the camera was positioned 1.7 meters above the floor to simulate realistic indoor conditions. The data
collection protocol followed guidelines from established fall detection databases, ensuring diverse fall
scenarios.

To address the class imbalance, where falls (Label 1) are underrepresented compared to non-falls
(Label 0), we employed the Synthetic Minority Over-sampling Technique (SMOTE) to generate syn-
thetic fall samples, thus improving model performance and ensuring a balanced dataset.

The preprocessing pipeline included noise reduction through Gaussian and median filtering, joint
position normalization, and feature extraction (e.g., joint averages and movement trajectories). These
steps enhanced data quality, enabling effective fall detection modeling. The simulation involved par-
ticipants of various genders and ages to ensure comprehensive analysis across demographics. Each
participant performed predefined actions under controlled conditions, with the ZED2 camera’s optimal
height and wide field of view capturing dynamic movements. Participant characteristics, such as age
and physical attributes, were also documented to assess their impact on fall behavior.
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Fig. 2. Overview of the 3D Vision-Based Contrastive Learning Model for Fall Detection.

3.1. Problem formulation

Automatic fall detection using 3D skeleton-based motion analysis is a promising approach to enhancing
safety in healthcare and assisted living environments. Given a set of 3D skeleton-based motion
sequences, we aim to learn an embedding function that effectively distinguishes falling events
from non-fall activities. Let: X = {z1,x9,...,2,} be the set of input 3D skeletal coordinates,
where x; € RT*/*3 with: T = number of frames, .J = number of joints (e.g., head, shoulders, hips),
Each joint has 3D coordinates (x,y,2); ¥ = {y1,v2,-..,Yn}, where y; € {0, 1} represents the fall state
(0: no fall, 1: fall).

We aim to learn a contrastive embedding function fy: X — R? that maps the input data into
a low-dimensional feature space such that: Falls (positive samples) are mapped close together,
Non-falls (negative samples) are pushed apart from falls.

3.2. Contrastive loss function

To ensure that the learned embedding space effectively distinguishes between falling events and non-
fall activities, we employ a contrastive loss function. Specifically, we utilize InfoNCE (Noise
Contrastive Estimation), that encourages the model to bring similar motion patterns closer while
pushing apart dissimilar ones. This optimization framework enhances the discriminative power of
the embedding space, improving the model’s ability to generalize across different motion sequences.
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Formally, we define the loss function as follows:

exp(sim(fo(z:), fo(z]))/7)

N
Lecontrastive = — lo , 1
; gZM exp(sim(fp(@i), fo(2;))/7) W

j=1
where: xj is a positive pair (fall sample close in feature space), Ty is a negative pair (non-fall
sample far apart), sim(a,b) is the cosine similarity between two embeddings:
a-b
Sim(aa b) EETIRTITTAIR (2)
l[allflol]

T is a temperature hyperparameter controlling sensitivity, M is the number of negative pairs per
sample.

3.3. 3D skeleton feature representation
To extract discriminative features, we use a spatial-temporal representation of skeletal motion:

Hy =W Xy +b1, Zy=o0WyH;+ by), (3)

where: H; is the hidden representation at frame ¢, Wi, Ws are learnable weight matrices, Z; is the
final feature embedding, o is a non-linear activation function (e.g., ReLU).

We model the temporal dynamics using a Graph Convolutional Network (GCN) or Transformer
Encoder, ensuring the embedding is robust across different body motions.

3.4. Model architecture
The main strategy that we tried to follow is explained by Algorithm 1.

Algorithm 1 Contrastive Learning for 3D Vision-Based Fall Detection.

Require: X = {(X,,Y;, Z;,1abel;)} (3D skeleton sequences), 7 (temperature parameter), n (learning rate);
Ensure: Optimized model parameters 6*;

1: Step 1: Data balancing
2: if imbalanced dataset then
3:  Apply to oversample for minority class (fall cases);
4:  Apply undersampling for majority class (non-fall cases);
5. Step 2: Model initialization
6: Randomly initialize model parameters 6;
7. fore=1,....F
8:  Shuffle dataset and create balanced mini-batches B;
9:  for all mini-batch B = {(X;,Y;, Z;, X;", Y.t Z5, X, Y7, Z7)}
10: for all sample (X;,Y;,Z;) € B
11: Compute embeddings: Z; = fo(X;,Y:, Z;);
12: Compute positive similarity: s* = sim(Z;, Z;");
13: for all negative samples (X;,Y;”,Z;) in B
14: Compute negative similarity: s~ = sim(Z;, Z; );
15: Compute contrastive loss:
£ g /)
> exp(s™/7)
16: Update model: 6 < 0 —nVyL;

17: return Optimized parameters 6*;

Feature extraction: Utilizes a Siamese network architecture with a shared base model to ex-
tract features from pairs of 3D coordinate sequences. This architecture allows the model to compare
sequences of keypoint data, learning the relationship between different poses.

Contrastive loss: The model uses contrastive loss to learn embeddings that differentiate between
similar pairs (e.g., two sequences from the same “falling” action) and dissimilar pairs (e.g., sequences
from “not falling” actions). The contrastive loss function, being key to training siamese networks, is
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defined as follows:
1
Lcontrastive = 5 : (y : D2 + (1 - y) . maX(O, m — D)2) s

where: y is the binary label indicating whether the pair is: similar (y = 1), or dissimilar (y = 0); D
is the Euclidean distance between the feature embeddings of the pair; m is a margin that defines how
far apart dissimilar pairs should be in the embedding space.

This loss function encourages the network to minimize the distance D for similar pairs (falls) and
to maximize the distance for dissimilar pairs (non-falls). Employs contrastive loss to learn embeddings
that differentiate between similar and dissimilar pairs (falling vs. non-falling).

3.5. Training

Pair generation: During training, pairs of 3D coordinate sequences are created, where each pair is
labeled to indicate whether it belongs to the same action (e.g., two “falling” actions) or different actions
(e.g., “falling” vs. “walking”). If ; and x; represent two input sequences (from time steps ¢ and j), the
pair generation process can be represented as:

(xi,zj,y = 1) if both sequences belong to the same action class (e.g., both falls);
Pair(z;, z;) = { (25,25, = 0) if the sequences belong to different action classes
(e.g., one is a fall and the other is a normal activity).
Model training: Trains the model using these pairs with a contrastive loss function, adjusting

weights to minimize the distance between similar pairs and maximize it between dissimilar pairs. This
can be formalized as:

Inein Z Lcontrastive (97 L, xj7 y)a
(mivmj7y)
where 0 represents the parameters of the Siamese network. The training adjusts the model’s weights

to learn embeddings that correctly distinguish between different activities based on the 3D keypoint
data.

3.6. Fall classification using nearest neighbor in contrastive space
After training, we classify falls using a simple nearest neighbor approach in the learned embedding
space:
g= argmindist(fg(X),Cg), (4)
gey
where Cj is the centroid of fall/non-fall samples in feature space, and distance metrics can be:

— Euclidean distance: d(a,b) = ||a — b||2.
— Mahalanobis distance: d(a,b) = \/(a — b)TS"1(a — b).

3.7. Evaluation metrics

To assess the performance, we use:

o : TP+TN
Aceuracy: pprTNTFPFEN

. . o . PrecisionxRecall
F1-Score: 2 Precision+Recall *

— AUC-ROC Curve to analyze classification robustness.

4. Discussion

The application of contrastive learning to 3D vision-based fall detection has shown significant potential
by improving the feature representation of human actions through the analysis of xyz coordinates of
head joint movements. The model achieved an accuracy of 65.68%, demonstrating effective discrim-
ination between non-falls and falls with high precision for non-falls as Figure 3. However, the model
struggled with fall detection, evidenced by low recall and precision values for falls. This indicates that
while the model effectively identifies non-fall actions, it misses many fall events, suggesting a need for
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further refinement. Future improvements could focus on addressing dataset imbalances and enhancing
model sensitivity to falls to better meet real-world application needs.

The use of contrastive learning in vision-based fall
detection systems offers significant benefits for real-
world applications in elderly care settings. By reduc-
ing false positive rates, this approach enhances the
reliability of fall detection, allowing for timely inter- o 174545 16209
ventions when actual falls occur. Improved precision
and recall metrics not only ensure that caregivers can
respond effectively but also provide peace of mind to
families, knowing their loved ones are monitored by
an accurate system. Furthermore, the adaptability
of this model allows it to be integrated with existing
healthcare technologies, facilitating continuous learn-
ing from new data and user feedback. Notably, this
approach also holds promise for the prediction of falls
by identifying early indicators of risky movements, . ;
enabling a proactive stance in fall prevention. Ul- Predicted Labels
timately, this innovative method not only promotes Fig. 3. Confusion matrix of the model.
safety and independence for elderly individuals but also alleviates the workload on caregivers, leading
to more efficient and effective care solutions.

In addressing the limitations related to model performance for our Contrastive Learning approach
in vision-based fall detection, we acknowledge that our dataset is relatively small, comprising a total
of 272415 instances. The current metrics reflect this limitation, with an overall accuracy of 66%.
Class-specific scores indicate a precision of 0.69 and recall of 0.92 for non-fall events (Class 0), but
significantly lower values of 0.21 and 0.05 for fall events (Class 1). The Fl-scores further illustrate this
disparity, showing 0.79 for non-falls and only 0.09 for falls. The macro averages are 0.45 for precision,
0.48 for recall, and 0.44 for Fl-score, while the weighted averages highlight the better performance for
the non-fall class due to its larger support of 190 754 instances compared to just 81 661 for falls.

The small size of the dataset, particularly for fall events, is a significant factor contributing to
the underperformance model in recognizing falls. This limitation can lead to an imbalance where the
model is better trained on non-fall scenarios, resulting in missed detections and high false negatives
for falls. Furthermore, the complexity and variability of fall scenarios may not be adequately captured
in the available data.

To improve model performance, we plan to expand the dataset by incorporating additional fall
scenarios and ensuring a more balanced representation of both classes. We will also explore techniques
such as data augmentation and class weighting to enhance sensitivity to falls. By increasing the dataset
size and diversity, along with refining our model architecture, we aim to enhance accuracy, precision,
recall, and overall effectiveness in fall detection.

Confusion Matrix

True Labels

~ - 77282 4379

5. Results

We conducted a compre- Table 1. Extended classification report.

hensive .evaluatlo.n of our Class Precision Recall F1-Score Specificity Support
contrastive learning-based 75 0.60 092 0.9 021 190754
model using a diverse and 1 0.21 0.05 0.09 0.95 81661
representative fall detec- Accuracy 0.66 272415
tion dataset. The model Macro avg 0.45 0.48 0.44 0.58 272415
demonstrated an accuracy Welghted avg 0.55 0.66 0.58 272415
of 65.68%, with a preci- Balanced Accuracy 0.54

MCC 0.17

sion of 21.27%, a recall of
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5.36%, and an F1-Score of 8.57%, as presented in Table 1. These results highlight the model’s capa-
bility in distinguishing fall incidents from non-fall activities. Despite the relatively low recall, which
indicates a challenge in detecting all fall instances, the achieved precision suggests a reduction in false
positives, ensuring that detected falls are indeed actual falls.

Furthermore, an in-depth investigation of
Receiver Operating Characteristic (ROC) ’ p g

the model’s learned representations, shown us-
1.0 7| . . . .
=7 ing embedding space mapping, sheds light on
e its discriminative capacity. As seen in Figure 4,
087 i the contrastive learning strategy has consider-
2 /// ably enhanced the model’s capacity to distin-
S 061 PAd guish different human movement patterns. This
2 -, ) . . . .
2 7 improvement is notably noticeable in the unique
S 04 R clustering of fall-related motions versus non-fall
" A activities. A structured embedding space sug-
02 /// gests that the model has successfully captured
' L7 relevant latent properties, resulting in a more
// ROC curve (AUC = 0.55) | robust and interpretable decision-making pro-
O'00.0 02 04 06 08 10  Cess.
False Positive Rate These findings underscore the potential of

Fig. 4. ROC curve of contrastive model on our Dataset. contrastive learning in enhancing fall detection

models, particularly in scenarios where limited labeled data is available. Future work will focus on
refining the training strategy to further improve recall while maintaining the achieved precision, thereby
ensuring a more balanced performance across all evaluation metrics.

6. Conclusion

In order to address the ongoing problem of high false positive rates in conventional models, we presented
a contrastive learning-based method for vision-based fall detection in this study. By utilizing contrastive
learning to acquire strong feature embeddings that successfully distinguish between falls and non-falls,
our approach significantly improves the accuracy and dependability of fall detection systems. We
showed that this method can catch minute changes in human mobility by concentrating on 3D vision-
based data, which makes it especially appropriate for real-world situations. To further improve our
resilience systems, we also added a head position estimate model that uses 3D keypoints and has shown
promise in processing both complete and incomplete data.

The findings of our work are consistent with recent advances in contrastive learning and 3D vision-
based models, where approaches such as group-level feature grouping and multi-stream architectures
have improved feature representation and classification performance. Our findings further emphasize
the advantages of adopting synthetic data augmentation techniques like Generative Adversarial Net-
works (GANs) and lightweight deep learning architectures to improve the generalization capabilities
of fall detection systems. Despite these benefits, certain obstacles persist, such as the necessity for
large batch sizes during training, dataset imbalance issues, and the computing needs associated with
high-dimensional contrastive learning models. These restrictions highlight the importance of additional
modifications to make such models more scalable and efficient for real-time deployment.

Future research is going to emphasize on optimizing contrastive learning techniques by investigating
innovative loss functions and architectural changes that can minimize computational complexity while
maintaining high detection accuracy. Furthermore, using sequential models such as Recurrent Neu-
ral Networks (RNNs) or Transformer-based architectures may improve the system’s ability to grasp
temporal dependencies in fall events, hence increasing detection performance in dynamic settings.
Furthermore, utilizing advanced data augmentation procedures and transfer learning approaches may
solve dataset restrictions and increase model generalization across a variety of real-world contexts. Fi-
nally, implementing our technique in real-world healthcare settings for real-time fall detection remains

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 1012-1022 (2025)



Self-supervised contrastive learning for fall detection using 3D vision-based body articulation 1021

an important step in determining its practical impact, ensuring its flexibility to various monitoring
situations, and, ultimately, improving the safety and well-being of the elderly.
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CamocTiiiHe KOHTpacTHe HaB4YaHHSI AN BUSIBJIEHHA NafiHb
3 BUKOPUCTAHHAM apTuKynsauil Tisia Ha ocHosi 3D-30py

Termoyn V., Tabii FO., Ymag Xamk Txami P.

Jabopamopis ADMIR, Hayionaavra wkoaa Komn lomeprus nayk ma cucmemnozo anaridy (ENSIAS),
Yuisepcumem Moxammeda V, Pabam 10000, Mapoxxo
oumaima_ guendoul@umb.ac.ma

VY miit cTaTTi MIpeCTABACHO MAXiM M0 MATEMATHIHOTO MOJIETIOBAHHS BUSBJICHHS A iHD
3 BHKOPHUCTAHHSM pPaMKNU KOHTPACTHOTO HaBYaHHs Ha ocHOBI 3D-30py. Tpaawumiitai mo-
JeJli MAlTh MpodbJIEMI 3 BUCOKOIO KUIBKICTIO XUOHOMO3UTUBHAX PE3Y/IbTATIB Ta ITOTAHIM
y3araJbHEHHSM y pizHux cepemosuriax. [11o6 BupinmuTu 110 mpobJieMy, IPOIOHYEThCST MO-
JIeJTb KOHTPACTHOTO HABYAHHS 13 CAMOKOHTPOJIEM, siKa Bimobparkae 3D mocsigoBHOCTI pyxXiB
CKeJleTa B HU3bKOBUMIDHUI MPOCTIp BOYIOBYBAHHS, ONTUMI3YIOYUN PO3/IJIEHHST O3HAK MiXK
NaHHAME Ta HEIaiHHAMA. 3alpOIOHOBAHUI METOJ] BHKOPUCTOBYE IIPOCTOPOBO-YaCOBE
MOJIETIOBAHHS Ta (DYHKIIO KOHTPACTHUX BTPAT Ha OCHOBI KOCHMHYCHOI MOJIOHOCTI /11t 110~
KpallleHHsI po3pi3HeHHsi. BukopucroByioun rpadidHe mpecTaBIeHHs O3HAK, MOJE/Th 3a-
Gesredye HaJIiHY TPOIYKTUBHICTH HABITH 3a BifCyTHIX abo 3aImyMjeHuX mgaHuxX. Excre-
pUMEHTAJIbHI Pe3y/IbTaTh HAa €TAJOHHUX HAOOpax JTaHWUX BUSBJIEHHS MAJiHb JEMOHCTDY-
I0Th 3HAYHE 3MEHIIIEHHs XMOHOIIO3UTUBHUX PE3YJIbTATIB, 30epirarodu mnpu IbOMY BHCOKY
TOYHICTD, 10 PoOUTH HPEHMBOPK J0OpE TPUIATHOIO JIJIsT PeabHUX 3aCTOCYBaHb y cdepi
OXOPOHH 3I0POB 4.

Kniouosi cnosa: mamemamuwne Mo0ea06an1A, KORMPAcmue nasuanna, 3D-31p, ananis
) ) )
pyl’ZG CKeneEMAaA, OTOPOHA 380})06 7ﬂ, BUABAECHHA NAVTHD.
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