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The initial value problem for a differential equation with a fractional derivative and a
positive definite operator coefficient in a Hilbert space is considered. The exact solution
involves the solving operator (expressed as an infinite series incorporating the Cayley
transform of the operator coefficient, and certain polynomials of the independent variable,
which is known as the Laguerre-Cayley polynomials) and the convolution integral of the
solving operator with the right-hand side of the equation. The approximate solution is
expressed through the partial sum of the first N terms of this series. Then, we obtain
error estimates by taking into account certain smoothness properties of the input data: at
first, we prove the power rate of convergence depending on the discretization parameter N
in the case of a finitely differentiable right-hand side of the equation, and next, we prove
the exponential rate of convergence if the right-hand side is analytic in some sense.
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1. The problem statement

In modern science and its applications, the modeling of complex processes characterized by memory
effects, fractal structures, nonlocality, nonlinear and anomalous dynamics is of current relevance. Tradi-
tional approaches to describing such phenomena often lack sufficient flexibility, whereas the framework
of fractional integro-differentiation enables the construction of more adequate models of real-world
processes. This makes it particularly relevant in such fields as materials science, biology, finance,
signal processing, and others [1-4]. The development of numerical algorithms and modern computa-
tional technologies has significantly simplified the practical application of fractional calculus, further
stimulating its widespread use in both theoretical and applied research.

This topic is addressed in [5-7], where approximate grid methods for solving boundary value prob-
lems for differential equations with fractional derivatives are developed, and their accuracy is studied
considering the influence of boundary conditions. In contrast to the aforementioned publications, the
goal of the present paper is to solve the abstract equation with an integro-differential fractional-order
derivative using the Cayley transform method [8-10|. Theoretical analysis, numerical calculations, and
their comparison with the results of [11] indicate that the Cayley transform method is an effective
approach for solving such problems.

We consider the Cauchy problem for an evolution equation with a sectorial operator in a Banach
space with a fractional derivative in the formulation of [11]:

O+ 0, “Au = f(t), t>0,

u(0) = g, (1)

The research of the first co-author was partially supported by Simons Foundation (grant No.1290607).

1032 (© 2025 Lviv Polytechnic National University
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where Oyu = du/dt and

t _ oo
i/ uu(s)ds if —1<a<0;

@ uy(t) = § #Jo TU )
/0 %u(s)ds if 0<a<l.

The case —1 < a < 0 corresponds to the modeling of a subdiffusion process when the mean square
displacement of the diffusing particles is proportional to t!T®. For a = 0, equation (1) transforms
into the classical parabolic equation when the mean square displacement of the diffusing particles is
proportional to t. The case 0 < a < 1 is of interest for the viscoelasticity problems.

With the help of the Mittag—Leffler function [12]

o

EM(Z):;]F(%ZMY z€C (n>0),

the solution of problem (1) can be formally presented as follows [1]:
t
u(t) = U(t)uo + / Ult — 8)f(s) ds @)
0

with

U(t) = Brya(—t'17A) = —ttte4)7. 3
(= Biaa( 4" = 3 o ®)
The alternative form of the solving operator U(t) in (3) is found. Applying the Cayley transform
of the operator A:
Q=AI+A)7" A=(I-Q)7'Q,
one can obtain
- 1

_ _tl4a . -1 —
U(t) —El-i-a( t ([ Q) Q) ;F(1+j(1+a)) (

Next, we formally replace the operator @ in (4) with a scalar ¢ and provide the following definition.

—tH(1 - Q)7'Q) . (4)

Definition 1. The functions pﬁf‘) (t'79) produced after expanding the function EH_Q( — %_qt”o‘)
into a Maclaurin series in powers of q:

e J
q 1+a | _ q 1+a (a) 1+a
E ——t = ——t t
”“( 1—gq ) Z( 1—¢q > F(1+y (1+a)) Zp

§=0

1 9
pgla) (tl-l-a) _ 0 E1+a< 49 t1+a) , a>—1,
q:

nldg" l1—¢q
are called the Laguerre—Cayley functions, and the polynomials pﬁf“) (x) are called the Laguerre—Cayley
polynomials.

From Definition 1, it is easy to derive the explicit representation of the Laguerre-Cayley functions:

1o q (-t ar i

(@) ftay _ 1 0" o . <__t1+0c> J(1 — J

pn () nlogn 't I—gq q=0 “al Z (147014 a)) dq" it =a) 7=0
— r—l—lcr
Z gDt -y =19, pga) =1

1+ r+1)(a+1))

Then the Laguerre—Cayley polynomials p;a) () can also be presented explicitly:

n—1 r T
(=Dien

(@) () = 2 on=1,2,..., @) =1, (5)
P ;P(1+(r+1)(a+1)) Po

where Ck = ﬁlk)' are the binomial coefficients.
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1034 Makarov V. L., Mayko N. V., Ryabichev V. L.

With Definition 1 in mind, we can write solution (2) as follows:

u(t) = U(tyuo + /0 U(s)f(t - s)ds (6)

with the solving operator
Zp“‘ (H)Q", Q= A(I+4)7 (7)

The Cayley transform method consists in taking a finite sum of the series in formulas (6) and (7)
as an approximate solution of problem (1), namely:

un(t) = Un(t)up + /0 Un(s)f(t—s)ds, (8)

where

Zp(a Q" Q=A(I+A)"

/UN t—sds—ZQ"/ (s"F) f(t — ) ds.

We consider the case of a Hilbert space H with an inner product (u,v) Yu,v € H and associate
norm ||ul]| = /(u,u). Let A be a self-adjoint positive definite operator, and let {(pi}zl C H be an
orthonormal basis in H, formed by the eigenvectors of the operator A, corresponding to the eigenvalues
Ai, t=1,2,..., such that 0 < Ay < A2 < ...

In the present paper, we investigate the accuracy of method (8), (9) with various assumptions
regarding the initial vector uy and the right-hand side f(t).

9)

2. The Cayley transform method without accuracy saturation

First of all, we need the following auxiliary statement.

Lemma 1. Let a > 28 and 8 > 0. Then the following inequality holds true:
A 5 (28)°
A )\—5 < 7
20 <)\ + 1> af

Proof. We consider the function p(X\) = (A+1) A8, )\ > 0. Since ¢'(\) = ﬂ((a — B) = BA),

()\+1)2a+1
then under the assumption o > 2 it follows that o — 8 > «/2, and therefore,
a—p B\ (a—B\"" G B0 _ePep)
\) = = (1= = In{1—-— < .
e o) (-2) (5 o 1 )
The lemma is proved. [

(a)

Remark 1. From here on, we assume that the Laguerre-Cayley functions py "~ (t'*®) satisfy the
condition
P ()| < Ctn?, teo; T), (10)
where v € R and C(¢t) > 0 is independent of n. The basis for this assumption is a significant number of
calculations performed using the computer algebra system Maple. For example, inequality (10) follows
from the convergence of the next series:
[e.e]

S opI(7/8) = —1.1428. ., > mpl (1) = —0.5641..
> onpN(1) = —0.3123..., Y a’p(7¥9(3/2) = 0.2061. ..
n=1

(see also the results of [13]).
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First, we will examine the accuracy of the Cayley transform method in the case of a homogeneous
equation. In this case, formulas (6) and (8) for the exact and approximate solutions of problem (1),
respectively, take the form

u(t) uO_2p<a (E)Q o, (11)

un(t) = Un(t UO—Zp(a Q™ ug. (12)

The domain of the operator A7 is denoted by D(AU).
(@)

Theorem 1. Let f(t) = 0, the Laguerre-Cayley functions py,’ (t11) satisfy condition (10), and
ug € D(A?), 0 > v+ 1. Then the Cayley transform method (12) is a method without accuracy

saturation, and the following error estimate holds true:
(20)7e™° 1

_ < g .
Jute) = un (B < CO e s T 4wl (13)
Proof. From formulas (11) and (12), we obtain
. 2
lu(t) —un (@ = || 3= ()@ A~ A%,
n=N+1
o0 o n 2
= Z () Z( > i T (A%, i) i
n=N-+1 =1
o] 00 A n 2
. z[ > e (125) )|
i=1 Ln=N+1 v
o] 0 A n 2
_ ) (114« g —a( A0 )
S| S e (125) AT
i=1 [n=N+1
o N2 (@) (414« i —0
Applying Lemma 1 with « = n and 8 = o, we have
o
u)) —un@P = | 3 c n(—) ]2] 7o, )|
n=N+1
et ()] 55 L] e < o2 (22) [T ] e
h ¢ o1 s e N x777 0

(20)%7e=20 1

(O’ —y - 1)2 N2(c—v-1)

which yields estimate (13). The theorem is proved. n
Next, we analyze the accuracy of the Cayley transform method for the inhomogeneous equation

with zero initial condition. To this end, we write formulas (6) and (8) for the exact and approximate

solutions of problem (1), respectively:

u(t):/o U(s)f(t - s) ds—/ an SN F(E—s)ds, Q= A(T+A)L,  (14)

=C*(1) 1A% o],

¢
- / Un(s)f(t - s)ds = / zp;%wmm —s)ds, Q=A(I+4)".  (15)
0 0 ,,—o
We now proceed to prove the statement.
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Theorem 2. Let uy = 0, the Laguerre-Cayley functions p,(f‘) (t179) satisfy inequality (10) with 0 <
C(t) < C Vt € [0;T), and the vector function f(t) meet the conditions
t

F(t) € D(A®) Vte[0:T), o>~ +1; / A7 £(s)[[2ds < .
0

Then the Cayley transform method (15) is a method without accuracy saturation, and the error
estimate holds true:

o)eC 1/2
lu(t) —un(t)|| < \/_0(2 ) {/ |A% f(s)ds|| ds} . (16)

1N0’yl

Proof. From formulas (14) and (15), we obtain the error representation and the chain of inequalities

t 2
lu(t) - (8)]2 = /0 (U(s) — Un(s)) £ (¢ — ) ds

2

_ / Z P (1) QU AT A7 f(t — 5) ds

n=N-+1

2

= / Z p” 1+a Z<1_|):Z)\> )\;U(Aof(t—s),gpi)(pids

n=N+1
2
— e 00 i n —o t (o) Sl—l—a - e \ds
iZZ; ng\f:-ﬂ <1+)‘i> A /0 Py )(A fit )a‘Pz)d
oo 00 ,
< 1+a) Aaf(t _ 8), : dS]
;L;H(um) /‘p [ 1( i)

As a consequence of Lemma 1 for « = n and 8 = o, along with assumption (10), we have

uu<t>—uN<>H2<02(2;’) [f} _ ] [/\AU mdsr

n=N+1
20\ [ [ da
2 o
0<e> [/ :EM]Z/\A )| ds
_ 2 (20-) i _20 o
_tC (0_7_12]\[2(07 /HA 5)|2ds,
which gives estimate (16). The theorem is proved. n

Combining theorems 1 and 2, we arrive at the main statement of this section.

Theorem 3. Let the conditions of Theorems 1 and 2 be satisfied. Then the Cayley transform
method (8), (9) is a method without saturation of accuracy, and the following error estimate holds

true:
t 1/2
lu(t) —un(t)]] < N]f[_(j)_l {HAJuoH + [/0 HA"f(s)”ZdS] } ,

where M (t) = C max (1; /1) (i_a_);_;

s independent of n.

3. The Cayley transform method with an exponential rate of convergence

At this point, we need the following auxiliary statement.

Lemma 2. Let a > 0. Then the following inequality holds true:

A @ N 1—VAaF1 2 @
P (1l ———— ) . 17
peas </\+1> c = ( 1+\/4oz—|—1> (7
Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 1032-1041 (2025)
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Proof. We consider the function

(AN

Since ¢'(\) = eik)‘a(;\l(l_)iifﬂra), then we have
Vida+1-—-1 Via+1—-1 @ _ VAafi-1
maxp(A\) =p| ——— | = ———) ¢ 2
A>0 2 Vda+1+1

which leads to inequality (17). The lemma is proved. |
We now prove the analogue of Theorem 1.

Theorem 4. Let f(t) = 0, the Laguerre—Cayley polynomials p,(la)(:n) satisfy condition (10), and

ug € D(eA). Then the Cayley transform method (12) is exponentially convergent, and the following
error estimate holds true:

lu(t) — un (t)[| < Ve C@t)S(y)e YN lehuo| (¢ € [0; T], N € N), (18)

n
where S(7) represents the sum of the convergent series: S(y) = > -2, n? (1 - ﬁ) .

Proof. From formulas (11) and (12), we can derive the representation

00 2
Ju) —un @I = || 3 p@ ) QreAetug
n=N+1
0 o) n 2
- Z () Z< > i (eug, i) i
n=N-+1 =1
00 [e'e] A n 2
= [ Z Pl () (H_—Z)\> €_Ai(€Auo7<,0i)] ®i
i=1 ln=N+1 1
00 o] \ n 2
_ a) 11+ ) i/ A 4
_Z Z Pl )(m) e~ (e uo, ;)
i=1 In=N+1
00 0o A n 2
2 « « 7 )\
<Xl e | S el (155 ) ¢
i=1 NNt L+ A

Applying Lemma 2 with o = n, we get a chain of inequalities:

S IV 2
t) — t)|1* < C(t)n” l— —m8m
Jutt) ~ w0 L% (o= (1o )

o n 2
2
( ) n%:-l-l 1 + Y an + 1
= eC2(1)S% (7)e VAN | eyg |2,

where S(v) = > .07, n'y(l - m)n is the sum of the number series, and its convergence can be

oo
E 6 uO)QDZ
=1

el

shown by the logarithmic criterion:

n
w1 p2 )] (i i)
1+/An+1 — g 1+vAn+1 SI>1 Vn>ng
Inn Inn
since
—nln (1 -—2 > —n__
Irviantl) 1+\/m \/_ — +00 as n — 0.

Inn Inn  Inn

This immediately leads to estimate (18). The theorem is proved. |

Now we establish the analogue of Theorem 2.
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Theorem 5. Let ug = 0, the Laguerre-Cayley polynomials p&f‘) () satisty inequality (10) with 0 <
C(t) < C Vt € [0;T), and the vector function f(t) meet the conditions

f(t) e D(e*) vtelo; T, /tHeAf(S)szs<oo.
Then the Cayley transform method (15) is exponentia]lyoconvergent and the error estimate holds true:
1/2
lu(t) —un ()] < VevtCS(v) {/ le £ (s) HQdS} / (tel0;T], NeN) (19)
with S(v) described in Theorem 4.

Proof. Using formulas (14) and (15), we obtain the error representation and a number of inequalities:

t 2
() — un (0)]2 = /O (U(s) — Un () £t — 5) ds

_ / Z pn 1+a Qn —A Af( )

n=N-+1

2

= / > ) Z(li&) N (At~ 5), pi)eids
n=N+1 i=1 v
00 00 n 2
=2 X (1“) [ BN (AT )00 d
i=1 In=N+1
[%S) n 2
<> e [ D) [ (- ), | ds
i=1 N+1 1+/\ 0

Owing to Lemma 2 with oo =n and assumption (10), we have
2

lu(t) = un (@)I* <

i[/ eAft—s), %)\dsr

=1

o) n S t

< - 4<N+1>+1[ > <1—7 #) Zt/ (A F (= 5).0)| " ds
o 1++v4n+1 iy /0

t
= etC25%()e VIO [ et () s,

> e T (1)
na N1 14++v4n +1

and S(7) has the same meaning as in Theorem 4. This implies estimate (19).
The theorem is proved. [
We are now ready to prove the main result of this section, based on Theorems 4 and 5.

Theorem 6. Let the assumptions of Theorems 4 and 5 be fulfilled. Then the Cayley transform
method (8), (9) is exponentially convergent and characterized by the following error estimate:

t 1/2
ut) — un (B)] < M(t)eVTT [\\eAuo\\+{ / HeAf(S)|!2d8} ] (te0;T), NeN),

where M (t) = /e CS(y) max (1; v/t) is independent of n, and S(v) is as introduced in Theorem 4.

4. Numerical examples

We now demonstrate the effectiveness of our approach through several numerical examples.

Example 1. Consider the scalar case of problem (1) for « = —1/2; A =1 = const, f(t) =0, up = 1,
namely:
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d 1 [t u(s)
")+ = —= ——ds =0, t>0 0) =1.
U()‘i‘dtﬁo t—SS ) ’ U()
The exact solution wu(t) for ¢ = 2 can be found by formula (11) (see also (3)):
NN
2) =E1(—V2) = ——— =e“(l —erf(vV2)) = 20400244634121 . ..
w(2) = By jo(—V?2) ;}F(Hm) e?(1 — erf(v/2)) = 0, 3362040024463 ,

where erf (z) = % Iy e~ dt is the error function. The approximate solution wuy(t) for t = 2 can be
found by formula (12):

i\f: 1 “ 1/2 i\f: nz—:l r+1Cr o(r+1)/2
un(2) = ) =py =1+ 5n
o = T(1+ r+1)/2)
The values of the absolute error erry(2) = ‘u —un(2 ‘ for different N are presented in Table 1.
Table 1. Example 1.
N un(2) erry(2)
8 | 0.33617210996594734 ... | 3.189...-107°
16 | 0.33620399995084106... | 2.495...-107°

32 | 0.33620400244634010... | 1.102...-1071°
64 | 0.33620400244634121 ... | 1.313...-10728

Example 2. Consider the scalar problem (1) for « = —1/2, A = 1 = const, f(t) = e cos (nt),
Uug = 0:

d 1 [
u'(t) + avE ) ut(i)sds =etcos(mt), t>0, u(0)=0.
The exact solution wu(t) for ¢t = 2 can be found by formula (14):
/ Eyjo(=Vs)f(2 = s)ds = ( - ) / §7/2e72%5 cos (s)ds
— T(1+j(1+a)) Jo
j_
= / (1 —erf(v/s))e 2% cos (ms)ds = 0.0260732541461872.. ..
0

The approximate solution uy(t) for ¢t = 2 can be found by formula (15):

N 2
/ Un(s)f(2—s)ds = Z 2% / P (Vs)e 35 cos (ns) dss

N 1 r+10r

2
= /0 % cos (ms)ds + Z o Z T+ (rt 1)/2) /0 sTTD/2=245 o (15) ds.

r=0

The values of the absolute error erry(2) = ‘u 2) —un(2 ‘ for different NV are presented in Table 2.
Table 2. Example 2.

N un(2) erry(2)

8 | 0.02605879296236312... | 1.446...-107°

16 | 0.02607325535048029 ... | 1.204...-107°

32 | 0.02607325414601831 ... | 4.068...- 1016
64 | 0.02607325414601872... | 5.520...-10~2°

Example 3. Consider the scalar case of problem (1) for « = —1/3, A =1 = const, f(t) =0, up = 1,
namely:

, d 1 t u(s) B B
u(t)+£r(2/3)/0( ds=0, t>0, u(0)=1.
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The exact solution u(t) for ¢t = 2 can be found by formula (11):
2L (—1)72%/3

u(2) = Byys(~2%%) = 3

———— = (.27587958925617463 . . .
-0 P(l + 2]/3)

The approximate solution uy(t) for ¢ = 2 can be found by formula (12):

N 1 1/3) 2/3 7”+1CT 22(7’+1)/3
2) = (2 =1
un(2) nzoznp +22nz 1+2r—|—1)/3)
The values of the absolute error erry(2) = ‘u —un(2 ‘ for different N are presented in Table 3.
Table 3. Example 3.

N un(2) erry(2)

8 | 0.27582422545819167... | 5.536... 107

16 | 0.27587972571059977... | 1.364... 1077

32 | 0.27587958925635296 ... | 1.783...-10713
64 | 0.27587958925617463... | 3.611...-1072°

Example 4. Consider the scalar case of problem (1) for « = —1/3, A = 1 = const, f(t) =
e~tcos (mt), ug = 0:
A1 [ uls)
0+ d t), t = 0.
u'(t) + dtI‘(Q/?,)/O t—5)/3 s=etcos(nt), t>0, u(0)=0

The exact solution u(t) for ¢t = 2 can be found by formula (14):

2 0 (1) 2 .
2) = / Eys(—=s?)f2—8)ds =) ———2 / §%/3e¢72+5 cos (ms)ds = 0.0198545930306002288 . . .
o P jz::F(l—i'QJ/?’) 0

The approximate solution uy(t) for ¢ = 2 can be found by formula (15):

2 N
un(2) :/0 Un(s)f(2—s)d Z 2n/ ~1/3) (§2/3)e72%5 cos (s)ds
n=0

9 N 1 n—1 )r+10r 2
:/ e 2%5 cos (ms) ds—i—Z—nZ / s+ D/367245 cog () ds.

0 fon =T 1+2(r+1)/3)
The values of the absolute error erry(2) = ‘u 2) —un(2 ‘ for different N are presented in Table 4.
Table 4. Example 4.
N un(2) erry(2)
8 | 0.019831620240685168 ... | 2.297...-107°
16 | 0.019854640847382624 ... | 4.781...-1078

32 | 0.019854593030651958 ... | 5.172...- 10~
64 | 0.019854593030600228 ... | 2.843...-1072°

The obtained numerical results demonstrate the exponential rate of convergence of the Cayley
transform method for the studied cases involving analytic input data.
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TouHicTb MeToay neperBopeHHs Keni ans eBonouiiHoro
piBHAAHHA 3 ApPO6OBOIO NOXigAHOO

Maxkapos B. JI.', Maiiko H. B.2, Pa6iues B. JI.2

L Inemumym mamemamury HAH Yrpainu,
eys. Tepewenriecvra, 3, 01024, Kuis, Ykpaina
2 Kuiscorkuti nayionarvrut ynisepcumem imeni Tapaca Iesuerka,
6yn. Boaodumupcora, 60, 01601, Kuis, Yxpaina

Hocnimxeno 3amaay Komri fqiaa audepenniaabHOTO PIBHIHHS 3 MOXiTHOIO JIPOOOBOrO 10~
PAIKY 1 JIOJATHO BU3HAYEHWM OIEPATOPHUM KOeIIlli€HTOM y TiIbOEPTOBOMY IIPOCTOPI.
Tounuii po3s’A30K 306parKeHO 3a JOIOMOIOI0 PO3B’sI3yBAILHOTO oriepaTopa (IoJaHoro Je-
pe3 dyuxkiito Mirrar—/leddiepa y Burasai psaay 3a creneHsmu neperBopennst Kesi ore-
paropa Ta nosinomis Jlareppa—Keii), a TakoXK 3ropTKu PO3B’s3yBajIbHOIO OIEPATOPa 3
MIPaBOI0 YacTUHOIO piBHsAHH:A. HabymKennit po3s’s30K € CKiHIYEHHOIO CyMOIO mepriux N
JIONAHKIB 11b0r0 psity. OjiepKaHo OLIHKU IMOXUOKHU 4Yepe3 mapamerp auckperusarii N 3a
PI3HUX NPHUIIYIIEHD OO TJIAJKOCTI BXIJHUX JAHUX, & CaMe: METOJ Ma€ CTEIIeHEBY IIBUJI-
KicTh 3012KHOCTI Ta BJIACTUBICTh HEHACHYEHHS TOYHOCTI y BUIMAJIKY CKiHUYeHHOI mudepeH-
[IHOBHOCTI IIpaBOl YACTUHU PIBHSHHS, METOJ, € €KCIIOHEHI[AJIBHO 301KHUM, SKIIO IIPaBa
YACTUHA € AHAJIITUYHOW (B IIEBHOMY CeHCl) DyHKIE.

Kntouosi cnosa: sadaua Kowi; 2iavbepmis npocmip; dynryisa Mimmae—Jledpaepa; ne-
pemeopenns Keai; memod 6e3 macuderts mouHocmi; eKCnoHEHUIaNbHO 30idCHUL an20-
PUMM.
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