
INFORMATION SYSTEMS AND NETWORKS

Issue 18, part 1, 2025

https://doi.org/10.23939/sisn2025.18.015

UDC 004.774

METHODS AND MEANS OF OPTIMIZATION
OF DISTRIBUTED OLTP SYSTEMS

Oleh Faizulin1

1 Lviv Polytechnic National University,

Department of Information Systems and Networks,
 1 oleh.r.faizulin@lpnu.ua, ORCID 0000-0001-5781-0600

© Oleh Faizulin, 2025

The article explores the architecture of efficient and high-performance distributed on-
line transaction processing systems, leveraging cloud-based tools, cloud-native architectural
approaches, and database replication methods. It focuses on reducing network latency, opti-
mizing resource usage−and consequently, costs−enhancing data replication, and improving
fault tolerance. This article provides a practical demonstration of how modern cloud solutions
and technologies enable the rapid and efficient development of enterprise-level distributed
online transaction processing systems. The approaches discussed can be applied both to
individual subsystems and as a comprehensive architectural strategy. The study examines key
principles of system architecture design, selection of technologies to ensure performance and
fault tolerance, and modern deployment methods for web applications. It highlights the
importance of containerization and orchestration in simplifying infrastructure management.
Additionally, it delves into automatic scaling mechanisms that dynamically adjust system
resources in response to workload changes, ensuring optimal resource utilization. The
proposed methods and approaches are relevant to developers, architects, and researchers
working on building or optimizing modern OLTP applications. They provide valuable insights
for building high-performance, scalable, and fault-tolerant systems.

Keywords: distributed web applications, online transaction processing, performance
optimization, cloud computing, data replication.

Problem statement

Distributed web applications have become the backbone of modern computing, enabling scalable,
high-availability services across geographically distributed environments. The increasing demand for real-
time processing, data-intensive workloads, and global accessibility has pushed developers to design more
efficient and optimized architectures. However, the complexity of distributed systems introduces various
challenges, including latency issues, resource management, scalability constraints, and fault tolerance.

To maintain key non-functional requirements, cloud-native architecture must be utilized. At the
same time, optimization techniques must be implemented at multiple levels, including, but not limiting to,
infrastructure, application, and data layers. These techniques include DNS routing, load balancing, caching
mechanisms, and efficient database management. Each of these plays a critical role in enhancing the
overall efficiency of online transaction processing (OLTP) web applications.

Furthermore, as cloud computing and edge computing evolve, new optimization opportunities emerge.
Serverless computing, container orchestration, and performance monitoring offer new ways to improve
response times and resource utilization dynamically. This article provides a comprehensive analysis of
optimization methods for modern OLTP web applications, exploring both traditional and emerging strategies.

16 O. Faizulin

As OLTP web applications grow in complexity, several challenges arise that can impact perfor-
mance, reliability, and user experience. The primary issues include latency, where the geographical
distribution of application components can increase response times and lead to performance degradation,
with network latency, API call overhead, and inefficient data transfer mechanisms contributing to this
problem. Another challenge is resource utilization, since many applications suffer from inefficient usage of
computational resources such as CPU, memory, and bandwidth, and without proper optimization, resource
over-provisioning or underutilization may result in redundant operational costs. Scalability limitations also
play a significant role, as handling an increasing number of concurrent users requires robust scaling
strategies. Finally, fault tolerance is crucial for distributed applications, which must be resilient to hard-
ware failures, network disruptions, and software crashes, and ensuring high availability and minimizing
downtime requires effective redundancy, replication, and failover mechanisms.

To address these challenges, a combination of architectural techniques is typically used. They in-
clude GeoDNS routing, load balancing, scalable deployments, database optimizations and many others.
The article proposes a reference architecture for the geographically distributed OLTP systems that
holistically address all above-mentioned issues. At the same time, each proposed technique can be used in
a standalone manner, to address specific problems of the existing system.

Analysis of Recent Studies and Publications

Exploring the specific challenges of OLTP systems in cloud environments, Haubenschild et al.
(2021) in their article "OLTP in the Cloud: Architectures, Tradeoffs, and Cost" provide a significant
contribution by dissecting various architectural approaches for deploying OLTP workloads within cloud
environments. The authors analyze both "lift-and-shift" migrations of traditional systems and the adoption
of cloud-native database services, such as Amazon Aurora which is discussed in this article. Their work
meticulously evaluates the tradeoffs involved concerning performance, scalability, availability, durability,
and particularly operational costs. This is highly relevant as it underscores the importance of architectural
choices for attaining cost-effective and high-performance OLTP systems, a key goal of the methods
proposed herein. The insights from Böhm et al. reinforce the need for a thorough evaluation of database
service models and their implications for overall system efficiency and resource utilization.

The article titled "Deploying and Managing Web Application Using Kubernetes" by Dhanwai, Bhagwat,
Supekar, Deshmukh, and More, presented at the 2025 3rd International Conference on Intelligent Data
Communication Technologies and Internet of Things (IDCIoT), targets methodologies and best practices for
deploying and operating web applications using Kubernetes. As one of the most wide-spread container
management solutions, Kubernetes has become integral for automating the rolling-out, operating and scaling of
applications. The authors delve into the core components of Kubernetes, such as Pods, Deployments, Services,
and ConfigMaps, illustrating how these elements collaborate to ensure seamless deployment and management
of web applications. They provide practical insights into creating Deployment manifests to manage application
instances and utilizing Services to expose these applications to external traffic.

The article by Galipelli, S., Banka, M., & Banka, R. (2025) titled "Building A Serverless
Application Using AWS Lambda" explores the development of serverless applications leveraging AWS
Lambda, a key service provided by Amazon Web Services (AWS) that allows developers to run code
without requiring of dedicated servers. This article serves as a practical guide for developers and architects
looking to adopt serverless computing with AWS Lambda, offering both theoretical insights and hands-on
implementation strategies.

The paper titled "Architecting Multi-Cloud Applications for High Availability using DevOps" by
Damien Gallagher and Ruth G. Lennon (2022), presented at the 2022 IEEE International Conference on E-
Business Engineering (ICEBE), addresses the design and implementation of multi-cloud applications with
a focus on high availability through DevOps practices. This work provides insights into leveraging multi-
cloud architectures and DevOps methodologies to build robust applications capable of maintaining high
availability in dynamic cloud environments.

Methods and means of optimization of distributed OLTP systems 17

In his paper, "Amazon Aurora: Insights and Benchmarks for Contemporary Application Scaling,"
Goel R. (2025) examines Amazon Aurora's architecture and performance to highlight its effectiveness in
modern application scaling. Functioning as a high-performance and fully managed relational database
solution, Aurora combines the simplicity of open-source database systems with the performance of
commercial equivalents.

In his work "Cloud Native Architecture and Design Patterns," Shivakumar R. Goniwada (2021)
delves into the principles and methodologies essential for building cloud-native applications. This section,
spanning pages 127 to 187, offers a comprehensive exploration of design patterns that facilitate the
development of scalable, resilient, and efficient cloud-native systems.

The article by Khanal, D. D., & Maharjan, S. (2024) titled "Comparative Security and Compliance
Analysis of Serverless Computing Platforms: AWS Lambda, Azure Functions, and Google Cloud
Functions" examines the security and compliance measures used by most popular serverless computing
platforms. This study is valuable for cloud architects, DevOps teams, and security professionals selecting a
serverless platform based on security posture and regulatory requirements. It goes beyond feature lists to
offer a risk-based comparison.

The article by Lima et al. (2023) titled "Efficient Causal Access in Geo-Replicated Storage
Systems", published in the Journal of Grid Computing, investigates optimizing causal consistency models
in geographically distributed (geo-replicated) storage systems. This work advances the design of high-
performance geo-replicated systems, offering a pragmatic solution for scenarios where strong consistency
is overkill, but eventual consistency is too weak.

The book “Kubernetes in Action”, Lukša M. (2022) provides a comprehensive guide to developing
and running applications within a Kubernetes environment. It reviews container technologies, such as
Docker, ensuring readers understand how to build and manage containers. Lukša then delves into
Kubernetes, teaching readers how to deploy container-based distributed applications effectively. The book
covers setting up Kubernetes clusters, managing applications, and understanding Kubernetes' architecture
and operation. It also addresses advanced topics like monitoring, tuning, and scaling applications within
Kubernetes.

In their paper, "Cloud Computing Based Learning Web Application Through Amazon Web Services,"
Neela et al. (2021) explore the development of an advanced E-Learning Management System (E-LMS)
leveraging Amazon Web Services (AWS). The study highlights the integration of AWS's cloud infrastructure to
create a scalable, secure, and efficient online educational platform. This research underscores the potential of
cloud computing, particularly AWS, in transforming traditional e-learning platforms into dynamic, flexible, and
secure environments that cater to the evolving needs of modern education.

These and other papers provide an invaluable source of knowledge and information regarding the
problem.

Formulation of the Article’s Objective
The article aims to provide the architecture approach for a highly distributed enterprise-grade OLTP

system. To achieve this, the article utilizes a set of technologies provided by AWS (Amazon Web
Services) as reference technology stack. While AWS is a widely adopted and feature-rich platform, it’s not
necessary to utilize AWS technologies at all. Each layer can be replaced with an alternative of GCP
(Google Cloud Platform, MS Azure) or other vendors. The article targets to resolve the following issues
out-of-the-box by utilizing the proposed architecture:

• Latency issues
• Resource utilization and application runtime scaling
• Database scalability and consistency
• Fault tolerance

By addressing these key challenges, this article provides a comprehensive guide to building cloud-
native, optimized distributed web applications, ensuring enhanced performance, reliability, and security in
modern environments.

18 O. Faizulin

Main Results

Latency Issues

Latency stands as a critical performance indicator for distributed web applications because it
markedly influences both user satisfaction and overall system productivity. This term describes the time
lag experienced between a user's action and the corresponding system reaction, a duration susceptible to
multiple influencing elements. Latency can stem from various origins, such as ineffectively written
application code, poor database query execution, a shortage of necessary resources, or delays in server-side
processing. Although numerous such problems are solvable via code enhancements and resource
governance across different layers of an application design, network-induced latency presents an ongoing
difficulty. Unfortunately, unlike other performance hindrances, network latency cannot be entirely nullified
solely through server-side or application-level tuning efforts; however, its effects can be lessened by
strategies that work in conjunction with Geographic Domain Name System (GeoDNS).

To address network latency challenges, edge computing has surfaced as a potent methodology. By
situating data processing nearer to the end-user−at the network's "edge"−the physical span data must
traverse can be considerably shortened. This closeness to users facilitates quicker system reactions and
heightened performance, particularly for applications demanding immediate, real-time engagement.
Essentially, an optimal performance is achieved when requests are handled by the closest feasible
proximity to the end-user, thereby minimizing delays associated with network data transmission.

Fig 1. Location aware DNS-based routing

A primary strategy involves employing what is known as GeoDNS. Ordinarily, to decrease latency
within a particular geographic zone for enterprise applications, an application regional duplicate
established. Subsequently, the GeoDNS configuration is modified by adding records pertinent to that
specific region. Illustrating this, Route53 serves as one such system for managing GeoDNS functionalities.
Other available competing services include GoDaddy Premium DNS, Azure DNS, GCP DNS, and
Cloudflare DNS, among others.

Methods and means of optimization of distributed OLTP systems 19

Fig 2. https://wondernetwork.com/ ping statistics

Finally, it must be mentioned network latency can be caused by other factors: low throughput, DDoS
attack, insufficient resource, etc. It’s out of scope for the article to address such issues.

Resource Utilization

Efficient resource utilization is a must for optimizing the performance, cost, and scalability
capabilities of OLTP applications. In cloud-based and on-premises distributed environments, ineffective
allocation and management of computational resources leads to increased latency, unnecessary costs, and
system inefficiencies. By implementing intelligent resource management strategies, organizations can
ensure that applications run in an optimized manner while minimizing overhead and maximizing
throughput. Modern OLTP applications are typically deployed in using the following approaches:

• Virtual Machine (e.g. EC2)
• Containerized deployment (e.g. Kubernetes)
• Serverless deployment (e.g. AWS Lambda)
Barebone physical hardware deployments are rare and may be omitted due to being irrelevant for

most enterprises. The table below illustrates benefits and drawbacks of each major deployment type.

Comparison of the Hosting Approaches

 EC2 Kubernetes Lambda

Workload Type Virtual Machine Container Runtime Serverless
Resource Overhead High Medium Low

Cost Fixed Low Medium
Scalability Low High Extreme

To make an informed decision, it is crucial to analyze the application's behavior and workload

patterns. However, when considering a typical OLTP application, a containerized runtime - specifically
Kubernetes - is one of the best possible choices. This preference is driven by several key factors:

• Enterprise Workloads: Large-scale enterprises rarely operate a single application in isolation.
Instead, they deploy a set of applications that work in an interconnected manner. By leveraging a
container orchestration platform like Kubernetes, organizations can establish a unified cross-
cluster configuration, optimize resource allocation, and enable rapid scaling, ensuring efficient
workload management.

20 O. Faizulin

• OLTP-Specific Characteristics: OLTP applications are characterized by handling a high volume
of concurrent, short-lived transactions. These applications require a runtime environment
capable of efficiently processing multiple requests in parallel while maintaining low latency.
Kubernetes, with its feature of managing containerized workloads dynamically, is well-suited to
support such demanding workloads.

From a cost and performance perspective, Kubernetes generally proves to be a cheaper and scalable
solution compared to alternative runtime environments. In scenarios with high concurrency, Kubernetes
often outperforms serverless solutions like AWS Lambda in terms of cost efficiency while offering
superior scalability compared to traditional virtual machines (such as EC2 instances). Furthermore,
Kubernetes provides a robust set of built-in functionalities essential for both engineers and system
operators. These include automated load balancing, security policy enforcement, advanced scalability
mechanisms, monitoring capabilities, and seamless integration with cloud-native tools. By choosing
Kubernetes for OLTP applications, organizations benefit from a highly adaptable, cost-effective, and
operationally efficient runtime environment.

Fig 3. A typical OLTP system regional cluster setup

Effective Scalability of Application Runtimes

Scalability is one of the most important factors in the architecture of distributed web applications,
enabling systems to efficiently manage increasing workloads without performance degradation. As user
demands and data volumes grow, applications must dynamically allocate resources to remain responsive
and reliable. However, many distributed systems encounter challenges that impede seamless scaling, such
as inefficient resource reservation, bottlenecks in processing, and excessive delays in response times.
These issues can result in reduced throughput, higher latency, and suboptimal utilization of available
computing power. To mitigate these challenges, it is essential to apply a well-structured application
configuration that balances resource allocation effectively. A misconfigured application may suffer from
resource stagnation, where it lacks the necessary computational power to perform optimally. Conversely,

Methods and means of optimization of distributed OLTP systems 21

improper allocation leads to resource wastage, whereas the system allocates more computing capacity than
it can efficiently utilize. A carefully designed configuration ensures that the application scales efficiently
without unnecessary performance trade-offs.

To illustrate the impact of scaling strategies, let’s compare two Kubernetes deployment con-
figurations.

Fig. 4. 3x1 CPU core vs 1x3 CPU core K8S configuration

The first configuration deploys three replicas of the application, with each replica utilizing one full CPU
core. The second configuration, in contrast, deploys a single instance of the application but allocates three CPU
cores to that instance. By examining these two approaches, we can evaluate how resource distribution affects
throughput, resource utilization, scalability, and efficiency in handling concurrent workloads.

To further explore the implications of these configurations, let’s evaluate their performance using
following runtimes: Java, Node.js, and Python. Java applications are inherently multithreaded, allowing
them to efficiently utilize multiple CPU cores by executing concurrent tasks within a single process. This
makes the second configuration - where a single instance has multiple cores - highly suitable for Java-
based applications, as it enables efficient parallel execution and minimizes the overhead of inter-instance
communication. On the other hand, Node.js and Python primarily operate in a single-threaded
environment, relying on asynchronous execution rather than true parallelism. Since these runtimes do not
natively distribute tasks across multiple CPU cores, assigning multiple cores to a single instance does not
yield substantial performance improvements. Instead, this results in inefficient resource utilization, as only
one core may be actively used while others remain idle. Therefore, for Python and Node.js applications,
distributing the workload across multiple instances - as seen in the first configuration - provides better
scalability and resource efficiency.

In summary, selecting an appropriate scaling strategy requires a deep understanding of an
application’s runtime characteristics. The first configuration, which distributes workloads across multiple
instances, works best with single-threaded applications like Python and Node.js, where horizontal scaling
(replicating instances) provides better performance. Meanwhile, the second configuration, which
consolidates resources into a single instance, is better aligned with multithreaded applications like Java,
which can effectively leverage multiple CPU cores. Ensuring that the chosen scaling model aligns with the
runtime’s capabilities is crucial for optimizing performance, maximizing resource efficiency, and
maintaining a cost-effective deployment strategy in a Kubernetes-based environment.

Database Scalability and Consistency

Data consistency is yet another important characteristic of distributed applications. It ensures that
users receive accurate, up-to-date information, regardless of their geographical location and selected
cluster instance. In geographically distributed applications, maintaining strong consistency can be

22 O. Faizulin

challenging due to network latency, partitioning, and the requirement of synchronization across multiple
regional cloud instances. To resolve these issues, many large-scale systems adopt an eventual consistency
model, which prioritizes availability and performance while allowing temporary inconsistencies that
resolve over time. While this approach improves scalability and fault tolerance, it requires careful design to
handle scenarios where data may be briefly out of sync, ensuring a seamless and reliable user experience.
There are multiple solutions and approaches to database scalability and consistency which are a subject for
a separate research project. For illustrative purposes, let’s compare two representatives of database sys-
tems: DynamoDB for NoSQL and Aurora DB as a relational database.

DynamoDB utilizes eventually consistent reads by default and prioritizes availability and low la-
tency. When the data is written, it’s asynchronously replicated across multiple regions, meaning a read
request may return stale data for a short time frame. Optionally, DynamoDB allows strong consistency,
what make sures that the reading operation always returns the last committed write. This requires querying
the leader node directly, which may introduce a higher latency, especially in multi-region deployments.

Amazon Aurora utilizes strong consistency for the region and eventual consistency for global
distribution. Whenever working within region, every write operation is synchronized across at least six
copies of the data in three availability zones, ensuring strong consistency across replicas. Once transaction
is confirmed, the data is immediately available for reading. At the same time, cross-regions
synchronization is eventually consistent.

To sum it up, achieving cross-region consistency involves balancing consistency, availability, and
partition tolerance Consistency, Availability, Partition tolerance theorem (CAP theorem). While strong
consistency provides certainty, it can reduce system performance, while eventual consistency improves
scalability and fault tolerance but introduces the risk of temporary data inconsistencies.

Fig 5. Background synchronization between databases

Fault Tolerance

In today’s ever-evolving digital landscape, achieving fault tolerance has become significantly easier and
more efficient using modern cloud systems like AWS. These cloud technologies are designed with built-in
redundancy, automatic failover mechanisms, and highly distributed infrastructures, which allows relatively
simple creation of fault-tolerant and resilient systems that can handle hardware failures, network issues, and
other types of disruptions with minimal impact. The advanced capabilities provided by cloud platforms make
fault tolerance an inherent feature, simplifying the overall design, setting a solid availability baseline and
ensuring that applications continue to function smoothly even when failures occur.

Conversely, constructing a fault tolerant system without utilizing cloud technologies presents a far more
complex challenge. Without the robust infrastructure provided by the cloud, enterprises have to manually design
and manage their own redundancy and failover systems across multiple data centers or physical locations,
which is not only resource-intensive but also prone to human error. Traditional on-premise solutions often
require a significant investment in hardware, expertise, and operational maintenance, which can make building
and maintaining fault-tolerant systems a daunting task for many businesses.

Methods and means of optimization of distributed OLTP systems 23

To ensure high availability within cloud environments, selecting appropriate services and
components is essential that meet the specific needs of the application. Selecting the appropriate compute,
storage, and networking services is critical to achieving the desired level of fault tolerance. For instance,
offerings such as Amazon EKS, Amazon S3, and Amazon RDS come with built-in redundancy and
failover capabilities which can be utilized for high availability. However, selecting the right configuration
specific to each service, which involves replication strategies, backup policies, and monitoring tools, is key
to ensuring resilience. Calculating the total uptime based on these selected services and understanding the
associated Service Level Agreements (SLAs) can offer a distinct understanding of the system’s overall
reliability and help in identifying potential vulnerabilities.

Additionally, it is likewise crucial to utilize cloud-native architectural patterns while building an
application. Cloud-native applications are built to fully capitalize on the scalability, elasticity, and fault
tolerance features offered by cloud platforms. This involves utilizing containerization (such as Docker) and
orchestration tools (like Kubernetes) and ensuring that the application is capable of dynamically scaling to
meet demand and upholding fault tolerance. Employing cloud-native patterns and leveraging the full
potential inherent in cloud platforms, organizations can make sure that their applications extend beyond
fault tolerance to also be highly scalable, efficient, and resilient in the face of potential failures. Through
this approach, businesses can maximize uptime and ensure optimal performance, even amid unforeseen
disruptions.

Conclusions

Fig 6. Suggested Reference Application Architecture

In the modern era, distributed OLTP applications are essential for any enterprise or large-scale
business. At the same time, it’s both challenging and easier than ever to build a scalable, distributed, cloud-
native OLTP system. The key takeaways are:

• Utilize GeoDNS like Route53 for automatic DNS resolution, cross-region routing and failover

24 O. Faizulin

• Utilize containerized application packaging, for instance docker, and container runtime, like
Amazon EKS

• Utilize cross-region data replication by selecting proper database solution like DynamoDB or
Aurora DB.

• The fundamental cloud-native architectural principles discussed apply whether the application is
a monolith or composed of microservices, though the implementation details and complexity
may vary.

• Finally, don’t forget about system monitoring and alerts
By following these simple principles and reference architecture any modern OLTP application can

be deployed with high availability, fault tolerance and low latency.

REFERENCES

Dhanwai, A., Bhagwat, S., Supekar, K., Deshmukh, S., & More, A. (2025). Deploying and Managing Web
Application Using Kubernetes. 2025 3rd International Conference on Intelligent Data Communication
Technologies and Internet of Things (IDCIoT), 130–136. https://doi.org/10.1109/idciot64235.
2025.10914907

Dibya Darshan Khanal, & Sushil Maharjan. (2024). Comparative Security and Compliance Analysis of Serverless
Computing Platforms: AWS Lambda, Azure Functions, and Google Cloud Functions. Research Square
(Research Square). https://doi.org/10.21203/rs.3.rs-4823011/v1

Galipelli, S., Banka, M., & Banka, R. (2025). Building A Serverless Application Using AWS Lambda.
https://doi.org/10.2139/ssrn.5068707

Gallagher, D., & Lennon, R. G. (2022, October 1). Architecting Multi-Cloud Applications for High Availability
using DevOps. https://doi.org/10.1109/ICEBE55470.2022.00028

Goel, R. (2025). Amazon Aurora: Insights and Benchmarks for Contemporary Application Scaling. International
Journal of Computer Applications, 186(70), 29–31. https://doi.org/10.5120/ijca2025924554

Goniwada, S. R. (2021). Cloud Native Architecture and Design Patterns. Cloud Native Architecture and Design,
127–187. https://doi.org/10.1007/978-1-4842-7226-8_4

Haubenschild, M., & Leis, V. (2025). Oltp in the cloud: architectures, tradeoffs, and cost. The VLDB Journal,
34(4). https://doi.org/10.1007/s00778-025-00913-z

Lima, S., Filipe Araújo, Miguel, Correia, J., Bento, A., & Barbosa, R. (2023). Efficient Causal Access in Geo-
Replicated Storage Systems. Journal of Grid Computing, 21(1). https://doi.org/10.1007/s10723-022-09640-z

Marko Lukša. (2022). Kubernetes in Action, Second Edition. Manning.
Neela, S., Neyyala, Y., Pendem, V., Peryala, K., & Kumar, V. V. (2021, March 1). Cloud Computing Based

Learning Web Application Through Amazon Web Services. https://doi.org/10.1109/ICACCS
51430.2021.9441974

МЕТОДИ ТА ЗАСОБИ ОПТИМІЗАЦІЇ РОЗПОДІЛЕНИХ СИСТЕМ
ОНЛАЙН-ОПРАЦЮВАННЯ ТРАНЗАКЦІЙ

Олег Файзулін1

1 Національний університет “Львівська політехніка”,

кафедра інформаційних систем та мереж, Львів, Україна,
 1E-mail: oleh.r.faizulin@lpnu.ua, ORCID: 0000-0001-5781-0600

© Файзулін О, 2025

Стаття досліджує архітектурні рішення для ефективної та швидкої побудови розподілених

систем онлайн опрацювання транзакцій із використанням хмарного інструментарію, cloud-native
архітектурних принципів, та методів реплікації баз даних. Стаття фокусується на методах

Methods and means of optimization of distributed OLTP systems 25

зменшення мережевої затримки, оптимізації використання ресурсів і, як наслідок, коштів,
реплікації даних та відмовостійкості. Стаття наглядно демонструє як із використанням сучасних
хмарних рішень та технологій можна швидко та легко побудувати розподілену систему онлайн
опрацювання транзакцій корпоративного рівня. Рішення використані у статті можуть бути
застосовані як для окремих підсистем, так і як цілісний архітектурний підхід. Розглядаються
принципи побудови архітектури систем, вибір технологій для забезпечення продуктивності та
відмовостійкості. Також аналізуються сучасні методи розгортання веб-додатків, включаючи
використання контейнеризації та оркестрування для спрощення управління інфраструктурою.
Окремо розглядаються механізми автоматичного масштабування, що дозволяють динамічно
адаптувати систему до змін навантаження, оптимізуючи використання ресурсів. Запропоновані
методи та підходи є актуальними для розробників, архітекторів та дослідників, які працюють
над оптимізацією розподілених веб-додатків та прагнуть створювати високопродуктивні,
масштабовані й стійкі до відмов системи.

Ключові слова: Розподілені веб-додатки, система онлайн опрацювання транзакцій, оп-
тимізація продуктивності, хмарні обчислення, реплікація даних.

	Problem statement
	Analysis of Recent Studies and Publications
	Formulation of the Article’s Objective
	Main Results
	Latency Issues
	Resource Utilization
	Effective Scalability of Application Runtimes
	Database Scalability and Consistency
	Fault Tolerance
	Conclusions
	REFERENCES

