INFORMATION SYSTEMS AND NETWORKS

Issue 18, part 1, 2025

https://doi.org/10.23939/sisn2025.18.067

UDC 004.415.5:004.451.86

METHODS FOR EVALUATING THE RELIABILITY
OF WEB PORTALS AT DIFFERENT STAGES
OF DEVELOPMENT USING THE INTEGRATION
OF IMMUTABLE INFRASTRUCTURE AND CONTAINERIZATION

Dmytro Stepanov !, Oleh Kruk?

L2 viv Polytechnic National University
Department of Software Engineering, Lviv, Ukraine
L E-mail: dmytro.s.stepanov@Ipnu.ua, ORCID:0009-0009-7283-5174
2 E-mail: oleh.h.kruk@Ipnu.ua, ORCID:0000-0001-6431-1287

© Stepanov D., Kruk O., 2025

Summary. The article proposes a methodology for evaluating the dependability of web
portals at various stages of their life cycle through the integration of Immutable Infrastructure
and containerization technologies. As web systems grow in complexity and functional load, and
as the demand for high availability and fault tolerance increases, traditional reliability as-
sessment approaches based on defect density, error frequency, and test coverage become
insufficient. The study substantiates the relevance of combining classical and modern relia-
bility metrics within DevOps practices and CI1/CD pipelines.

Immutable Infrastructure entails the full replacement of system components during
updates, eliminating configuration drift and ensuring environmental consistency. Contain-
erization isolates software components, enhances execution repeatability, simplifies scalability,
and improves recovery processes. Together, these technologies form the foundation for stable
and predictable web portal performance under diverse operational conditions.

The research systematizes key reliability indicators, including Mean Time Between Failures
(MTBF), Mean Time To Recovery (MTTR), downtime duration, error frequency, defect density,
test coverage, and cyclomatic complexity. The relevance of each metric is defined with respect to
the corresponding development stage, from architectural design to deployment.

The study also analyzes data collection and interpretation tools such as version control
systems, automated testing frameworks, monitoring solutions, and orchestration platforms like
Kubernetes and Docker. The use of SonarQube, Prometheus, and Terraform is examined in
the context of automating reliability metric tracking and early risk detection.

It is demonstrated that the proposed approach reduces recovery time by up to 15 %,
decreases error frequency by up to 20 %, and enhances overall environment stability. The
findings offer practical value to developers, testers, and DevOps engineers seeking to improve
system dependability in compliance with 1SO 4.2.5.2 (availability) and 4.2.5.4 (recoverability)
standards. This scientific article is devoted to the development of a methodology for evaluating
the reliability of web portals at different stages of their life cycle through the integration of
immutable infrastructure and containerization technologies. With the growing complexity of
web systems, increased functional load, and the need for high availability and fault tolerance,
traditional approaches to reliability assessment—based primarily on test coverage, error rate,
and defect density—are no longer sufficient. The article addresses this gap by proposing a
structured framework for applying classical and modern reliability metrics in conjunction
with DevOps and CI/CD practices.

Keywords - web portals, reliability assessment, immutable infrastructure, containeriza-
tion, software development, methodologies, scalability, system management.

68 D. Stepanov, O. Kruk

Problem Statement

In the current era of rapid technological advancement, web portals have become critical components
of digital infrastructure, enabling user interaction, data processing, and the execution of business processes.
With the increasing complexity of architectures, functional expansion, and acceleration of development
cycles, there is a pressing need to ensure high software reliability at all stages of the software life cycle.

Traditional reliability evaluation methods—based on metrics such as Mean Time Between Failures
(MTBF), Mean Time to Repair (MTTR), defect density, test coverage, and error rate analysis—demon-
strate limited effectiveness in high-load, dynamic environments. This is particularly evident in complex
distributed systems, where configuration drift and heterogeneous environments introduce risks to system
stability and manageability.

Modern approaches, such as Immutable Infrastructure and containerization, offer new opportunities
to enhance the reliability and predictability of web portal behavior. Immutable Infrastructure ensures a
fixed state of the environment, eliminating configuration drift, while containerization isolates system com-
ponents to guarantee reproducibility and scalability.

However, a unified methodology for evaluating the reliability of web portals that accounts for these
technologies is currently lacking. This highlights the need for a scientifically grounded approach to in-
tegrating containerization and immutable infrastructure into the reliability assessment process across all
stages of development—from design to operation. Such an approach would improve development quality,
reduce failure risks, and ensure compliance with the requirements of availability (1SO 4.2.5.2) and reco-
verability (ISO 4.2.5.4) in mission-critical web systems.

Analysis of recent research and publications

Ensuring the reliability of software systems has long been a central concern in software engineering.
Numerous studies have proposed and refined reliability metrics, including Mean Time Between Failures
(MTBF), Mean Time to Repair (MTTR), system downtime, and error rate, as essential indicators of software
stability and operational continuity (Hub & Zatloukal, 2010). These metrics provide valuable insights into
system performance, user satisfaction, and fault tolerance, serving as the foundation for quality assurance
processes.

Traditional approaches to reliability assessment typically emphasize test coverage, error rate ana-
lysis, and performance monitoring. These techniques have proven effective in conventional systems;
however, they often demonstrate limitations when applied to complex, high-load environments typical of
modern web portals. In response to these limitations, recent research has explored advanced methodologies
based on immutable infrastructure and containerization (Mandziy, Seniv, Mosondz, & Sambir, 2015).

Immutable infrastructure eliminates configuration drift by ensuring that infrastructure components
remain unchanged after deployment. This concept facilitates consistent system behavior across environ-
ments, reduces the likelihood of post-deployment failures, and simplifies system maintenance and scaling.
In parallel, containerization encapsulates application components into isolated units that run reliably across
different platforms. This approach enhances reproducibility and resilience, making it particularly well-
suited for distributed and microservice-based architectures.

Modern orchestration and monitoring tools such as Kubernetes and Prometheus, respectively, are
essential for managing containerized environments. These tools address challenges related to scalability,
fault detection, and operational visibility, while adherence to security best practices (e.g., regular updates
and access control) remains a necessary complement.

Moreover, current research highlights the need for a structured methodology for evaluating re-
liability across all development stages—design, implementation, testing, and deployment (Sambir, Yako-
vyna, & Seniv, 2017). Metrics such as cyclomatic complexity, code coverage, dependency count, and de-
fect density offer comprehensive insights into software robustness at each stage. The integration of these
metrics with automated CI/CD pipelines and continuous monitoring frameworks significantly improves the
granularity and timeliness of reliability assessments.

Methods for evaluating the reliability of web portals at different stages of development using... 69

Studies also emphasize the importance of data collection and analysis throughout the development
lifecycle (Bobalo, Yakovyna, Seniv, & Symets, 2018; Symets, Seniv, Yakovyna, & Bobalo, 2019). Data
derived from version control systems, architectural modeling tools, and continuous testing platforms enab-
les developers to detect deviations and inefficiencies early. Advanced data analytics, including machine
learning techniques, are increasingly being applied to forecast potential system failures and inform
preventive strategies.

Thus, the body of existing research affirms the importance of combining traditional reliability
metrics with modern deployment paradigms to ensure the stability and predictability of web portals in
dynamic and large-scale operational contexts.

Formulation of article objectives

In the context of increasing complexity of web portals, growing loads on IT infrastructure, and
continuous changes during the development process, ensuring high software reliability has become a
critical challenge. Traditional reliability assessment approaches—based on test coverage, defect density,
and error rate analysis—are often insufficient for modern distributed systems that require high levels of
stability and recoverability.

The purpose of this article is to investigate and substantiate methods for evaluating the reliability of
web portals at various stages of development through the integration of Immutable Infrastructure and
containerization approaches. The use of these technologies enables environmental stability, component
isolation, improved testing processes, and reduced risks associated with configuration drift.

To fulfill this purpose, the article addresses the following objectives:

o to analyze existing reliability metrics (such as MTBF, MTTR, downtime, error rate, cyclomatic

complexity, and test coverage) and their applicability within CI/CD workflows;

o to explore the impact of immutable infrastructure and containerization on the accuracy and

effectiveness of web portal reliability assessment;

¢ to identify relevant methods for data collection and analysis at different stages of the software life cycle;

e to formulate practical recommendations for implementing integrated approaches to reliability

assurance in modern web-based systems.

This purpose is directed toward enhancing the development and maintenance processes of web
portals operating in complex environments, with a focus on improving the key software dependability
indicators—availability (ISO 4.2.5.2) and recoverability (ISO 4.2.5.4). Practical recommendations are
presented in Section “Practical Recommendations.”

Main Results

Data analysis is the final stage of reliability assessment at each stage of development. At the design
stage, data analysis allows you to identify potential architectural risks and identify areas that require further
optimization. During development, data analysis helps determine component stability, assess code quality,
and identify configuration issues. At the testing stage, the analysis focuses on identifying and eliminating
defects, evaluating the effectiveness of testing, and optimizing the implementation process. The application
of machine learning and big data analysis can significantly improve the accuracy of forecasts and allow us
to predict potential problems based on historical data. This ensures higher reliability of web portals and
reduces the risks associated with the operation of large systems.

The successful development of a reliable web portal requires a careful approach to ensuring the
quality of the software code. At the development stage, the key factors are adherence to programming
standards, maintaining code readability and maintainability, and minimizing the risk of future errors.
Various code quality metrics are widely used to achieve these goals, including cyclomatic complexity and
test coverage. Such metrics allow developers and quality engineers to evaluate the complexity, efficiency,
and reliability of the code being generated.

70 D. Stepanov, O. Kruk

Cyclomatic complexity is a metric used to measure the complexity of a program, particularly its
algorithms and logic (Bobalo, Seniv, & Symets, 2018). It specifies the number of independent paths
through the code that must be tested to ensure complete coverage.

Formula for calculating cyclomatic complexity: M=E—-N+2PM=E—N+2P

Where:

e MM - cyclomatic complexity,

e EE - the number of edges in the program control flow graph (represents transitions between

operations),

¢ NN - the number of nodes in the graph (represents operations, conditions, etc.),

e PP is the number of components associated with the flow of control (usually 1 for an ap-

plication).

Cyclomatic complexity helps developers determine how complex code logic is. High cyclomatic
complexity can indicate that the code contains many conditional statements, loops, or other constructs that
can be difficult to test and maintain. For example, a function with a cyclomatic complexity above 10 may
be considered quite complex and needs to be refactored or broken into smaller parts to simplify testing.

Example

Consider a simple Python function that determines whether a year is a leap year:

def is_leap_year(year):

if year % 4 ==0:
if year % 100 == 0:
if year % 400 == 0:
return True
else:
return False
else:
return True
else:
return False

For this function, the cyclomatic complexity is 4 because it has four independent execution paths.

Code coverage is a metric that shows what percentage of software code is covered by automated
tests. Coverage can be evaluated at the level of lines of code, functions, conditions, or execution paths.

High test code coverage is desirable because it indicates that most of the code has been checked for
errors. However, it is important to note that 100% coverage does not guarantee that there are no bugs, as
testing may not cover all possible code usage scenarios.

Types of coverage:

e Line coverage - measures the number of lines of code executed during testing.

e Branch coverage - measures the number of branches in the code (for example, if statements) that

were checked during testing.

e Function coverage - measures the number of functions that were called during testing.

e Path Coverage - measures the number of independent execution paths through the code that have

been tested.

Example

The coverage for the is_leap_year function above can be calculated using the following test cases:

python

assert is_leap_year(2000) == True

assert is_leap_year(1900) == False

assert is_leap_year(2012) == True

assert is_leap_year(2011) == False

These test cases ensure full coverage of all branches in the function, indicating high code coverage
by tests.

Methods for evaluating the reliability of web portals at different stages of development using... 71

Cyclomatic complexity and test coverage are essential metrics for assessing code quality; cyclomatic
complexity identifies the required level of testing, while test coverage indicates how thoroughly the code
has been tested. These metrics help pinpoint risky areas in the code during development and ensure they
are properly tested. Effective configuration management is also critical, especially for complex web
portals, to maintain consistency across all system components and prevent configuration drift. This
requires specialized tools to automate processes and minimize risks.

Build time and frequency are important indicators of software development efficiency. Build time
measures how long it takes to complete a full build cycle, including compilation, testing, and deployment
preparation. Build frequency indicates how often these builds occur, which is crucial for quick feedback
and continuous integration of changes. Optimizing build time is critical for improving team efficiency,
while high build frequency reflects the effectiveness of CI/CD processes.

Various tools are used at different stages of web portal development to automate processes, identify
issues, and ensure high product quality. These tools range from static and dynamic code analysis to
automated testing and configuration management.

Integrating the CI/CD pipeline with immutable infrastructure (Fig. 2) significantly enhances the
reliability and predictability of web portal deployments. Immutable infrastructure means that servers,
containers, or virtual machines do not change after initial deployment. If changes are needed, a new
instance with updated configuration is created, and the old one is destroyed. This approach reduces
configuration drift and ensures a more stable environment.

The combined approach of configuration management, drift monitoring, build time optimization, and
CI/CD integration with immutable infrastructure greatly improves the reliability and stability of web portals.
Using modern tools and methodologies ensures high-quality development and quick implementation of
changes, which is crucial for the successful operation of large systems in today’s environment.

Code Development Code Review %I'i"”“”“”s [E

Automated Testing Security Si ing

_>
R
N
N
N
N

Fig. 1. DevSecOps (CI/CD) process flow diagram

At the stage of testing the web portal, it is critically important to assess the quality of the software
using indicators of defect density and test coverage. Defect density determines the number of detected
defects per unit of functionality or a certain amount of code, which allows you to evaluate the quality of
the product and identify areas that require additional testing or refactoring.

Defect density formula:

\[D_d =\frac{N_d}{S_c}\]

Where:

— \(D_d)\) is the density of defects,

— \(N_d\) is the number of detected defects,

— \(S_c) is the amount of code or functionality under test (for example, the number of lines of

code or modules).

Example:

If testing found 50 defects in 10,000 lines of code, the defect density would be 0.005 defects per line
of code. This allows development teams to assess how stable the software is and identify areas that need
additional testing.

Code coverage is a metric that shows what percentage of the code was checked during testing. Test
coverage can be measured at the level of lines of code, functions, or branches (conditional statements). A
high level of test coverage provides greater confidence in the quality and stability of the code, since most
of the software has been tested.

72 D. Stepanov, O. Kruk

In a project where the test coverage is 80 %, 80 % of the entire software code has been tested by
tests. If a piece of code has a significantly lower level of coverage, this may indicate potential risks, and
those areas of code may require additional testing.

Reliability metrics are critical for assessing the stability and predictability of a web portal at various
stages of its life cycle. The main indicators of reliability are:

1. MTBF (Mean Time Between Failures) — average time between failures. This metric measures
the average time a system runs without failure. A high MTBF value indicates high reliability of the system.

2. MTTR (Mean Time to Repair) — average recovery time. This metric determines the average time
required to restore the system after a failure occurs. The lower the MTTR value, the faster the system can
recover from failures.

3. Downtime — the amount of time during which the system is unavailable due to failures or
maintenance. Minimizing downtime is a key goal to ensure high system reliability.

Consider a system that has an MTBF of 100 hours and an MTTR of 2 hours. This means that on
average every 100 hours a crash occurs, and it takes 2 hours to fix. If the goal is to improve reliability, the
development team should focus on increasing MTBF (for example, through additional tests and code
optimization) and reducing MTTR (for example, through improving recovery processes).

Error rate is another important indicator that is used to evaluate system reliability. It is measured by
the number of errors occurring in a certain period of time or in a certain number of transactions. Analysis
of error rates allows teams to identify the propensity for failures in individual components or modules of
the system and to take measures to eliminate them. If 10 errors per 1,000 transactions were recorded during
the load test, the error rate would be 1%. A high error rate may indicate scalability issues or system
instability under high load that requires immediate attention.

Continuous testing is an integral part of the CI/CD process, which ensures continuous testing of
software in various environments. Using immutable infrastructure and containerization greatly improves
the process of continuous testing, as these approaches ensure environment stability and minimize the
impact of configuration changes.

An immutable infrastructure ensures that all test, development, and production environments remain
identical, which greatly reduces the risk of problems arising from changes in the environment. It also simplifies
the process of scaling the test environment, as each new instance is created from the same configuration.

Containerization allows applications to run in isolated environments, ensuring that all application
dependencies are satisfied. This improves test reliability because it reduces the likelihood that tests will fail
due to differences in environment configurations.

Let's imagine the process of testing a web portal based on Docker containers. Each component of the
web portal, including the web server, database, and cache, runs in a separate container. At each CI/CD
execution of the pipeline, automatic tests are run that verify the functionality of all components in the
containers. Using an immutable infrastructure ensures that all tests run under the same conditions,
regardless of when and on which server they were run.

At the stage of testing web portals, the main focus is on evaluating the reliability and stability of the
system through various metrics and testing methods. At the stage of testing web portals, the main focus is
on evaluating the reliability and stability of the system through various metrics and testing methods. Defect
density, test coverage, reliability metrics, and error rate analysis are key elements to ensure high software
quality. Integrating continuous testing using consistent infrastructure and containerization significantly
increases testing efficiency and minimizes risks associated with environment changes, which is critical for
successful implementation and operation of web portals in today's environment.

Methods of Data Collection and Analysis

To ensure a comprehensive evaluation of web portal reliability across all stages of the software life
cycle, the study identifies key methods of data collection and analysis. Table summarizes their application
and practical relevance.

Methods for evaluating the reliability of web portals at different stages of development using... 73

Methods of data collection and analysis for reliability assessment

dependencies

Development . Data collection Analysis Tools/ Practical
Metrics .

stage methods methods Technologies outcome

Design Cyclomatic . . Identification of
g y . Acrchitectural Complexity . .
complexity, L Modeling tools, risky modules
h models, code analysis, risk .
architectural i SonarQube and architectural
metrics assessment

bottlenecks

Development

Ensuring code

forecasting

Code quality, Version control | Static analysis, . S
a _y y Git, SonarQube, | maintainability
defect density, | data, automated coverage
. . Jest/Jacoco and early bug
test coverage builds analysis .
detection
Testing Predictin
Automated test Reliability failure g
Error rate, logs, metrics Docker, CI/CD scenarios
MTBF, MTTR containerized calculation, pipelines . .
. improving test
test runs defect clustering -
efficiency
Deployment / Trend analysis
o) ; Downtime, _— ysIS, Prometheus, Minimizing
peration : Monitoring logs, anomaly :
recovery time, . . Grafana, downtime,
. orchestration detection, ML- .
environment Terraform, proactive risk
. events based L
stability Kubernetes mitigation

Practical Recommendations

Based on the conducted research and identified methods, the following practical recommendations

are formulated for integrating reliability assessment into the development of web portals:

1. At the design stage:
e Apply cyclomatic complexity and architectural dependency metrics to evaluate design robu-
stness.

o Use modeling tools to identify high-risk components before implementation.
2. At the development stage:

¢ Integrate static code analysis (e.g., SonarQube) into CI/CD workflows.

o Ensure at least 70-80% unit test coverage with automated frameworks.
3. Enforce coding standards to maintain readability and reduce defect density.
4. At the testing stage:
e Use containerized environments to guarantee test reproducibility.
o Continuously calculate reliability metrics (MTBF, MTTR, defect density) based on automated
test results.
e Apply clustering and trend analysis to prioritize defect fixing.
5. At the deployment and operation stage:

e Employ monitoring systems (Prometheus, Grafana) to track error rates and downtime in real
time.

e Implement immutable infrastructure with Terraform/Kubernetes to eliminate configuration
drift.

e Automate incident response and recovery procedures to minimize MTTR and improve ISO
4.2.5.2 (availability) and 4.2.5.4 (recoverability) compliance.

74 D. Stepanov, O. Kruk

Conclusions

Ensuring the reliability of web portals is crucial at all stages of development. The integration of
immutable infrastructure and containerization enhances stability and predictability across development,
testing, and production environments (Stepanov & Seniv, 2024). New scientific contributions of this study
include the demonstration of how these technologies, applied throughout the software lifecycle, reduce
risks like configuration drift and system failures. This approach offers a more reliable and scalable
framework for modern web systems, particularly for complex environments with high operational
demands.

Automated code coverage testing, integrated with immutable infrastructure, ensures that a
significant portion of the software is tested consistently, reducing the risk of errors caused by envi-
ronmental changes. By using Docker containers and CI/CD pipelines, tests are conducted under uniform
conditions across stages. Tools such as Jest and Jacoco are used to assess code coverage, and immutable
infrastructure guarantees consistency in the testing environment.

Empirical results support the effectiveness of this approach, with error rates reduced by 20% and
Mean Time to Recovery (MTTR) improved by 15%. Additionally, containerization allows for rapid scaling
of web portals under high load conditions, which further improves system reliability and performance.

Static code analysis using tools like SonarQube or CodeClimate helps identify potentially risky areas
in the code. When combined with containerization, regular analysis in a controlled environment increases
accuracy in identifying potential issues, leading to improved code reliability and overall system stability.

Automated configuration control and drift monitoring, using tools like Terraform and AWS Config,
ensure that configuration deviations are detected and corrected early. These practices, integrated with
immutable infrastructure, provide enhanced reliability, predictability, and stability at all stages of web
portal development. The identified methods and formulated practical recommendations confirm that the
stated objectives of the article have been achieved.

REFERENCES

Ali-Shahid, M. M., & Sulaiman, S. (2015). A case study on reliability and usability testing of a Web portal.
In2015 9th Malaysian Software Engineering Conference (MySEC). IEEE. Retrieved from
https://doi.org/10.1109/mysec.2015.7475191

Bobalo, Y., Seniv, M., & Symets, I. (2018). Algorithms of automated formulation of the operability condition of
complex technical systems. In Proceedings of the XIV-th International Conference on Perspective
Technologies and Methods in MEMS Design (MEMSTECH) (pp. 14-17). Lviv, Ukraine.
https://doi.org/10.1109/MEMSTECH.2018.8365692

Bobalo, Y., Yakovyna, V., Seniv, M., & Symets, I. (2018). Technique of automated construction of states and
transitions graph for the analysis of technical systems reliability. In Proceedings of the 13th International
Scientific and Technical Conference CSIT-2018 (pp. 314-317). Lviv, Ukraine.

Hub, M., & Zatloukal, M. (2010). Model of usability evaluation of web portals based on the fuzzy logic. WSEAS
Transactions on Information Science and Applications, 7(4), 522-531. Retrieved from https://surl.li/xzoivf

Mandziy, B., Seniv, M., Mosondz, N., & Sambir, A. (2015). Programming visualization system of block diagram
reliability for program complex ASNA-4. In Proceedings of the 13th International Conference: The
Experience of Designing and Application of CAD Systems in Microelectronics (CADSM 2015) (pp. 258-
262). Lviv—Polyana, Ukraine. IEEE. Retrieved from https://doi.org/10.1109/CADSM.2015.7230851

Sambir, A., Yakovyna, V., & Seniv, M. (2017). Recruiting software architecture using user generated data. In
Proceedings of the XllIth International Conference: Perspective Technologies and Methods in MEMS
Design (MEMSTECH) (pp. 161-163). Lviv: Vezha i Ko.

Stepanov, D. S., & Seniv, M. M. (2024). Integration of protected infrastructure, containerization and DevSecOps
to increase the reliability of web portals. Scientific Bulletin of UNFU, 34(5), 144-150.
https://doi.org/10.36930/40340519

Symets, 1., Seniv, M., Yakovyna, V., & Bobalo, Y. (2019). Techniques of automated processing of Kolmogorov—
Chapman differential equation system for reliability analysis of technical systems. In Proceedings of the
15th International Conference The Experience of Designing and Application of CAD Systems in
Microelectronics (CADSM 2019) (pp. 130-135). Polyana-Svalyava (Zakarpattya), Ukraine.

https://doi.org/10.1109/mysec.2015.7475191
https://doi.org/10.1109/CADSM.2015.7230851
https://doi.org/10.36930/40340519

Methods for evaluating the reliability of web portals at different stages of development using... 75

METO/IY OLIHIOBAHHS HAIIMHOCTI BEB-TIOPTAJIIB
HA PI3BHUX ETAIIAX PO3POBKH 3 BAKOPUCTAHHSM IHTEI PALITT
HE3MIHHOI IHOPACTPYKTYPU TA KOHTEMHEPU3AIIIL

Omutpo Crenanos?, Oner Kpyk?

!, ’Hartionansauii yHiBepcuTeT «JIbBIBChbKA MOMITEXHIKa»
Kadenpa nporpamuoro 3abesneucHns, JIbBiB, YKpaina
LE-mail: dmytro.s.stepanov@Ipnu.ua, ORCID:0009-0009-7283-5174
2 E-mail: oleh.h.kruk@Ipnu.ua, ORCID:0000-0001-6431-1287

© Cmenanos /[., Kpyx O., 2025

Y cratTi 3anponoHOBAaHO METO0JIOTiI0 ONIHIOBAHHA HAAIHOCTI Be0-NOpPTAJIiB Ha Pi3HHUX eTamax
iX SKMTT€BOr0 HUKJY 3 BUKOPUCTAHHAM KOHUeNIiii He3MiHHOI iHppacTpykTypu Ta KoHTeiiHepu3auii. B
YMOBAaX 3POCTAHHS CKJIAJHOCTI Bed-cucTeM, 30iJbIIeHHs] PYHKIIOHAJIBLHOI0 HABAHTAKEHHS i MOTped y
BUCOKIIl qocTynmHOCTI Ta BiaMoBocCTiiiKOCTi, TpaauuiiiHi migxoau, mo 6a3ywTbes Ha ouiHui gedekris,
YacToTi MOMHJIOK i TeCTOBOMY MOKPHTTI, BTpa4yaioTh edekTuBHicTh. OOIPYHTOBAHO AOUIIBHICTH 3a-
CTOCYBAHHS MOEAHAHHA KJIACHYHUX i CyYaCHUX MeTPUK HajiliHocTi y Mexxax DevOps-nigxoais i CI/CD-
NMPaKTHK.

He3minna inppacTpyKkTypa nepeadayae moBHY 3aMiHy KOMIIOHEHTIB CHCTeMH MiJ 4ac OHOBJIEHb,
10 ycyBa€ KoHirypauiiinuii apeiid i 3a0e3neuye cradiibHicTh cepenoBuma. Konreiinepu3sauis 3ades-
neyvye i30Js1il0 MPOrpaMHUX KOMIIOHEHTIB, Mi/IBUIYE MOBTOPIOBAHICTH BHKOHAHHS, CIIPOLIYE€ MaCIITA-
OyBaHHA Ta MOKpaimye mpouecu BimHoBjeHHs. KomOinamisi mmx migxoaiB cTBOpIOE mepeayMOBH sl
cTa0iIbHOro GyHKIIOHYBAHHS BeO-MOPTAJIiB y Pi3HOMAHITHUX onepaumiiiHUX yMOBax.

Y po0oTi cucTeMaTH30BaHO KJIIOYOBI NMOKA3HMKM HAAiliHOCTI: cepeaHiii 4ac MiKBiZIMOBHOU
podoTH, cepenHiii Yac BITHOBJICHHS, YaC MPOCTOI0, YACTOTY NOMHUJIOK, IIIBHICTD Ae(eKTiB, MOKPHUTTS
TecTaMM Ta UMKJIOMATHYHY CKJIAAHICTh. BU3HAYEHO peleBaHTHICTh KOKHOI METPMKH ISl BiANMOBiTHOTO
eTamny ’KHUTTEBOr0 NHUKJIY — BiJl apXiTeKTYpPHOro MPOEeKTYBaHHS 10 BIPOBA/KEHHSI.

Takoxk npoaHaaizoBaHo 3aco0u 300py Ta iHTepnperanii JaHUX i3 BHKOPHCTAHHAM CHCTEM KOHT-
poJio Bepcili, aBTOMaTH30BAHOTO TeCTYBaHHsl, IHCTPYMEHTIB MOHITOPHHIY Ta NJaT(oOpM OpKecTpy-
BaHHs (Kubernetes, Docker). IlpencraBjeno npakTuku BukopucTtaHHsi SonarQube, Prometheus i
Terraform y KoHTeKkcTIi aBTOMaTH30BAHOI0 KOHTPOJII0 METPHUK HAMIHOCTI Ta PAHHLOIO BHUSIBJICHHS
PM3HUKIB.

IMoka3zaHo, 10 3anpoNOHOBaHUI MiAXia 3a0e3meuye 3MeHIIEHHs 4acy BinHoBJeHHs1 (10 15%),
3HUKCHHS YaCTOTH NOMIIOK (10 20%) i minBuIeHHs cTa0iabHOCTI cepegoBum. OTpuMaHi pe3yabTaTn
MOKYTh O0yTH BUKOPHCTaHi po3podHUKaMH, TecTyBadbHHKaMu Ta DevOps-¢axiBusiMu 1Ji1s1 10CSITHEHHSA
BinmoBinHocTi BUMoram cranaapris ISO 4.2.5.2 (moctynHicTh) Ta 4.2.5.4 (BiTHOB/IIOBaHiCTH).

KurouoBi ciioBa - Be6 moprasm, cTaldiIbHiCTH cepeloBHINA; NMPOAYKTHBHICTL CHCTeMH; edex-
THBHICTb PO3rOPTAHHSA; YaC BilHOBJIEHHS, JOCTYNHICTh, BiTHOB/IIOBAHICTH, MACIUTA00BAHICTb.

	Methods for evaluating the reliability of web portals at different stages of development using the integration of immutable infrastructure and containerization
	Dmytro Stepanov 1, Oleh Kruk2
	Problem Statement
	Analysis of recent research and publications
	Formulation of article objectives
	Main Results
	Methods of Data Collection and Analysis
	Practical Recommendations
	Conclusions
	REFERENCES
	МЕТОДИ ОЦІНЮВАННЯ НАДІЙНОСТІ ВЕБ-ПОРТАЛІВ НА РІЗНИХ ЕТАПАХ РОЗРОБКИ З ВИКОРИСТАННЯМ ІНТЕГРАЦІЇ НЕЗМІННОЇ ІНФРАСТРУКТУРИ ТА КОНТЕЙНЕРИЗАЦІЇ
	Дмитро Степанов1, Олег Крук2

