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An analysis of the covariance and spectral structure of the Hilbert transform of biperi-
odically nonstationary random processes, which model signals with double rhythmicity,
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1. Introduction

In the analysis of signals of both natural and artificial origin, cases often occur when the stochastic
repeatability of one period interacts with the repeatability of another [1,2]. In communication systems,
for example, repeatability is manifested, determined by the periodicity of the carrier, as well as the
rhythmic variability of the modulating signal [3–5]. In electrical power systems, this is daily, weekly, and
annual repeatability [1]. In vibration signals generated by mechanical systems, birhythmic variability
is caused by different rotation speeds of elements of rotating units [6–12]. A probabilistic model
of double rhythmicity is a biperiodically nonstationary random processes (BPNRP) [1, 7, 8]. The
covariance-spectral structure of BPNRP is determined by jointly stationary processes that model the
carrier harmonics, whose frequencies are linear combinations of two basic frequencies. It has been
shown in the works [12–15] that for the analysis of stochastic modulation in the case when the carrier
harmonics are characterized by one basic frequency and its multiples, the Hilbert transform can be
used. It was found that the properties of the Hilbert transform of both single-component and multi-
component periodically nonstationary random signal (PNRS) depend on the frequency properties of the
modulating processes and significantly differ from each other under low- and high-frequency modulation
of carriers. The latter occurs with the appearance of local defects in rotating mechanisms [7,13,14]. The
studies carried out in [12–15] showed that the envelope method, which is still widely used for detecting
and analyzing defects [16–22], was found to be inaccurate. The sum of the square of the signal and
its Hilbert transform, i.e., the square of the modulus of the analytic signal, cannot be considered as
the square of the envelope, since the properties of the Hilbert transform and the signal itself are the
same. The obtained results have changed the principles governing the use of the Hilbert transform in
vibration diagnostics [13, 15]. Since stochastic variability with double rhythmicity is characteristic of
vibrations of many defective mechanisms, the problem of establishing the characteristic features of the
Hilbert transform of BPNRP that describe such vibrations is important. The general properties of the
Hilbert transform of a BPNRP signal are analyzed in this article.
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2. Covariance and spectral properties of BPNRP

The mean function of a BPNRP mξ(t) = Eξ(t) and its covariance function bξ(t, u) = E
◦
ξ(t)

◦
ξ(t + u),

◦
ξ(t) = ξ(t) − mξ(t), where E is the mathematical expectation operator, are biperiodic functions of
time and can be represented by Fourier series [1, 7]:

mξ(t) =
∑

k,l∈Z

m
(ξ)
kl e

iωklt = m
(ξ)
00 +

∞
∑

k=0

∞
∑

l=1

(mc
kl cosωklt+ms

kl sinωklt)

+
∞
∑

k=1

∞
∑

l=0

(

mc
k,−l cosωk,−lt+ms

k,−l sinωk,−lt
)

, (1)

bξ(t, u) =
∑

k,l∈Z

B
(ξ)
kl (u)e

iωklt = B
(ξ)
00 (u) +

∞
∑

k=0

∞
∑

l=1

[

Bc
kl(u) cos ωklt+Bs

kl(u) sinωklt
]

+

∞
∑

k=1

∞
∑

l=0

[

Bc
k,−l(u) cosωk,−lt+Bs

k,−l(u) sinωk,−lt
]

. (2)

Here Z is the set of integers, m
(ξ)
kl = (mc

kl−ims
kl)/2 and B

(ξ)
kl (u) = (Bc

kl(u)−iBs
kl(u))/2, m

(ξ)
−k,−l = m̄

(ξ)
kl ,

B
(ξ)
−k,−l(u) = B̄

(ξ)
kl (u), where “ ” denotes conjugation, ωkl = k 2π/P1 + l 2π/P2, P1 and P2 are periods.

The process ξ(t) can be represented in the form of a stochastic series:

ξ(t) =
∑

k,l∈Z

ξkl(t)e
iwklt, (3)

where ξkl(t) = 1
2

[

ξckl(t) − ξskl(t)
]

, ξ−k,−l(t) = ξ̄kl(t), are jointly stationary random processes. From
the series (3) it follows that a BPNRP can be considered as a superposition of amplitude- and
phase-modulated harmonics, whose frequencies are linear combinations of the basic frequencies
ω10 = 2π/P1 = 2πf10 and ω01 = 2π/P2 = 2πf01. The mathematical expectations of the modulating
processes ξkl(t) are the Fourier coefficients of the function mξ(t) : Eξkl(t) = mkl. The cross-covariance

functions of the modulating processes Rpqmn(u) = E
◦̄
ξpq(t)

◦
ξmn(t + u), where

◦
ξpq(t) = ξpq(t) − mpq

determine the Fourier coefficients of the covariance function:

B
(ξ)
kl (u) =

∑

p,q∈Z

Rp−k,q−l,p,q(u)e
iωpqu. (4)

The quantities (4) are called covariance components. The zeroth covariance component B
(ξ)
00 (u), as can

be seen from (4), is determined by the autocovariance functions Rpq(u) =
◦̄
ξpq(t)

◦
ξpq(t+ u):

B
(ξ)
00 (u) =

∑

p,q∈Z

Rpq(u)e
iωpqu. (5)

The quantity (5) is the time-averaged value of the covariance function (2), i.e., it is the covariance
function of the stationary approximation of the BPNRP. Its Fourier transform (the zeroth spectral
component)

f00(ω) =
1

2π

∫ ∞

−∞
B

(ξ)
00 (u)e

−iωudu =
∑

p,q∈Z

f (m)
pq (ω − ωpq)

defines the spectral decomposition of BPNRP. Here, the quantities

f (m)
pq (ω) =

1

2π

∫ ∞

−∞
Rpq(u)e

−iωudu

are the power spectral densities of the modulating processes. The non-zero spectral components

f
(ξ)
kl (ω) =

1

2π

∫ ∞

−∞
Bkl(ξ)e

−iωudu (6)
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characterize the covariances of the spectrum, shifted by the amount ωkl. These covariances are the
result of the modulating processes in the stochastic series (3):

f
(ξ)
kl (ω) =

∑

p,q∈Z

f
(m)
p−k,q−l,p,q(ω − ωpq),

where

f (m)
pqmn(ω) =

1

2π

∫ ∞

−∞
Rpqmn(u)e

−iωudu.

From the above, it follows that the covariance-spectral structure of a BPNRP is determined by the
amplitude-phase modulation of the carrier harmonics, which is described by jointly stationary random
processes ξk(t). For the analysis of stochastic modulation in the case of single-period rhythmicity, when
the frequencies of the carrier harmonics are multiples of one basic frequency, the Hilbert transform
is used. The properties of the signal are then described by the moment functions of periodically
nonstationary random processes (PNRP). The analysis of the Hilbert transform of a multi-component
PNRP in the general case, as well as separately for low- and high-frequency modulation, has been
performed in the works [12–15]. In this article, we will consider the main features of this transformation
of a signal that is described by a BPNRP.

3. Hilbert transform

Let us assume the random process ξ(t) to have a zeroth constant component m00 = 0. Then, there
exists the Hilbert transform

η(t) = H
{

ξ(t)
}

=
1

π

∫ ∞

−∞

ξ(τ)

t− τ
dτ, (7)

and for its mathematical expectation, we have:

mη(t) =
1

π

∫ ∞

−∞

mξ(t)

t− τ
dτ.

After substituting into this formula series (1), we obtain:

mη(t) =
∞
∑

k=0

∞
∑

l=1

(mc
kl sinωklt−ms

kl cosωklt) +
∞
∑

k=1

∞
∑

l=0

(

mc
k,−l sinωk,−lt−ms

k,−l cosωk,−lt
)

,

Here it is taken into account that the Hilbert transform shifts the phases of the harmonics of the
mathematical expectation (1) by −π

2 .
The mathematical expectation of the analytic signal ζ(t) = ξ(t) + iη(t) then has the form:

mζ(t) = 2

[

∞
∑

k=0

∞
∑

l=1

mkle
iωklt +

∞
∑

k=1

∞
∑

l=0

mk,−le
iωk,−lt

]

.

Since the inverse Hilbert transform is

ξ(t) = −
1

π

∫ ∞

−∞

mη(τ)

t− τ
dτ,

then

mξ(t) = −
1

π

∫ ∞

−∞

mη(τ)

t− τ
dτ.

Thus
◦
ξ(t) = ξ(t)−mξ(t) = −

1

π

∫ ∞

−∞

◦
η(τ)

t− τ
dτ, (8)

◦
η(t) = η(t)−mη(t) =

1

π

∫ ∞

−∞

◦
ξ(τ)

t− τ
dτ. (9)

For the covariance function of process (8) we then find:

bξ(t, u) = −
1

π

∫ ∞

−∞

bξη(t+ u, τ − t− u)

t− τ
dτ.
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After substituting τ − t− u = τ1 we get:

bξ(t, u) =
1

π

∫ ∞

−∞

bξη(t+ u, τ1)

u+ τ1
dτ1. (10)

Similarly, based on (9) we obtain:

bη(t, u) = −
1

π

∫ ∞

−∞

bηξ(t+ u, τ)

u+ τ
dτ. (11)

Using (8) and (9), we arrive at the following representations for the cross-covariance functions:

bξη(t, u) =
1

π

∫ ∞

−∞

bη(t+ u, τ)

τ + u
dτ, (12)

bηξ(t, u) = −
1

π

∫ ∞

−∞

bξ(t+ u, τ)

τ + u
dτ. (13)

Let us formulate a theorem.

Theorem 1. A BPNRP ξ(t), whose covariance function is represented by the series (2), and its
Hilbert transform (7) are jointly biperiodically nonstationary processes, and their auto- and cross-
covariance components are related by the ratios:

B
(ξη)
kl (u) =

∫ ∞

−∞
h(u− τ)B

(ξ)
kl (τ)dτ, (14)

B
(ηξ)
kl (u) = −

∫ ∞

−∞
h(u− τ)B

(η)
kl (τ)dτ,

B
(ξ)
kl (u) = −

∫ ∞

−∞
h(u− τ)B

(ξη)
kl (τ)dτ, (15)

B
(η)
kl (u) =

∫ ∞

−∞
h(u− τ)B

(ηξ)
kl (τ)dτ.

where h(τ) = (πτ)−1 is the impulse response of the Hilbert transform, which means that the covariance

components B
(ξ)
kl (u) and B

(ξη)
kl (u), as well as B

(ηξ)
kl (u) and B

(η)
kl (u), are Hilbert pairs.

Proof. Substitute into equation (13) the Fourier series (2). Then we get:

bηξ(t, u) =
∑

k,l∈Z

eiωklt

[

−
1

π

∫ ∞

−∞

B
(ξ)
kl (τ)

τ + u
dτ

]

eiωklu

From this it follows that the cross-covariance components B
(ηξ)
kl (u) are determined by the formula:

B
(ηξ)
kl (u) = −

eiωklu

π

∫ ∞

−∞

B
(ξ)
kl (τ)

τ + u
dτ,

and then

B
(ηξ)
kl (−u) =

e−iωklu

π

∫ ∞

−∞

B
(ξ)
kl (τ)

u− τ
dτ,

Since bηξ(t, u) = E
◦
η(t)

◦
ξ(t+ u) = bξη(t+ u,−u), then B

(ηξ)
kl (−u) = B

(ξη)
kl (u)e−iωklu. This means that

B
(ξη)
kl (u) =

1

π

∫ ∞

−∞

B
(ξ)
kl (τ)

u− τ
dτ =

∫ ∞

−∞
h(u− τ)B

(ξ)
kl (τ) dτ. (16)

From relation (12), it follows that

B
(ξη)
kl (u) =

[

1

π

∫ ∞

−∞

B
(η)
kl (τ)

τ + u
dτ

]

eiωklu, or B
(ξη)
kl (u)e−iωklu = B

(ηξ)
kl (−u) =

1

π

∫ ∞

−∞

B
(η)
kl (τ)

τ + u
dτ.

Hence

B
(ηξ)
kl (u) = −

1

π

∫ ∞

−∞

B
(η)
kl (τ)

u− τ
dτ = −

∫ ∞

−∞
h(u− τ)B

(η)
kl (τ) dτ. (17)
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Taking into account expressions (10) and (11), we find:

B
(ξ)
kl (u) =

eiωklu

π

∫ ∞

−∞

B
(ξη)
kl (τ)

τ + u
dτ,

B
(η)
kl (u) = −

eiωklu

π

∫ ∞

−∞

B
(ξη)
kl (τ)

τ + u
dτ,

and from here

B
(ξ)
kl (u) = −

1

π

∫ ∞

−∞

B
(ξη)
kl (τ)

u− τ
dτ =

∫ ∞

−∞
h(u− τ)B

(ξη)
kl (τ) dτ, (18)

B
(η)
kl (u) =

1

π

∫ ∞

−∞

B
(ηξ)
kl (τ)

u− τ
dτ =

∫ ∞

−∞
h(u− τ)B

(ηξ)
kl (τ) dτ. (19)

�

The relations (16) and (18), (17) and (19) indicate that the auto- and cross-covariance components

B
(ξ)
kl (u) and B

(ξη)
kl (u), as well as B

(ηξ)
kl (u) and B

(η)
kl (u) are Hilbert pairs. Based on the convolution

theorem in the frequency domain, we have:

f
(ξη)
kl (ω) = H(ω)f

(ξ)
kl (ω), (20)

f
(ξ)
kl (ω) = −H(ω)f

(ξη)
kl (ω), (21)

f
(η)
kl (ω) = H(ω)f

(ηξ)
kl (ω), (22)

f
(ηξ)
kl (ω) = −H(ω)f

(η)
kl (ω). (23)

Here H(ω) is the transfer function: H(ω) = −i for ω > 0 and H(ω) = i for ω < 0, and the auto- and
cross-covariance components are determined by formula (6), as well as

f
(η)
kl (ω) =

1

2π

∫ ∞

−∞
B

(ξ)
kl (u)e

−iωudu, f
(ξη)
kl (ω) =

1

2π

∫ ∞

−∞
B

(ξη)
kl (u)e−iωudu, (24)

f
(ηξ)
kl (ω) =

1

2π

∫ ∞

−∞
B

(ξη)
kl (u)e−iωudu. (25)

Since the auto- and cross-covariance components satisfy the conditions

B
(ξ,η)
kl (−u) = B

(ξ,η)
kl (u)eiωklu, B

(ξη)
kl (−u) = B

(ηξ)
kl (u)eiωklu, (26)

then for the auto- and cross-spectral components we obtain:

f
(ξ,η)
kl (ω) =

1

2π

∫ ∞

−∞
B

(ξ,η)
kl (−u)e−iωudu =

1

2π

∫ ∞

−∞
B

(ξ,η)
kl (u)e−i(ω+ωkl)udu = f

(ξ,η)
kl (ω + ωkl),

f
(ξη)
kl (−ω) =

1

2π

∫ ∞

−∞
B

(ξη)
kl (−u)e−iωudu =

1

2π

∫ ∞

−∞
B

(ηξ)
kl (u)e−i(ω+ωkl)udu = f

(ηξ)
kl (ω + ωkl).

From relations (6), (24) and (25) after considering the equalities

B
(ξ,η)
−k,−l(u) = B̄

(ξ,η)
kl (u), B

(ξη)
−k,−l(u) = B̄

(ξη)
kl (u).

It also follows that:

f
(ξ,η)
−k,−l(ω) =

1

2π

∫ ∞

−∞
B̄

(ξ,η)
kl (u)e−iωudu = f̄

(ξ,η)
kl (−ω) = f̄ (ξ,η)(ω + ωkl),

f
(ξη)
−k,−l(ω) =

1

2π

∫ ∞

−∞
B̄

(ξη)
kl (u)e−iωudu = f̄

(ξη)
kl (−ω) = f̄ (ηξ)(ω + ωkl). (27)

We use the properties of the spectral components and relations (20)–(23) to establish the links between
the covariance and spectral characteristics of the signal and its Hilbert transform.

Theorem 2. The zeroth covariance component of a BPNRP signal and its Hilbert transform are
equal, and their zeroth cross-covariance components differ only by sign, they are odd functions and are
determined by the formula:

B
(ξη)
00 (u) = 2

∫ ∞

0
f
(ξ)
00 (ω) sinωudω.

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 1042–1052 (2025)



Hilbert Transform of biperiodically nonstationary random signals 1047

Proof. From equality (20), and considering that f
(ηξ)
00 (ω) = f̄

(ξη)
00 (ω), we have:

f
(η)
00 = H(ω)f̄

(ξη)
00 (ω).

Substituting into this formula equation (20), we arrive at the equality:

f
(η)
00 = H(ω)H̄(ω)f

(ξ)
00 (ω) = |H(ω)|2 f

(ξ)
00 (ω).

Since |H(ω)|2 = 1, then f
(η)
00 (ω) = f

(ξ)
00 (ω), hence B

(η)
00 (u) = B

(ξ)
00 (u).

For the zeroth cross-covariance component, taking into account relation (20) we obtain:

B
(ξη)
00 (u) =

∫ ∞

−∞
f
(ξη)
00 (ω)eiωudω =

∫ ∞

−∞
H(ω)f

(ξ)
00 (ω)eiωudω

= i

∫ 0

−∞
f
(ξ)
00 (ω)eiωudω − i

∫ ∞

0
f
(ξ)
00 (ω)eiωudω

= i

∫ ∞

0

[

f
(ξ)
00 (−ω)e−iωu − f

(ξ)
00 (ω)eiωu

]

dω.

Since f
(ξ)
00 (−ω) = f

(ξ)
00 (ω), then

B
(ξη)
00 (u) = 2

∫ ∞

0
fξ(ω) sinωudω. (28)

From the formula

B
(ηξ)
00 (u) =

∫ ∞

−∞
f
(ηξ)
00 (ω)eiωudω

and the equalities

f
(ηξ)
00 (ω) = −H(ω)f

(η)
00 (ω), f

(η)
00 (ω) = f

(ξ)
00 (ω),

we have

B
(ηξ)
00 (u) = −

∫ ∞

−∞
H(ω)f

(ξ)
00 (ω)eiωu dω,

and from here

B
(ηξ)
00 (u) = −2

∫ ∞

0
f
(ξ)
00 (ω) sinωudω. (29)

From formulas (28) and (29) it is clear that the zeroth cross-covariance components are odd functions

and B
(ξη)
00 (u) = −B

(ηξ)
00 (u). �

Theorem 3. The cross-covariance function of a BPNRP signal and its Hilbert transform, as well as
the autocovariance function of the latter, vary biperiodically with time, and their Fourier coefficients
are determined by the formulas:

B
(η)
kl (u) =

∫ 0

−∞
f
(ξ)
kl (ω)e

iωudω −

∫ ωkl

0
f
(ξ)
kl (ω)e

iωudω +

∫ ∞

ωkl

f
(ξ)
kl (ω)e

iωudω,

B
(ξη)
kl (u) = i

∫ ∞

0

[

f
(ξ)
kl (ω + ωkl)e

−iωu − f
(ξ)
kl (ω)e

iωu
]

dω.

Proof. Taking into account the equalities H(ω) = −H(ω), f
(ξη)
kl (−ω) = f

(ξη)
kl (ω + ωkl) and (22) for

the covariance component B
(η)
kl (u) we obtain:

B
(η)
kl (u) = −

∫ ∞

−∞
H(ω)f

(ηξ)
kl (−ω)e−iωudω = −

∫ ∞

−∞
H(ω)f

(ξη)
kl (ω + ωkl)e

−iωudω.

Introduce a new integration variable ν = ω + ωkl and take into account the equality f
(ξη)
kl (ω) =

H(ω)f
(ξ)
kl (ω). Then

B
(η)
kl (u) = −eiωklu

∫ ∞

−∞
f
(ξ)
kl (ω)H(ω)H(ω − ωkl)e

−iωudω.

According to condition (26) B
(ξ)
kl (u) = B

(ξ)
kl (−u)eiωklu. From this

B
(η)
kl (u) = −

∫ ∞

−∞
f
(ξ)
kl (ω)H(ω)H(ω − ωkl)e

iωudω. (30)
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Since

H(ω)H(ω − ωkl) =







1, ω ∈ (−∞, 0),
−1, ω ∈ (0, ωkl),
1, ω ∈ (ωkl,∞),

then

B
(η)
kl (u) =

∫ 0

−∞
f
(ξ)
kl (ω)e

iωudω −

∫ ωkl

0
f
(ξ)
kl (ω)e

iωudω +

∫ ∞

ωkl

f
(ξ)
kl (ω)e

iωudω. (31)

Taking into account the equality (27) for the cross-covariance components B
(ξη)
kl we obtain:

B
(ξη)
kl (u) =

∫ ∞

−∞
H(ω)f

(ξ)
kl (ω)e

iωudω = i

∫ ∞

0

[

f
(ξ)
kl (ω + ωkl)e

−iωu − f
(ξ)
kl (ω)e

iωu
]

dω. (32)

The obtained formulas (31) and (32) determine the auto- and cross-covariance properties of the Hilbert
transform depending on the spectral components of the signal. �

Corollary 1. If the spectral components of a BPNRP signal satisfy the condition

f
(ξ)
kl (ω) =

{

f
(ξ)
kl (ω), ω ∈ [0, ωkl],

0, ω /∈ [0, ωkl],
(33)

then the covariance components of the signal and its Hilbert transform differ only by sign, i.e., B
(η)
kl (u) =

−B
(ξ)
kl (u), and the cross-covariance components are equal B

(ξη)
k (u) = B

(ηξ)
kl (u) and are determined by

the formula B
(ξη)
kl (u) = −iB

(ξ)
kl (u).

If the values of the spectral components are concentrated in the interval [0, ωkl], then the first and
third integrals in expression (31) are equal to zero, and then

B
(η)
kl (u) = −

∫ ωkl

0
f
(ξ)
kl (ω)e

iωudω.

Under these same conditions, this integral can be supplemented to the entire number line, therefore

B
(η)
kl (u) = −

∫ ∞

−∞
f
(ξ)
kl (ω)e

iωudω = −B
(ξ)
k (u). (34)

The first integral of expression (32) can be rewritten in the form:
∫ ∞

0
fkl(ω + ωkl)e

−iωudω =

[
∫ ∞

ωkl

fkl(ω)e
−iωudω

]

eiωklu.

If condition (33) is met, this integral is zero. Therefore

B
(ξη)
kl (u) = i

∫ ∞

0
f
(ξ)
kl (ω)e

iωudω = −i

∫ ∞

−∞
f
(ξ)
kl (ω)e

iωudω = −iB
(ξ)
kl (u).

From equality (23), it follows that

B
(ηξ)
kl (u) = −

∫ ∞

−∞
H(ω)f

(η)
kl (ω)eiωudω.

Under condition (33), equality (34) is valid, and thus f
(η)
kl (ω) = −f

(ξ)
kl (ω). From here and equality (20)

we obtain:
B

(ηξ)
kl (u) =

∫ ∞

−∞
H(ω)f

(η)
kl (ω)eiωudω = B

(ξη)
kl (u).

Corollary 2. If the values of the spectral components of the signal f
(ξ)
kl (ω) are concentrated outside

the interval [0, ωkl], then the non-zero covariance components of the BPNRP signal and its Hilbert

transform are equal: B
(η)
kl (u) = B

(ξ)
kl (u), and their cross-covariance components differ only by sign:

B
(ηξ)
kl (u) = −B

(ξη)
kl (u).

If f
(ξ)
kl (ω) = 0 ∀ω ∈ [0, ωkl], then formula (31) is rewritten in the form

B
(η)
kl (u) =

∫ 0

−∞
f
(ξ)
kl (ω)e

iωudω +

∫ ∞

0
f
(ξ)
kl (ω)e

iωudω =

∫ ∞

−∞
f
(ξ)
kl (ω)e

iωudω,

and it means that B
(η)
k (u) = B

(ξ)
k (u).
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From equalities (20) and (23) we have:

B
(ξη)
kl (u) =

∫ ∞

−∞
H(ω)f

(ξ)
kl (ω)e

iωudω, B
(ηξ)
kl (u) = −

∫ ∞

−∞
H(ω)f

(η)
kl (ω)eiωudω,

since all the above-mentioned conditions f
(η)
kl (ω) = f

(ξ)
kl (ω), we come to the conclusion that B

(ξη)
kl (u) =

−B
(ξη)
kl (u).

In Theorem 2 it is proved that B
(η)
00 (u) = B

(ξ)
00 (u) and B

(ηξ)
00 (u) = −B

(ξη)
00 (u). Then in this case

bη(t, u) = bξ(t, u) and bηξ(t, u) = −bξη(t, u).

4. Analytic signal

Consider the properties of the covariance function of the analytic signal ζ(t) = ξ(t) + iη(t). It has the
form:

bζ(t, u) = E
◦
ζ(t)

◦
ζ(t+ u) = bξ(t, u) + bη(t, u) + i [bξη(t, u)− bηξ(t, u)] ,

where
◦
ζ(t) = ζ(t)−mζ(t), and can be represented by a Fourier series:

bζ(t, u) =
∑

k,k∈Z

B
(ζ)
kl (u)e

iωklt,

where B
(ζ)
kl (u) = B

(ξ)
kl (u) +B

(η)
kl (u) + i

[

B
(ξη)
kl (u)−B

(ηξ)
kl

]

. Since

B
(ξ)
00 (u) = 2

∫ ∞

0
f
(ξ)
00 (ω) cos ωudω, B

(ξη)
00 (u) = 2

∫ ∞

0
f
(ξ)
00 (ω) sinωudω,

and B
(η)
00 (u) = B

(ξ)
00 (u), B

(ηξ)
00 (u) = −B

(ξη)
00 (u), then

B
(ζ)
00 (u) = 4

∫ ∞

0
f
(ξ)
00 (ω)(cos ωu+ i sinωu) dω = 4

∫ ∞

0
f
(ξ)
00 (ω)eiωudω. (35)

From this we obtain the inequality for the modulus of the time-averaged value of the covariance function
of the analytic signal:

∣

∣B
(ζ)
00 (u)

∣

∣ 6 4

∫ ∞

0
f
(ζ)
00 (ω) dω = 2B

(ξ)
00 (0).

From expression (35), it follows that for zero lag u = 0 the equality B
(ζ)
00 (0) = 2B

(ξ)
00 (0) holds, which

means that the mean value of the analytic signal variance is twice as large as the mean value of the
signal variance itself.

Theorem 4. The analytic signal ζ(t) = ξ(t) + iη(t), where ξ(t) is a BPNRP, whose spectral compo-

nents do not satisfy condition (33), is a BPNRP and its covariance components B
(ζ)
kl (u), k, l 6= 0, are

determined by the formula:

B
(ζ)
kl (u) = 2

[

∫

R\[0,ωkl]
f
(ξ)
kl (ω)e

iωudω −

∫ ∞

ωkl

f
(ξ)
kl (ω)(e

−i(ω−ωkl)u) dω − eiωu

]

dω, (36)

where R \ [0, ωkl] is the set difference between the set of real numbers and the interval [0, ωkl]. The
zeroth covariance component is complex-valued; its real and imaginary parts are a Hilbert pair and are

determined by formula (35) and satisfy the inequality
∣

∣B
(ζ)
00 (u)

∣

∣ 6 2B
(ξ)
00 (0).

Proof. From relation (30) for the spectral component f
(η)
kl (ω) we have:

f
(η)
kl (ω) = −H(ω)H(ω − ωkl)f

(ξ)
kl (ω).

Taking into account (23), we obtain:

B
(ηξ)
kl (u) = −

∫ ∞

−∞
H(ω)f

(η)
kl (ω)eiωudω = −

∫ ∞

−∞
H(ω − ωkl)f

(ξ)
k (ω)eiωudω.

Since

H(ω − ωkl) =

{

−i, ω > ωkl,

i, ω < ωkl,
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then

B
(ηξ)
kl (u) = −i

[
∫ 0

−∞
f
(ξ)
kl (ω)e

iωudω +

∫ ωkl

0
f
(ξ)
kl (ω)e

iωudω −

∫ ∞

ωkl

f
(ξ)
kl (ω)e

iωudω

]

.

The first integral can be rewritten in the form:
∫ 0

−∞
f
(ξ)
kl (ω)e

iωudω =

∫ ∞

0
f
(ξ)
kl (ω + ωkl)e

−iωudω =

[
∫ ∞

ωkl

f
(ξ)
kl (ω)e

−iωudω

]

eiωklu.

Since

B
(ξη)
kl (u) = i

[

eiωklu

∫ ∞

ωkl

f(ω)e−iωudω −

∫ ωkl

0
f
(ξ)
kl (ω)e

iωudω −

∫ ∞

ωkl

f
(ξ)
kl (ω)e

iωudω

]

,

then

B
(ξη)
kl (u)−B

(ηξ)
kl (u) = 2i

∫ ∞

ωkl

f
(ζ)
k (ω)

[

e−i(ω−ωkl)u − eiωu
]

dω. (37)

Based on formula (37) and

B
(ξ)
kl (u) =

∫ ∞

−∞
f
(ξ)
kl (ω) e

iωudω

we obtain:

B
(ξ)
kl (u) +B

(η)
kl (u) = 2

∫ ∞

−∞
f
(ξ)
kl (ω) e

iωudω − 2

∫ ωkl

0
f
(ξ)
kl (ω) e

iωudω = 2

∫

R\[0,ωkl]
f
(ξ)
kl (ω) e

iωudω. (38)

Taking into account relations (37) and (38), we arrive at expression (36).

Since B
(ξ)
00 (u) = B

(η)
00 (u) and B

(ηξ)
00 (u) = −B

(ξη)
0 (u), the zeroth covariance component of the analytic

signal has the form:

B
(ζ)
0 (u) = 2

[

B
(ξ)
00 (u) + iB

(ξη)
00 (u)

]

.

From equalities (14) and (15) we have:

B
(ξη)
00 (u) =

∫ ∞

−∞
h(u− τ)B

(ξ)
00 (τ) dτ,

B
(ξ)
00 (u) = −

∫ ∞

−∞
h(u− τ)B

(ξη)
00 (τ) dτ,

and this means that the real and imaginary parts of the quantity B
(ζ)
00 (u) are a Hilbert pair.

The inequality
∣

∣B
(ζ)
00 (u)

∣

∣ 6 2B
(ξ)
00 (0) has been proven above. �

From formulas (37) and (38) for the Fourier coefficients of the analytic signal variance

E
∣

∣

◦
ζ(t)

∣

∣

2
= E

[ ◦

ξ2(t) +
◦

η2(t)

]

= B
(ζ)
00 (0) +

∑

k,l∈Z

B
(ζ)
kl (0)e

iωklt

we obtain:

B
(ζ)
00 (0) = 4

∫ ∞

−∞
f
(ξ)
00 (ω) dω,

B
(ζ)
kl (0) = 2

[
∫ ∞

−∞
f
(ξ)
kl (ω) dω −

∫ ωkl

0
f
(ξ)
kl (ω) dω

]

.

Corollary 3. If the values of the spectral component f
(ξ)
kl (ω) are concentrated in the interval [0, ωkl],

i.e., condition (33) is fulfilled, then the amplitude of the corresponding harmonic of the analytic signal

variance is equal to zero, and if all non-zero values of f
(ξ)
kl (ω) are outside this interval, then the ampli-

tudes of the variance harmonics are two times larger than the amplitudes of the variance harmonics of
the signal itself.

From this corollary it follows that if condition (33) is fulfilled for all spectral components of the
signal, the analytic signal will be a stationary random process.
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5. Conclusion

In this article, the equations that link the covariance and spectral characteristics of a BPNRP signal
and its Hilbert transform were obtained. It was shown that the BPNRP signal and its Hilbert trans-
form are jointly BPNRP, and their auto- and cross-covariance components form respective Hilbert
pairs. It was proved that the zeroth covariance components of the BPNRP signal and its Hilbert
transform are the same, and the zeroth cross-covariance components differ only by sign and are odd
functions. Conditions for the stationarity of the analytic signal were established. If these conditions
are fulfilled, the non-zero covariance components of the signal and the Hilbert transform differ only by
sign, and the non-zero cross-covariance components are identical and are linked with the signal’s higher

covariance components by the simple equation B
(ξη)
kl (u) = −iB

(ξ)
kl (u). It was established that during

high-frequency modulation, the Hilbert transform does not change the covariance-spectral structure of
the BPNRP signal.

The established properties of the Hilbert transform must be taken into account when statistically
processing real data.
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Проведено аналiз кореляцiйної та спектральної структури перетворення Гiльберта
бiперiодично нестацiонарно випадкових процесiв, якi є моделлю сигналiв з подвiй-
ною ритмiкою. Отриманi спiввiдношення, що пов’язують взаємокореляцiйнi та вза-
ємоспектральнi характеристики сигналу та його перетворення Гiльберта з характе-
ристиками самого сигналу. Розглянуто властивостi аналiтичного сигналу, наведено
його характернi окремi випадки, якi зумовленi спектральними особливостями моду-
ляцiї несучих гармонiк.

Ключовi слова: бiперiодично нестацiонарний випадковий процес; перетворення

Гiльберта; кореляцiйнi та спектральнi компоненти; аналiтичний сигнал.
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