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An analysis of the covariance and spectral structure of the Hilbert transform of biperi-
odically nonstationary random processes, which model signals with double rhythmicity,
is presented here. The obtained relations connect the cross-covariance and cross-spectral
characteristics of the signal and its Hilbert transform with the characteristics of the signal
itself. We examine the properties of the analytic signal and present characteristic special
cases determined by the spectral features of carrier-harmonic modulation.
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1. Introduction

In the analysis of signals of both natural and artificial origin, cases often occur when the stochastic
repeatability of one period interacts with the repeatability of another [1,2]. In communication systems,
for example, repeatability is manifested, determined by the periodicity of the carrier, as well as the
rhythmic variability of the modulating signal [3-5]. In electrical power systems, this is daily, weekly, and
annual repeatability [1]. In vibration signals generated by mechanical systems, birhythmic variability
is caused by different rotation speeds of elements of rotating units [6-12]. A probabilistic model
of double rhythmicity is a biperiodically nonstationary random processes (BPNRP) [1,7,8]. The
covariance-spectral structure of BPNRP is determined by jointly stationary processes that model the
carrier harmonics, whose frequencies are linear combinations of two basic frequencies. It has been
shown in the works [12-15] that for the analysis of stochastic modulation in the case when the carrier
harmonics are characterized by one basic frequency and its multiples, the Hilbert transform can be
used. It was found that the properties of the Hilbert transform of both single-component and multi-
component periodically nonstationary random signal (PNRS) depend on the frequency properties of the
modulating processes and significantly differ from each other under low- and high-frequency modulation
of carriers. The latter occurs with the appearance of local defects in rotating mechanisms [7,13,14]. The
studies carried out in [12-15] showed that the envelope method, which is still widely used for detecting
and analyzing defects [16-22|, was found to be inaccurate. The sum of the square of the signal and
its Hilbert transform, i.e., the square of the modulus of the analytic signal, cannot be considered as
the square of the envelope, since the properties of the Hilbert transform and the signal itself are the
same. The obtained results have changed the principles governing the use of the Hilbert transform in
vibration diagnostics [13,15]. Since stochastic variability with double rhythmicity is characteristic of
vibrations of many defective mechanisms, the problem of establishing the characteristic features of the
Hilbert transform of BPNRP that describe such vibrations is important. The general properties of the
Hilbert transform of a BPNRP signal are analyzed in this article.
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Hilbert Transform of biperiodically nonstationary random signals 1043

2. Covariance and spectral properties of BPNRP

The mean function of a BPNRP mg(t) = F£(t) and its covariance function be(t,u) = EE()E(t + u),

[¢]
£(t) = &(t) — me(t), where E is the mathematical expectation operator, are biperiodic functions of
time and can be represented by Fourier series [1,7]:

o o
= Z m,(fl)ei““t = mé%) + Z Z (mj; cos wit + mj,; sinwgt)

k,l€Z k=0 I=1

+
WE
NE

(mf_jcoswy it +mj,_ sinwg _gt) (1)

B
Il
,_.
o~
Il
=)

= Z B,(ﬁ) (w)eiont = Bég) (u) + Z Z [ Bfy(u) cos wiit + Bjy(u) sinwyt]

k,leZ k=0 =1
[e.e] o0
+ Z Z [B,i_l(u) cos wg, it + By _;(u) sin w,—it]. (2)
k=11=0

Here Z is the set of integers, m,(fl) (m§,; —im$;)/2 and B(S)( ) = (B, (u) —iB},(u))/2, m( = m,(fl),
B(_%_l(u) = BS)(U), where “7” denotes conjugation, wy; = k27 /P) + 127/ P, P; and P, are periods.
The process £(t) can be represented in the form of a stochastic series:

=) Gult)e™n, (3)

k,lEZ

where &i(t) = %[{gl(t) — Ezl(t)], € k—1(t) = &u(t), are jointly stationary random processes. From
the series (3) it follows that a BPNRP can be considered as a superposition of amplitude- and
phase-modulated harmonics, whose frequencies are linear combinations of the basic frequencies
wig = 27/ P = 27 f19 and w1 = 27/ P> = 27 fo1. The mathematical expectations of the modulating
processes £ (t) are the Fourier coefficients of the function meg(t): E&(t) = my. The cross-covariance

o o o
functions of the modulating processes Rygmn(u) = E&,,(1)€m,(t + u), where &, (t) = &pq(t) — mypq
determine the Fourier coefficients of the covariance function:

B,S Z Rykg—1.p.q(u)e wpat, (4)
P,qEZ

th

The quantities (4) are called covariance components. The zero™ covariance Component B(S)( ), as can

be seen from (4), is determined by the autocovariance functions R,q(u) = §pq( )qu(t + u):

B (u = D Rpglu)e’r. (5)
P,q€L
The quantity (5) is the time-averaged value of the covariance function (2), i.e., it is the covariance
function of the stationary approximation of the BPNRP. Its Fourier transform (the zero' spectral
component)

1 [ »
finle) = 5 [ B et = 3 100 - )
e P.gEL
defines the spectral decomposition of BPNRP Here the quantities

are the power spectral densities of the modulatmg processes. The non-zero spectral components

O ) = - / 7 Bu(©)e # du (6)

27 J_ o
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characterize the covariances of the spectrum, shifted by the amount wy;. These covariances are the
result of the modulating processes in the stochastic series (3):

A = D7 A @ — @),
P,qEL
where

m 1 © —iwu
:zgqnzm(w) = %/_ qumn(u)e du.

From the above, it follows that the covariance-spectral structure of a BPNRP is determined by the
amplitude-phase modulation of the carrier harmonics, which is described by jointly stationary random
processes & (t). For the analysis of stochastic modulation in the case of single-period rhythmicity, when
the frequencies of the carrier harmonics are multiples of one basic frequency, the Hilbert transform
is used. The properties of the signal are then described by the moment functions of periodically
nonstationary random processes (PNRP). The analysis of the Hilbert transform of a multi-component
PNRP in the general case, as well as separately for low- and high-frequency modulation, has been
performed in the works [12-15|. In this article, we will consider the main features of this transformation
of a signal that is described by a BPNRP.

3. Hilbert transform

th

Let us assume the random process £(t) to have a zero™ constant component mgy = 0. Then, there

exists the Hilbert transform

o) = e} =1 [ ar @

and for its mathematical expectation, we have:

my(t) = % / T me®)

t—T1

—0o0

After substituting into this formula series (1), we obtain:

[e.e] e} o0 (e}
my(t) = Z Z (mf; sinwgt —mi; coswit) + Z Z (mf,_ysinwg, gt —mj, _jcoswy,it),
k=0 =1 k=1 =0

Here it is taken into account that the Hilbert transform shifts the phases of the harmonics of the
mathematical expectation (1) by —7.
The mathematical expectation of the analytic signal ((t) = £(¢) + in(t) then has the form:

®© oo oo oo
mc(t) =2 [Z Z mkleiwkzt + Z Z mk’_leiwkv*lt

k=0 I=1 k=1 1=0
Since the inverse Hilbert transform is
1 o
ey=-1 [ 2D ar,
TS o t—T
then | e
me(t) = —~ [ ™l 4
TS t— T
Thus

0 =€) -mety = — [~ M ar, ®)

T) oot —T

B0 =) —my =1 [ S

For the covariance function of process (8) we then find:

 bep(t —1t—
bg(t,u):_%/ et fur—tzw

t—T1

—00
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After substituting 7 —t — u = 7 we get:

ben(t +u, 1)
be(t =1 dn. 10
eltu) = T /_OO u+ T E (10)
Similarly, based on (9) we obtain:
1 [ bpe(t + u,T)
by(t,u) = —— e T2 dr 11
e M (1)
Using (8) and (9), we arrive at the following representations for the cross-covariance functions:
% by (t + u,7)
ben (¢ ——=d 12
enlt; 1) = 77/_00 Tru (12)
1 & bg (t + u, T)
bpe(t,u) = —— ——dr. 13
et == [~ ST g (13)

Let us formulate a theorem.

Theorem 1. A BPNRP &(t), whose covariance function is represented by the series (2), and its
Hilbert transform (7) are jointly biperiodically nonstationary processes, and their auto- and cross-
covariance components are related by the ratios:

B @ = [ bu =B (r)ar, (14
B (u) = — /_ " h(u - 7)B? (r)dr,
B (u) = - /OO h(u—7)BE" (r)dr, (15)

Bg] / h(u —7)B )( )dT.

where h() = (n7) ! is the impulse response of the Hilbert transform, which means that the covariance
components B(S)( ) and B,(ﬁn) (u), as well as B,(;Zg) (u) and B,(;Z) (u), are Hilbert pairs.

Proof. Substitute into equation (13) the Fourier series (2). Then we get:
(©)
775 t u Z elwklt [__ /OO Bk‘l (7_) dT] eiwklu
= —oo T U

From this it follows that the cross-covariance components B(n&) (u) are determined by the formula:

0o ()
WU B
g - [T B,

T oo Tt U

and then

s u—T

—1 00 (3
WWEIU B
B = o [ 50,

Since bye (t,u) = E%(t)g’(t +u) = bey(t 4+ u, —u), then B,(;Zo(— )= B(Sn)( Je~ k% This means that
(&n) Bi'(r), )
B (u)_;/_ Ay / h(u - 7) B (r) dr. (16)
From relation (12), it follows that
oo () oo ()
3 1 B (T) WU 3 —lWgU § 1 B (T)
B]E,‘ln)(U) N [; /_oo Tkl+u dr | e™HE, o Bl(cln)(“)e M= Bl(;l7 () = ) Tkl—l—u dr.

Hence

B (u )_—1/0o B (1) / h(u - 7)B (1) dr. (17)

T) o U—T
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Taking into account expressions (10) and (11), we find:

iW 00 ()
MWW B
B = [ 2 " g,

7T T+ u
Wk U [e'e) (&n)
(n) __emH / By " (1)
By (u) = -  _ Tr+u dr,
and from here (€n)
o0 B o0
B (u) = _% /_ A (:)dT - /_ h(u—7)BS" () dr, (18)
e (m€) o)
B
By@o:%/:_fjghfz/:hm_fﬁﬁ@@mf (19)

[
The relations (16) and (18), (17) and (19) indicate that the auto- and cross-covariance components

BS)(U) and B,(ﬁn) (u), as well as B(n@( ) and B,(;Z) (u) are Hilbert pairs. Based on the convolution
theorem in the frequency domain, we have:

5P (w) = Hw) £ (). (20)
(W) = —Hw)f" (), (21)
D (w) = Hw) " (). (22)

Wf () = —Hw) ) (). (23)

Here H(w) is the transfer function: H( ) = —i for w > 0 and H(w) =i for w < 0, and the auto- and
cross-covariance components are determined by formula (6), as well as

1 > —iwu 1 > —iwu
1@ =5 [ BPwe a7 = o [ B we (24)
1 > —iwu
19w = o [ B e (25)
Since the auto- and cross-covariance components satisfy the conditions
B]Ef-’n) (—U) — BSW) (u)eiwklu7 B]Ein) (_u) — B]Ejl]g) (u)eiwklu7 (26)

then for the auto- and cross-spectral components we obtain:

1 o
]if 77)( ) — %/ B( )( u) —zwudu — _/ (577 —z(w-i-wkl)udu — ]g’n)(w‘i‘wkl)a

1 —iwu —i(wtwg)u
7w = g2 [ B e = o [ B e et = 0+ ).

From relations (6), (24) and (25) after considering the equalities
B (w) = B (w),  BEY (u) = Bi{" (u).
It also follows that:

1 ® = —iwu () £
£ = 5 [ BV e = FE7 () = O @ ),

1 > —iwu n n
Fw) = 5= [ B e = 7 () = F -+ ). (27)

We use the properties of the spectral components and relations (20)—(23) to establish the links between
the covariance and spectral characteristics of the signal and its Hilbert transform.

Theorem 2. The zero'" covariance component of a BPNRP signal and its Hilbert transform are

equal, and their zero™ cross-covariance components differ only by sign, they are odd functions and are
determined by the formula:

B(ﬁn —2/ f w) sin wu dw.
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Proof. From equality (20), and considering that f;, (ne) (w) = 70(377) (w), we have:
9 = H) )
Substituting into this formula equation (20), we arrive at the equality:
fo) = H@)H @) fo5) (@) = [H@)P £ ().

Since |H(w)|* = 1, then fég) (w) = fég) (w), hence B(()g) (u) = B(()g) (u).
For the zero'" cross-covariance component, taking into account relation (20) we obtain:

B(()gﬂ) (u) — / f(fﬂ zwudw _ / H )eiwudw

— z/ fég)(w)eiwudw _ z/ fég)(w)eiwudw

[ et - ] .

Since fég)(—w) = fég)(w), then .
B(()gn) (u) = 2/ fe(w) sinwu dw. (28)
0

From the formula -
B(Uf) _ (n€) WU d
00 (u) = foo (w)e w
and the equalities

W) = —H@) P @), fw) = £ (w),

= —/ H(w) O(S)(w)ei““ dw,

—2/ f ) sin wu dw. (29)

th

we have
and from here

From formulas (28) and (29) it is clear that the zero™ cross-covariance components are odd functions
and B(()gn) (u) = —Bégg)(u). [
Theorem 3. The cross-covariance function of a BPNRP signal and its Hilbert transform, as well as
the autocovariance function of the latter, vary biperiodically with time, and their Fourier coefficients
are determined by the formulas:

/ zwudw / zwudw 4 / zwudw’
Wkl

Bl(jn) (u) - Z/0 {fkl (w + wyp)e ) —fwu Iglg)( ) zwu} dw.

Proof. Taking into account the equalities H(w) = —H (w), ,gfn)(—w) = IS??) (w+ wygy) and (22) for
the covariance component B,(d)( ) we obtain:
B (u / H(w) f (—w)e ™t dw = / H(w) £ (w + wir)e™ ™" dw.

Introduce a new integration variable v = w + wy; and take into account the equality f,gf")(w) =
H(w) ,glg)(w) Then
B,(;Z) (u) = —e’wklu/ f]gf)(w)H(w)H(w — wiy)e” “iduw.

According to condition (26) B(g) (u) (5)(—u)e“"kl“ From this
/ O (@) H (@) (w — wyg)e du. (30)
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Since
1, we (—00,0),
H(w)H(w — wkl) = —1, w € (O,Mkl),
1, w € (wgi, 00),
then 0 .
() w) :/ f,glg)(w)eiw“dw — ; f “"“dw—i—/ Yeltdw. (31)
—0oQ Wekl

B Sﬂ) we obtain:

= /_OO H(w)flgls)(w)ezwudw - Z/OOO [f]g)(w —|—Wkl)e_iwu o flglg)( ) wul g (32)

The obtained formulas (31) and (32) determine the auto- and cross-covariance properties of the Hilbert

Taking into account the equality (27) for the cross-covariance components

transform depending on the spectral components of the signal. ]
Corollary 1. If the spectral components of a BPNRP signal satisfy the condition
&)
hi W), we 0w,
Jif @) = § H (33)
07 w ¢ [0,0.)kl],

then the covariance components of the signal and its Hilbert transform differ only by sign, i.e., B,(:Z) (u) =

—B,(j) (u), and the cross-covariance components are equal B,(f") (u) = Bgl]g) (u) and are determined by
the formula B,(ﬁn) (u) = —iB,(ﬁ) (u).

If the values of the spectral components are concentrated in the interval [0, wy;], then the first and
third integrals in expression (31) are equal to zero, and then

Bl(c? / f kl Jetdw.
Under these same conditions, this integral can be supplemented to the entire number line, therefore
BY (u) / 19 @) dw = ~BE (u). (34)

The first integral of expression (32) can be rewritten in the form:
/000 frer(w + wi)e ™ dw = [ h fkl(w)e_i““dw] ewm
If condition (33) is met, this integral is zero. Therefore]: l
" u) = i/oo f,gf) (W) dw = —i /OO f,gf) (w)e™ dw = —Z'B,(ﬁ) (u).
From equality (23), it follows that N
/ H(w (w)e“dw.

Under condition (33), equality (34) is valid, and thus fkl (w)=— ,S)(w) From here and equality (20)
we obtain: o ' ¢
@@m:/ H@) S (w)e dw = BED (u).

Corollary 2. If the values of the spectral components of the signal flgf)(w) are concentrated outside
the interval [0,wy;|, then the non-zero covariance components of the BPNRP signal and its Hilbert

transform are equal: B](:Z) (u) = B](j) (u), and their cross-covariance components differ only by sign:
By (w) =~ B (w)
If flgl@( ) =0 Yw € [0,wy], then formula (31) is rewritten in the form

/ fkl ZNwa _"_ / ZLUwa / Z(,L)’U,Clo‘)7

and it means that B]g )(u) = B](f) (u).
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From equalities (20) and (23) we have:
BE () = / H(w) [ @)eudo, BI(u / H(w) (@)™ duo,
since all the above-mentioned conditions f,g;]) (w) = fél (w), we come to the conclusion that B,(jn) (u) =
().
In Theorem 2 it is proved that B((]g) (u) = B(()g) (u) and B((]g@ (u) = —B((]gn) (w). Then in this case
by(t,u) = be(t,u) and bye(t,u) = —bey(t, u).
4. Analytic signal

Consider the properties of the covariance function of the analytic signal ((t) = £(¢) +in(t). It has the
form:

be(t) = B + ) = beltw) + byt ) + i bey (£, 4) — et )]
where 2 (t) = ¢(t) — m¢(t), and can be represented by a Fourier series:

be(tou) = Y B (w)etnt,

k,keZ
where B,g?( )= B( )( + B,gl)( ) Z[Bg")(u) — B(nﬁ)] Since
B(()g = 2/ ) cos wu dw, B(ﬁn = 2/ ) sin wu dw,

and B(()g) (u) = B(()g)(u), B(()gg) (u) = —B((]gn) (u), then
B(()g) (u) = 4/ fég) (w)(coswu + isinwu) dw = 4/ fég) (w)e™ dw. (35)
0 0

From this we obtain the inequality for the modulus of the time-averaged value of the covariance function
of the analytic signal:

Bl <4 [ 1 a0 =550

From expression (35), it follows that for zero lag u = 0 the equality B(()g)(O) = 2B(()g)(0) holds, which
means that the mean value of the analytic signal variance is twice as large as the mean value of the
signal variance itself.

Theorem 4. The analytic signal ((t) = £(t) + in(t), where £(t) is a BPNRP, whose spectral compo-

nents do not satisfy condition (33), is a BPNRP and its covariance components Blig)(u), k,l £ 0, are
determined by the formula:

B;§§)(u)=2[ /R o P wyerdo — | f8 W) (e o) du — e | du, (36)
Wkl

Wkl

where R \ [0,wy;] is the set difference between the set of real numbers and the interval [0,wy;]. The

zero'™ covariance component is complex-valued; its real and imaginary parts are a Hilbert pair and are

determined by formula (35) and satisfy the inequality ‘Bég) (w)] < 23(%)(0).

Proof. From relation (30) for the spectral component flg?) (w) we have:

(W) = —H(w)H(w — wy) [ ().

Taking into account (23), we obtain:

BO7§ / H(w fkl w)e U dw = —/ H(w— wkl)f,gg) (w)e™duw.
Since
T
(2 W < Wkl
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then

Wkl

0 .
B,(;Zg) (u) = —i {/ f,gf)(w)elw“dw +
—00 0

The first integral can be rewritten in the form:

0 00 %)
/ AP @ = [ 1w+ e e = [ fii <w>e—wudw} el
—0o0 0

f,gf)(w)ei““dw—/ f,gf)(w)eiw“dw} .

Wkl

Wil
Since
Blgn) (u) =1 [e’wklu /OO flw)e ™ dw — - ,glg)(w)ei‘”“dw — /OO ,glg)(w)eiw“dw] ,
then - " o
B () - B =21 [ f0w) [ - ] g, (37)
Wil

Based on formula (37) and
B = [ 1w eras
we obtain:

BS)(U) + BSZ) (u) = 2/ flgf) (w) e“dw — 2 ;

Wkl . .
flgf)(w) e"“dw = 2/ flgf)(w) e“dw. (38)
R\[0,wp1]

Taking into account relations (37) and (38), we arrive at expression (36).
Since B((]g) (u) = B(()g) (u) and B((]g@ (u) = _B(()En) (u), the zero!” covariance component of the analytic
signal has the form:
By (w) = 2 | BEE () +iBi5" w)]

From equalities (14) and (15) we have:
B = [ b5

B (u) = — / h(u — 1) BS" (7) dr,
and this means that the real and imaginary parts of the quantity B(()g)(u) are a Hilbert pair.
The inequality !Bég) (u)] < 2Bég)(0) has been proven above. n

From formulas (37) and (38) for the Fourier coefficients of the analytic signal variance

Elcol’ =E [S%) + nz(t)} = B0+ 3 B (0t
klez
we obtain:

Bég)(O) = 4/ fég)(w) dw,

B,S)(O) =2 [/_OO f,if)(w) dw — /Owkl flgf) (w) dw} .

Corollary 3. If the values of the spectral component f,ilg)(w) are concentrated in the interval [0, wg],
i.e., condition (33) is fulfilled, then the amplitude of the corresponding harmonic of the analytic signal
variance is equal to zero, and if all non-zero values of flgf) (w) are outside this interval, then the ampli-
tudes of the variance harmonics are two times larger than the amplitudes of the variance harmonics of
the signal itself.

From this corollary it follows that if condition (33) is fulfilled for all spectral components of the
signal, the analytic signal will be a stationary random process.
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5. Conclusion

In this article, the equations that link the covariance and spectral characteristics of a BPNRP signal
and its Hilbert transform were obtained. It was shown that the BPNRP signal and its Hilbert trans-
form are jointly BPNRP, and their auto- and cross-covariance components form respective Hilbert
pairs. It was proved that the zero™ covariance components of the BPNRP signal and its Hilbert
transform are the same, and the zero' cross-covariance components differ only by sign and are odd
functions. Conditions for the stationarity of the analytic signal were established. If these conditions
are fulfilled, the non-zero covariance components of the signal and the Hilbert transform differ only by
sign, and the non-zero cross-covariance components are identical and are linked with the signal’s higher
covariance components by the simple equation B}Sn) (u) = —iB,(i)(u). It was established that during
high-frequency modulation, the Hilbert transform does not change the covariance-spectral structure of
the BPNRP signal.

The established properties of the Hilbert transform must be taken into account when statistically
processing real data.
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MepeTBopernHs MNnbbepTa Ginepiogn4Ho
HecTauioHapHUX BUNAAKOBUX CUTHANIB

Ssopebknit I. M.12, FOzedosua P. M.13, Iemumnerns P. 1.3, JTnaax O. B!

L Dizuko-mexariunut inemumym iveni I B. Kapnenwa HAH Yrpaivu,
eys. Hayxosa 5, JIveis, Yxpaina, 79060
2 Budeocvkudi ynisepcumem Hayky ma mernonozit,
anes npogd. C. Kanicvrozo 7, Budeow, Ilosvwa, 85796
3 Haugonanvnuti ynisepcumem “Tvsiscora noaimerwira”,
eyn. Bandepu 12, Jlveis, Yxpaina, 79013

IIpoBesneno aHasi3 KOpeJAifiHOI Ta CIEKTPAJIbHOI CTPYKTYypHu IepeTBopeHHs ['iibbepra
6iepioMIHO HECTAIIOHAPHO BUIIAIKOBUX IIPOIECIB, SKi € MOJE/UII0 CUTHAJIB 3 MOJBIiii-
HOIO purMikor. OTpuMaHi CIIBBIJHOIIEHHS, 10 OB’ SI3YIOTh B3a€MOKODEJISIIiHI Ta B3a-
€MOCIIEKTPAJIbHI XapaKTepPUCTUKU CUI'HAJY Ta fioro neperBopeHHs ['inpbepra 3 xapakTe-
PUCTHKAMU CaMOI'0 CUTHAJIy. PO3IVISHYTO BJIACTHBOCTI aHAJITHYHOIO CHUI'HAJY, HABEJIEHO
MOT0 XapaKTepHi OKpeMi BUMAIKY, fKi 3yMOBJIEH] CIIEKTPAJBHIMHI OCOOJUBOCTIIMU MOJTY-
JIAT] HECYYnX TapMOHIK.

KntouoBi cnosa: Ginepioduywno Hecmayionapruli sunadkosutl Npouyec; mepemeseoperHs
Iiavbepma; Kopeaauitint ma cnexmpaisvhi KOMNOHEHMU; GHANTMUYHULT CULHAA.
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