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Abstract: This paper is devoted to the analysis of
modern approaches to the use of cloud technologies in
hybrid and virtual power plants, including the assessment
of their functional capabilities, advantages, and
limitations, as well as practical examples of implementing
such solutions in different countries.

Decarbonization and the transition to sustainable
energy are becoming increasingly common strategies,
with hybrid and virtual power plants emerging as key
solutions integrating renewable energy sources, storage
systems, and intelligent control technologies. However,
the efficient operation of such systems requires a high
degree of automation, real-time big data processing, and
adaptive management. The paper highlights the advan-
tages of cloud computing, such as centralized access to
computing resources, flexible scalability, data storage, and
the integration of artificial intelligence. By leveraging
cloud platforms, energy companies can forecast
generation and consumption, perform real-time load
balancing, and efficiently manage distributed energy
resources regardless of location.

The study also describes relevant technologies,
including both general-purpose infrastructure cloud
services (such as AWS, Azure, and Google Cloud) and
specialized solutions designed specifically for the needs of
energy systems (such as Siemens DEOP, AutoGrid Flex,
Next Kraftwerke VPP, and Piclo Flex).

Keywords: cloud technologies, hybrid and virtual
power plants, dynamic energy grid.

Introduction

Smart Energy Systems (SES) represent a new
paradigm in energy management, combining digital
technologies, distributed generation, and intelligent energy
flow control. The core of this concept lies in the integrated
connection of electrical, thermal, transport, and
information subsystems with to improve the efficiency,
resilience, and environmental sustainability of energy
networks [1]. The traditional power system, based on
centralized generation and one-way energy flow, no
longer meets the challenges of today’s world, which
requires the integration of renewable energy sources,
demand-response flexibility, and a high degree of
automation. Smart Energy Systems address these

challenges through the decentralization of energy supply,
the active participation of consumers (the prosumer
model), and the extensive use of the Internet of Things
(IoT), Big Data, Artificial Intelligence (Al), and cloud
technologies [2, 5].

Among the key characteristics of Smart Energy
Systems there is decentralization, which implies the use of
distributed energy resources (DER) integrated into the
overall energy network, as well as sector coupling, which
integrates electrical, thermal, and transport systems into a
unified digital platform [1]. Another important features are
forecasting and optimization, based on analytical models
for accurate prediction of production and demand [5].
These systems are characterized by automated control
implemented through cyber-physical systems, and adap-
tive control algorithms [3], their technological foundation
relying on digital infrastructure, in particular cloud
platforms enabling scalability, real-time computing, and
large-scale data storage [2, 4].

Potential development directions, driven by the
abovementioned challenges, include the improvement of
energy supply management, monitoring, analytics, and
forecasting systems. A particularly relevant approach is
the Energy Internet concept which envisions a flexible,
dynamic power grid with decentralized energy exchange
between users, coordinated via digital platforms [3]. In
such a system, each element — whether a solar panel,
battery, electric vehicle, or building — can act simul-
taneously both as a producer and a consumer of energy,
ensuring high adaptability and economic efficiency.

In the energy sector, cloud technologies are crucial in
the digital transformation of energy supply management,
monitoring, analytics, and forecasting systems. Cloud
Computing is a model for providing access to computing
resources over the Internet, offering scalability, flexibility,
distributed data processing, and cost efficiency.

In the context of cloud technology adoption in the
energy sector, it is important to understand the different
service models, which differ in the level of control granted
to the user and the responsibility borne by the provider, as
each model has its own purpose and application area.
Existing cloud services are based on the “remote”
computing, with implementation depending on user
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requirements, functionality, and available resources. A
summary and description of SaaS, PaaS, and IaaS models
are presented in Table 1.

Table 1
Model Description Examples of implementation

SaaS A model in which | Platforms for energy consumption
(Software |end users access | visualization, SCADA applications,
asa to ready-to-use and demand management services
Service) software solutions

via a web

interface
PaaS Provides the Creation of energy modules for
(Platform |environment for |consumption analytics, DER
as a developing, tes- | (distributed energy resources)
Service) ting, and management, and microgrid

deploying optimisation

personal software

solutions
IaaS Provides basic Storage and processing of large
(Infrastruc | computing volumes of energy data, support for
ture as a | infrastructure digital twins, and training prediction
Service) (virtual servers, | models

data storage,

network

resources)

Cloud technologies in the form of SaaS, PaaS, and
laaS provide the technological foundation for building
adaptive, scalable, and cost-efficient Smart Energy
Systems, enabling flexible management of hybrid and
virtual power plants. The scalability of cloud technologies
in the energy sector is a primary advantage, allowing
computational resources to be adjusted according to actual
needs without significant capital expenditure. Additio-
nally, remote access to data and systems simplifies
equipment maintenance, implements new functionalities,
and reduces decision-making time [6, 9].

Another type of infrastructure is a cloud-oriented
energy system, in which core processes of data collection,
transmission, storage, analysis, and energy management
are implemented via cloud computing platforms. This
approach ensures flexibility, adaptability, and high effi-
ciency in managing energy resources, particularly under
the condition of the increasing number of distributed and
renewable energy sources [12].

Key functional features of such architecture include a
centralized data storage which allows for the identification
of global patterns and interregional comparisons; cloud
scalability, enabling the processing of increased data flows
as the number of devices grows; and the use of Al models
for load forecasting, generation prediction, and preventive
maintenance [12, 13].

As energy systems belong to critical infrastructure,
the architecture of cloud-based energy systems must inc-
Iude multi-level access control (RBAC), data encryption
during transmission and storage, secure backup and
disaster recovery, and compliance with standards (e.g.,

ISO/IEC 27001, NIST SP 800-53) [14]. The key
components of the architecture are presented in Table 2,
which particularly shows the increasing share of distri-
buted and renewable energy sources [12].

Table 2

Key components of architecture

Peripheral This level includes the physical components of the
devices

(Edge Layer)

energy system — sensors, smart meters, inverters,
batteries, and generators. They provide primary
measurement of consumption, generation, voltage,
frequency, and other parameters. Part of the data
processing (preliminary analysis, filtering, local
actions) can be performed directly on site using
edge computers

Includes wired (Ethernet, PLC) and wireless (LTE,
LoRaWAN, Zigbee, 5G) channels that transmit
information between edge devices and the cloud
platform. To ensure data integrity and continuous

Communi-
cation level
(Communi-
cation Layer)
operation, it is critical to use low-latency and
secure transmission protocols (e.g., MQTT, IEC
61850)

The central component of the architecture that
implements:

Cloud platform
(Cloud Layer)
- storage of large amounts of data (Data Lake,
NoSQL, Time Series DB),

- processing and analysis (Big Data, AI/ML
models),

- visualisation (analytical dashboards),

- decision-making (optimisation modules, control
algorithms).

This level can be implemented as IaaS, PaaS, or
SaaS, depending on the needs of the operator or
energy service provider

Control
interface
(Application &
Control Layer)

It contains tools for users, such as operator panels,
mobile applications, and APIs for external
systems. This level implements monitoring,
visualisation, planning, dispatching, forecasting,
and response functions

Cloud solutions can be used for real-time monitoring
and data collection, in particular through the imple-
mentation of SCADA systems in a cloud environment, as
well as for forecasting both energy generation and
consumption by combining the capabilities of artificial
intelligence and cloud platforms, which ensures increased
accuracy in consumption forecasts.

Energy generation forecasting uses meteorological
data that takes into account weather conditions and
climate change, historical data on energy production and
consumption volumes, and technical parameters of
equipment, including the characteristics of generators or
stations. Various machine learning algorithms are used to
process and analyse this data, including decision trees,
deep neural networks (DNN/LSTM) and combined
methods, which ensure high forecast accuracy. The struc-
tural components that determine the energy generation
forecasting procedure are shown in Fig. 1.
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Fig. 1. Structural components
of electricity generation forecasting

Energy consumption forecasting is carried out at
various levels, covering individual consumers, microgrids
and system operators, each of which has its own needs and
forecasting horizons. For individual consumers and
microgrids, short-term models are usually used allowing
for a rapid response to changes in load and optimisation of
resource usage. On the other hand, system operators
mainly use seasonal or long-term models that allow them
to plan the operation of the power system for the future,
taking into account changes in demand, seasonal
fluctuations, and strategic network development. Energy
consumers include individual consumers (domestic,
industrial), microgrids, and system operators whose
interactions are shown in Fig,. 2.
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Fig. 2. Energy consumption entities

The integration of cloud computing into energy
system management, particularly in the operation of
hybrid and virtual power plants, significantly enhances the
functionality and scalability of digital infrastructures.
However, it simultaneously introduces new challenges in
the context of cybersecurity. Since cloud services provide
centralized access to critical energy system components,
including SCADA, EMS, and forecasting modules, their
vulnerability to cyberattacks is considerably increases.
These risks may arise from data transmission between
field devices and cloud platforms, user authentication, or
misuse of the API access.

The challenges are further exacerbated when public
cloud services are used without proper resource
segmentation and isolation, creating potential risks of
unauthorized interference in energy flow management or
manipulation of forecasts. In this context, the imple-
mentation of protective measures such as end-to-end
encryption, multi-factor authentication, role-based
access control, continuous anomaly monitoring, and
compliance with industry standards (e.g., ISO/IEC

27001, NIST CSF) becomes essential for the secure
deployment of cloud solutions.

Additionally, it is critical to plan recovery scenarios
after attacks, maintain a “cold backup” for critical
services, and regularly test security measures through
simulated attacks. Robust cybersecurity is not only a
technical but also a regulatory challenge: national and
transnational frameworks must be established to prevent
the exploitation of energy cloud systems for blackmail,
sabotage, or political coercion.

Analysis of existing solutions and platforms

The common feature of most platforms is the support
for scalable cloud architecture (IaaS, PaaS, or SaaS), the
use of artificial intelligence tools for forecasting, and the
presence of modules for interfacing with distributed
energy resources (DERs). Another notable trend is
openness — via APIs and standards such as OpenADR,
OCPP, and IEC 61850 which ensures integration with
other platforms and energy network operators.

At the same time, some solutions remain isolated,
either due to a commercial model (proprietary internal
development for a specific corporation) or because of a
narrow functional specialization. Table 3 presents analy-
tical tables summarizing a comparative analysis of popular
solutions. Market integration, cost and flexibility of
integration are presented in Table 4.

Table 3
Plat- | Architect | Forecasting | Aggregation .
form | ure (AD) DER/vpp | Cybersecurity

AWS laaS/ | Yes(Sage Partially High (ISO 27001,
Energy |PaaS/ |Maker) (through AWS Shield)
& SaaS partners)
Utilities
Azure |PaaS/ |Yes(Azure |Yes High (Azure
Energy |SaaS ML, Synapse) | (AutoGrid, Defender)
Hub Nuvve)
Google |laaS/ |Yes(Vertex |[No High (BeyondCorp,
Cloud |PaaS Al) DLP)
for
Energy
Siemens | SaaS Restricted Yes (own VPP | Average (depends on
DEOP infrastructure) | the customer)
Next SaaS Partially Yes (10 000+ | Average (VPN, API
Kraft- | (pro- objects) protection)
werke prietary)
VPP
AutoGrid| SaaS Yes (deep Yes (flexible | High (API
Flex learning) aggregation) | protection, MFA)
Piclo Web- [No Yes (aggre- High (GDPR,
Flex based gation for Cloudflare)

DSO/TSO)
Iberd- |Prop- |Yes Partially Average (internal
rola Al |rietary | (generation (within the policies)
Hub PaaS from RES) scope of

projects)

Among the presented solutions, AWS, Azure, and
Google Cloud demonstrate versatility, flexibility, and



4 Andrii Andrushko

scalability, allowing their integration into existing energy
infrastructures. They support open standards, provide high
performance, offer rich AI/ML analytics toolsets, and
comply with leading cybersecurity requirements. For these
reasons, these platforms are often used as the foundation
for deploying specialized products or as infrastructure for
third-party services.

Among the presented solutions, AWS, Azure, and
Google Cloud demonstrate versatility, flexibility, and
scalability, allowing their integration into existing energy
infrastructures. They support open standards, provide high
performance, offer rich AI/ML analytics toolsets, and
comply with leading cybersecurity requirements. For these
reasons, these platforms are often used as the foundation
for deploying specialized products or as infrastructure for
third-party services.

Table 4
Plat- Market | Price of basic ‘Flex1bll‘1ty regardlng
form integration | configuration integration with other
platforms
AWS Yes (APIto |From High (modularity, support
Energy |US/EU $0.01/hour for open APIs)
& markets) per resource
Utilities
Azure Yes From High (integration with
Energy |(OpenADR, |$0.02/hour+ |SCADA, IoT, DERMS)
Hub OCPP) ML fee
Google |Restricted | From High (BigQuery, IoT Core,
Cloud $0.005/hour | third-party APIs)
for per instance
Energy
Siemens | Yes (via Closed Restricted (mainly with
DEOP [DSO/TSO |commercial |Siemens systems)
gateways) model
Next Yes (EU No public Closed (self-contained
Kraf- flexibility tariff ecosystem)
twerke | market)
VPP
Auto Yes (through | Commercial | High (OpenADR,
Grid open licence OpenFMB, Green Button)
Flex standards)
Piclo Yes Free for High (adaptive via REST
Flex (flexibility |DSO/TSO | API)
market)

Iber- Partially Closed, for Low (based on Iberdrola's
drola Al internal use own assets)
Hub only

In contrast, solutions such as Next Kraftwerke VPP,
Siemens DEOP, and Iberdrola Al Hub represent isolated
or narrowly specialized systems. They have an advantage
of high functional density within a specific environment
(e.g., VPP optimization within a single country or
corporation); however, limited scalability and compa-
tibility with external systems reduce their versatility. Such
platforms are suitable for closed infrastructures, internal
corporate models, or demonstration projects.

Among specialized solutions, AutoGrid Flex and
Piclo Flex stand out, combining the functionality of
flexible DER management with open mechanisms for
aggregation and energy trading. They can be considered an
intermediate category specialized in functionality, yet
capable of integration due to support for open standards.

Thus, the choice of platform should be based on the
scale of the system, integration requirements, security
needs, and regulatory context. Hyper-scale cloud providers
are suitable for universal and adaptive solutions, whereas
specialized solutions with vertical integration are more
appropriate for targeted projects.

An example of the application of cloud technologies
in load forecasting: the experience of ISO New England

One practical example of implementing cloud
technologies in the energy sector is the project by ISO New
England (ISO-NE) aimed at improving short-term load
forecasting processes. Load forecasting is a typical
engineering task in power systems that extensively utilizes
data-driven approaches. This process requires significant
computational resources to process large historical datasets
and develop highly accurate models. Cloud computing has
proven to be an effective solution for providing such
resources.

Currently, ISO-NE employs a Short-Term Load
Forecasting (STLF) tool integrated into the Energy
Management System (EMS). This tool generates load
forecasts every five minutes for the next four hours. The
forecasting method used is the Similar Day approach,
which selects the best historical days based on criteria such
as weather conditions, day of the week, season, and actual
loads on previous days. However, this method has notable
limitations, especially when no days with similar conditions
exist, potentially leading to significant forecasting errors.

To enhance this process, ISO-NE implemented a
cloud-based solution using Amazon SageMaker being the
PaaS platform. This platform significantly simplifies the
creation of new machine learning (ML) models, allowing
engineers to quickly test various algorithms, including
Decision Tree, Random Forest, Support Vector Machine
(SVM), and K-means clustering. This enables specialists to
focus on applied tasks without spending time on server
configuration, dependency installation, or runtime
environment setups.

The deployment of the cloud platform substantially
reduced the time required for data preparation, model
building, training, and validation. The created ML models
can be stored in a dedicated format and, if needed, deployed
on local infrastructure to ensure compatibility with the EMS
and compliance with cybersecurity requirements.
Architecturally, the process involves secure transmission of
data to the cloud, processing and training models within
Amazon SageMaker, storage of training artifacts, and
subsequent deployment of the models for integration with
the local energy management system.
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Fig. 3. Schematic diagram of the ML model development process at ISO-NE

Fig. 3 presents a simplified architecture diagram of
the process of the ML model development at ISO-NE
using cloud services [15]. The diagram illustrates how
data are uploaded from databases or by developers to the
Amazon S3 service through secure channels (HTTPS/
TLS) where it is encrypted to ensure confidentiality. The
data are then transferred to the Amazon SageMaker
environment for processing, training, and the creation of
machine learning models. Trained models are stored in the
Model Archive and can be downloaded back to local
servers for further use within energy management
systems. The system incorporates security measures such
as multi-factor authentication (MFA) and encryption,
ensuring a high level of data protection.

Conclusion

In the current context of the transformation of the
global energy sector, Smart Energy Systems built using
cloud technologies represent a strategic development
direction for countries with the high share of renewable
energy and for regions aiming to enhance energy
resilience. It has been established that cloud computing
provides a scalable digital infrastructure capable of
supporting dynamic management of energy flows under
conditions of unstable generation and decentralization.
The architecture of cloud-oriented systems is based on the
integration of storage, processing, and real-time data

analytics services, incorporating SCADA, IoT, and
artificial intelligence tools.
Based on the practical -capabilities of cloud

technologies, including real-time monitoring, generation
and demand forecasting, energy flow optimization, and
cybersecurity, it is advisable to develop a procedure for
combining cloud platforms with Al tools. This approach
enables significant improvements in both supply
reliability and cost efficiency, as well as better integration
with energy markets.

A comparative analysis summarized in analytical
tables covering leading cloud solutions from global
platforms such as Microsoft Azure, Amazon Web
Services, and Google Cloud Platform, to specialized
energy platforms like Siemens DEOP, AutoGrid, and
Next Kraftwerke showed that while all solutions share a
common architectural logic, their functional focus and
integration flexibility differ depending on the target
market and system scale.

Thus, the review confirmed that cloud technologies
not only provide the technological foundation for energy
digitalization but also act as a driver for systemic
integration of distributed energy resources, the formation
of the new market logic, and the strengthening of energy
security.
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