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Abstract: This article explores the use of swarm intel-
ligence algorithms in unmanned vehicles (UVs), focuses on
their main advantages for improving the efficiency and
productivity of systems. Unmanned vehicles, which can
operate autonomously or under remote control, play a
significant role in such areas as surveillance, search and
rescue, agriculture and military operations. The main focus
of the article is on algorithms such as ant colony
optimisation (ACO), artificial bee colony (ABC), particle
swarm optimization (PSO), glow-worm swarm optimi-
zation (GSO), firefly algorithm (FA), bat algorithm (BA),
grey wolf optimizer (GWO), and whale optimization
algorithm (WOA). Each of these algorithms is discussed in
detail, vparticularly their core principles, specific
applications in UVs, and their levels of effectiveness in
different environments. Each algorithm has been examined
to highlight its operational strengths and its limitations, such
as computational demands and environmental suitability.
This paper discusses the algorithms in terms of managing
critical functions of UVs, such as resource allocation and
multi-agent coordination, which are essential for complex
mission scenarios. Particular attention is paid to the
adaptability of each algorithm, especially in unpredictable
or hostile environments, where rapid recalibration of UV
behaviour is necessary for mission success. By analysing
each algorithm capacity to adjust the UV to new data in
real-time, the article highlights their potential to optimize
UV performance and reliability in challenging contexts.
Special attention is given to collaborative task management
in swarm intelligence, emphasizing its ability to enhance
unmanned aerial vehicle (UAV) group coordination and
decision-making for efficient operation in complex and
dynamic scenarios. In general, the article provides deep
analysis of swarm intelligence algorithms, and the
information that will help choose the most effective
algorithm to help solve specific tasks using different types
of UVs. Future research will focus on improving the
scalability, adaptability, and integration of these algorithms
with latest technologies in order to enhance their
effectiveness in solving complex UV missions. In addition,
a comparative table of the main characteristics of the
algorithms was created and a review of similar studies
comparing swarm algorithms was made.

Key words: Multi-agent systems, optimization
algorithms, task coordination, adaptive systems, dynamic
scenarios.

1. Introduction

Unmanned vehicles (UVs) are a type of vehicle that
can be controlled remotely or programmed to perform a
task autonomously. It is hard to deny that UVs have
rapidly gained popularity and now play a significant role
in all areas of human life. They can be used for
surveillance, search and rescue, agriculture and forestry,
as well as military purposes. Swarm intelligence is one of
the most significant areas in the study of algorithms for
UVs. Swarm intelligence is a field that aims to build fully
distributed decentralised systems in which the overall
functionality of the system arises from the interaction of
individual agents with each other and the environment. To
effectively perform the tasks, appropriate algorithms are
used, such as ant colony optimisation (ACO), artificial bee
colony (ABC), particle swarm optimisation (PSO), glow-
worm swarm optimisation (GSO), firefly algorithm (FA),
bat-inspired algorithm (BA), grey wolf optimiser (GWO),
whale optimisation algorithm (WOA). They are used to
solve problems related to route planning, target search,
resource allocation, and coordination of UV groups.
However, despite a large number of studies in this area,
the question of the appropriate and effective use of
algorithms for different tasks and types of UVs still re-
mains relevant.

The main objective of this study is to review and
analyse existing swarm intelligence algorithms and their
application to improve the performance and efficiency of
UAVs. This article analyses the advantages and disadvan-
tages of algorithms in different usage conditions and
provides recommendations for the effective application of
a particular algorithm for a given task and UAYV, for
example, in cases of military operations, environmental
research, or disaster relief.

The object of research is the processes of applying
and implementing swarm intelligence in unmanned
vehicles.

The subject of research are algorithms and methods of
swarm intelligence applied to different types of unmanned
vehicles.

The purpose of the work is to study and analyse the
use of swarm intelligence in unmanned vehicles to
improve their performance and efficiency.
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To achieve this purpose, the following main research
objectives are identified:

® analyse existing swarm intelligence algorithms;

® cvaluate the performance of these algorithms;

® identify the advantages and disadvantages.

Materials and methods of research. In the work the
following materials and methods were used: modern
swarm intelligence algorithms, such as Particle Swarm
Optimisation (PSO), Ant Colony Optimisation (ACO) and
Artificial Bee Colony (ABC), glow-worm swarm
optimisation (GSO), firefly algorithm (FA), bat-inspired
algorithm (BA), grey wolf optimiser (GWO), whale
optimisation algorithm (WOA); methods for analysing the
performance of algorithms in unmanned vehicles (UVs);
methods of data processing and estimation to determine
the effectiveness of algorithms in different conditions.

Analysis of recent research and publications. One of
the global challenges in the application of swarm intel-
ligence algorithms for unmanned vehicles is the problem
of adaptation to specific environmental conditions and
tasks. Many scientific papers have been published on this
topic, the article Swarm Intelligence: Concepts, Models,
and Applications being one of them, which addresses the
global problem of using swarm intelligence in UVs, in
particular, improving the efficiency of algorithms for
different tasks and types of UVs. The authors analysed the
existing approaches and methods, highlighted their pros
and cons in different applications. They emphasise that the
effectiveness of the algorithm selection depends on the
specific conditions and type of the task being performed
by the UV [1]. One of the main aspects highlighted by the
authors of A Review of Swarm Robotics Tasks is the need
for a more detailed study and adaptation of swarm
intelligence algorithms to specific conditions of use,
which will ensure more efficient operation of UAVs in
various fields, such as search and rescue, surveillance, and
other tasks [2]. In the article Swarm Based Optimisation
Algorithms For Task Allocation In Multi-Robot Systems:
A Comprehensive Review, the authors describe swarm
intelligence algorithms in detail, consider their underlying
principles, their application in various fields, advantages,
disadvantages, and highlight the problem of task
allocation in multi-robot systems, including unmanned
vehicle systems. According to the authors, this work can
lead to understanding the swarm optimization algorithms
which will enhance the possibility of applying multi-robot
systems to solve real-world problems with increasing
levels of complexity [3]. As for more specific examples in
the article Motion Planning of UAV Swarm: Recent
Challenges and Approaches, the authors consider the
challenges associated with the use of UAV in different
tasks and suggest improved algorithms to enhance the
efficiency of the tasks. The authors have explored
methods and models of swarm planning: control, route

planning, architecture, communication, monitoring and
tracking as well as security issues. Furthermore, the
authors highlight that the efficiency of algorithms may
also range significantly from one specific environment
and task to another, which raises a question about further
improvement in their performance [4]. In recent years,
autonomous underwater vehicles also have made sig-
nificant progress, especially in the fields of oceanography,
military and underwater research. The authors of the
article Path Planning for Autonomous Underwater
Vehicles say that route planning is really important in
allowing AUVs to operate efficiently: helping them
navigate properly to avoid getting stuck and use less
energy. The authors proposed addressing this issue by
merging two algorithms in order to enhance the com-
putational efficiency [5]. The article Review of Multiple
Unmanned Surface Vessels Collaborative Search and
Hunting Based on Swarm Intelligence highlights the
challenges in coordinating multiple unmanned surface
vessels for tasks like cooperative search and hunting. The
authors discuss the advantages and limitations of swarm
intelligence algorithms, emphasizing their ability to
enhance collaboration and improve task efficiency. They
propose optimization methods to address existing
challenges and suggest future research directions, such as
adapting algorithms to dynamic environments and
improving fault tolerance in Multiple Unmanned Surface
Vessel (MUSV) systems [6]. Many approaches are used
today to improve the efficiency of algorithms, as shown
above, scientists also combine algorithms to achieve the
highest performance. Thus, a comprehensive analysis of
the literature on the subject of the study suggests that
increasing the efficiency of adaptation and application of
swarm intelligence algorithms for different types of
unmanned vehicles and usage conditions remains an
urgent problem. Developers suggested some methods for
solving these problems, however further research and
improvement of existing methods are required to ensure
the effective outcome of operations of unmanned vehicles
in various applications.

2. Research results and their discussion

Ant colony optimization (ACO). The ant colony
optimization algorithm is widely used in UVs for solving
complex route planning and optimization problems. The
algorithm mimics how ants find food using pheromone
traces. The ant chooses the next step based on how many
pheromones other ants have left along the path (i.e., the
most visited places and thus considered to be the optimal
solution) and how heuristically attractive the path is (e.g.,
short). This approach helps the algorithm to avoid getting
stuck on early stages and helps to find new paths using
pheromone evaporation. The key formula is the next step
(path) probability formula [16]:
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despite slow initial convergence, computational cost
remains moderate and rarely grows exponentially. Howe-
ver, when environments shift quickly, updating 7, can

lag, making real-time responses low or moderate at best.
The main advantage of the ACO is its ability to
distribute computation and avoid premature convergence.
The ACO is often used in tasks that require finding
globally optimal paths. One of the biggest advantages is
fast convergence in the later stages, as well as a quick
approach to the optimal or near-optimal solution,
especially in the final stages of the search. Another key
advantage is memorability, when pheromone traces help
to ‘remember’ previous decisions to influence future ones.
However, tuning parameters like o, B, and pheromone
decay is crucial; poor values may cause early convergence
or inefficient exploration. Multiple UAVs share
pheromone updates, allowing them to benefit from other
partial solutions, though concurrent updates can
sometimes conflict [17, 20]. As for scalability, each
denominator demands M numeric products and additions
thus overhead is O(M). Larger swarms may strain runtime,
but basic expansions still work well. The ACO can handle
multiple objectives by combining them into a single
weighted heuristic ;. For example, distance plus energy

e, can be combined as 1, =%+%, where o is their
) b
weights. This approach is feasible but remains simpler
than full multi-objective optimization since it reduces
multiple goals to one scalar. The ACO performs best in
static environments but can be adapted for dynamic ones.
One of the key drawbacks is its slow convergence during
the initial iterations due to the reliance on accumulated
pheromones, which delays path discovery. Additionally,
fixed parameters, especially the pheromone evaporation
rate, can result in premature convergence or prolonged
exploration. To improve performance, a dynamic
evaporation rate is proposed: a higher rate during early
iterations to encourage diverse exploration, followed by a
gradual decrease to stabilize the convergence around
promising solutions. Also, local pheromone resets in areas
with rapidly changing data can prevent UAVs from

relying on outdated route data. These adjustments improve
responsiveness and path precision in semi-dynamic
environments. Overall, the ACO is best for moderate-
speed route optimization with partially changing
constraints, performing well for tasks like stable obstacle
avoidance or multi-target navigation, but less ideal where
real-time reactivity and massive scalability dominate [3, 8,
12].

Artificial bee colony (ABC). An artificial bee colony
algorithm, inspired by the honeybees, is widely used for
route planning for Unmanned Combat Aerial Vehicles
(UCAVs) due to its effective balance between exploration
and exploitation. It models the behaviour of three types of
bees: employed, onlooker and scout. Local search is
performed by employed and onlooker bees, improving on
solutions already found. Employed bees generate new
solutions by mutating existing good ones, then onlooker
bees select the best solutions for improvement. This
allows the algorithm to quickly converge to optimal or
near-optimal solutions. Meanwhile, scout bees perform a
global search function, randomly looking for new
solutions. This helps to avoid local minimums, which is
important for finding optimal routes. However, the local
exploitation of the ABC is less efficient than its global
search, which slowly converges to the optimal solution
when fast decisions are needed. ABC main update
formula is [18]:

V=X, 40, (xl.—xk), 2)
where x, is the current path, x, a random neighbour, and

¢, is a random number between —1 and 1. This method

helps explore possible routes. However, if the “limit” (the
number of unsuccessful tries before a bee abandons a
solution) is too high, the algorithm reacts slowly to sudden
changes, making real-time performance only low to
moderate. The ABC is easy to implement, requiring just a
few parameters. However, performance is sensitive to the
“limit” and colony balance, so some tuning is needed,
because incorrect settings of these parameters can lead to
suboptimal performance or premature convergence. In the
ABC, onlooker bees choose paths based on fitness scores
[18]:

_
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For example, with scores [0.2, 0.3, 0.5, 0.8, 1.2], the
best path (1.2) gets a 40 % chance of being picked. This
selection uses simple math, just additions and divisions, so
the algorithm does about O(N) operations. That means
computational cost grows steadily, keeping ABC efficient
for mid-sized problems while still focusing on better
routes. The ABC has linear complexity O(N), making it
efficient for mid-sized UAV groups. For larger swarms,
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performance may drop unless optimized. Collaboration in
the ABC is indirect, bees share solution quality through
fitness values, not pheromones. Onlooker bees focus on
strong paths, while scouts explore new ones. This
decentralized system supports flexible coordination, but
with less global awareness than the ACO or the PSO [17,
20]. The ABC handles multiple goals by combining them
into one using weighted sums which allow easy com-
parison. However, it lacks advanced methods like Pareto
fronts, limiting flexibility in complex trade-offs. A key
drawback of the Artificial Bee Colony (ABC) algorithm is
its slow local convergence caused by strong global search
and weak local refinement. The fixed “limit” parameter
for abandoning poor solutions also reduces responsiveness
in dynamic environments. To improve adaptability, a
dynamic limit based on environmental changes or con-
vergence speed is proposed. Lowering the limit in
unstable conditions enables quicker solution updates.
Additionally, enhancing local search using gradient-based
or Lévy-flight-inspired movements can boost refinement.
These changes aim to improve real-time ABC respon-
siveness while preserving its strengths in decentralized
coordination for dynamic UAV route optimization.
Overall, the ABC is ideal for pre-flight planning, threat
avoidance, and target allocation, but not suited for fast-
changing, real-time UAV control [3, 7, 13].

Particle Swarm Optimization (PSO). A Particle
swarm optimization algorithm is inspired by the behaviour
of birds forming flocks to search for food. It uses the
collective behaviour of the particles to get global
optimisation with an iterative method, where particles
adjust to their trajectory after considering individual
experience and interaction with others, similar to how
birds will not collide with others in flight. The PSO has
been widely used in obstacle avoidance and trajectory
optimization tasks for unmanned underwater vehicles. The
algorithm finds the most efficient and safe route in an
underwater environment, considering constraints such as
obstacles, depth and the need to minimise power
consumption. By considering the UUV trajectories as
particles in a swarm, the PSO dynamically re-optimizes
these trajectories based on the data received from vehicles.
This helps the UUV to follow the correct path and avoid
stalls even with sudden change of trajectory. The PSO
updates particles using [19]:

vi(t+l) = v, (t)+clrl (pi _xi)+czr2 (g_xi) 9 (4)
xl.(t+l)=xl.(t)+vl.(t+l). 5)
Here, x, is the current drone route, p, its personal
best, and g the swarm best. The values ©, ¢, and

¢, control momentum, personal memory, and group

influence. In dynamic settings, relying too much on past

bests can slow adaptation, so improved PSO variants
adjust these values or add randomness for faster response.
Each PSO iteration performs three operations per particle:
velocity update O(D), position update O(D), and fitness
evaluation O(l) or O(D). Total cost is

N=(2D+ fitness complexity) ~ O(ND), scaling steadily

without combinatorial growth, making the PSO efficient
for real-time UV tasks. The total effort of the PSO scales
linearly: 7 =O(ND), where N=number of particles,
D = dimensionality. Doubling either particles or
dimensions doubles workload. However, since the PSO
does not require population-wide interaction, it remains
scalable in distributed UV applications. The standard PSO
handles multiple objectives by scalarizing them. This
approach simplifies optimization, but can miss Pareto-
optimal trade-offs. At the initial stage, the PSO has a high
convergence rate, but at later stages it can slow down,
which may require additional improvements to the
algorithm to increase its efficiency. One of the main
disadvantages of the PSO is that it can get stuck in local
optima, leading to inefficient task performance. It is easy
to implement the PSO with just three main parameters and
no mutation, crossover, or pheromones. Defaults often
work well, though tuning improves results. Initialization
and boundaries are easier than in many other algorithms.
Swarm coordination in the PSO relies on the shared global
best g, guiding each agent update. Though agents do not
communicate directly, their actions stay aligned, enabling
coordinated UV behaviour without central control [17,
20]. A key limitation of the standard Particle Swarm
Optimization (PSO) is its tendency to get trapped in local
optima, especially in later stages, reducing adaptability in
dynamic UUV environments. Its reliance on historical
best positions hinders responsiveness to rapid changes. To
address this, a re-randomization mechanism for stagnating
particles, those without recent improvement, can be
introduced. Additionally, the use of adaptive inertia
weighting, which decreases over time, encourages early
exploration and later convergence. These enhancements
improve the resilience, adaptability, and real-time
performance of the PSO while preserving its simplicity
and speed, making it more effective for UV coordination
and continuous path re-optimization. The PSO is suited to
real-time routing, multi-UV coordination, low-resource
systems, and swarm control. However, it is less effective
with rapidly changing goals or strict discrete constraints
[1,8,15].

Glow-Worm Algorithm (GSO). The algorithm is
inspired by the behaviour of fireflies, which emit light
using a chemical called luciferin. They use it to attract
prey and coordinate their swarming movements. This
behaviour is the main principle of the GSO algorithm,
making it useful in tasks requiring path optimization. This
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approach balances exploring new solutions and exploiting
current ones using the ability of fireflies to dynamically
adapt their search radius. The GSO updates each agent’s
luciferin (signal strength) and position using [21]:

L(t+1)=(1=p)L(t)+7J(x (1)), (6)

% (1) = (1) 45203 0. @)

b, ()= (1))

where [, is luciferin, p is the decay constant, y is

luciferin gain, and x; is a neighbour with a stronger

signal. The GSO forms multiple swarms for flexible
adaptation, but its responsiveness depends on decay and
sensing range, which may limit speed in fast-changing
conditions. Thus, the GSO differs from other algorithms,
because it does not focus on finding a single global
solution, but looks for multiple solutions with varying
values of the objective function. The algorithm divides the
swarm into groups, each converging to different local
optima, allowing the UAV to explore multiple viable
paths simultaneously. This decentralized behaviour
enables parallel search and coordination, making it ideal
for multi-objective or multi-region UAV tasks [20]. The
GSO helps the UAV avoid premature convergence to
suboptimal solutions, a common problem in dynamic
environments. By directing each firefly (representing the
UAV) to brighter, more promising areas in the search
space, the GSO decreases the risk of falling into local
optimum. In each iteration, the position of the UAV is
modified and the focus is modulated by the luciferin level
described as the attractive potential of a location in the
search space. Each GSO iteration involves luciferin
update O(1), neighbour checking O(N), and movement
update O(D). Since each of the N agents compares itself to
all others, total cost becomes OND+N”). This ON*)
neighbour search is a GSO main bottleneck. To address
this, it is proposed to introduce a fixed-radius or grid-
based neighbourhood filtering strategy. This would reduce
comparison overhead to O(kN), making the algorithm
significantly more scalable for large UAV swarms. Addi-
tionally, GSO responsiveness in fast-changing environ-
ments is limited by static luciferin decay settings. A
potential solution is to implement a dynamic decay
adjustment, where the decay rate increases in rapidly
changing zones to encourage faster response and new path
discovery. The GSO relies on tuning four key parameters:
step size, luciferin decay, gain, and neighbourhood range.
Though being simple in design, its performance depends
heavily on these settings: too small the radius limits
collaboration, too large the convergence slowdown.
Proper tuning is essential but manageable. The GSO uses
a fitness function, which can incorporate weighted criteria.

This scalarization supports multi-objective optimization in
a basic form. The GSO does not natively support Pareto
fronts, but it handles multi-criteria routing well with
custom scoring functions. In general, GSO excels in
distributed surveillance, search and rescue, and adaptive
navigation. It is less suited for time-critical updates or
very large swarms without neighbourhood filtering [8, 9,
14].

Firefly algorithm (FA). The firefly algorithm is
inspired by fireflies and their bioluminescent behaviour,
where flashing signals indicate attractive positions,
guiding the search for optimal solutions. The FA is widely
used for optimizing flight paths in complex and dynamic
battlefield conditions. In UAV applications, the FA starts
with a random set of solutions representing potential flight
paths, maintaining diversity in the solution space and
avoiding premature convergence to local optima. It allows
UAVs to efficiently avoid threats and minimise fuel
consumption while exploring and converging on optimal
routes. The FA updates positions based on the formula
[22]:

3 (t41)=x, (1) + B (x,(0)=x, (1)) +ae (1), (®)

where x, is the current solution, x; is a more attractive

firefly, 7,

. is the distance between them, and ae (¢) adds
randomness. This balances exploration and exploitation,
by guiding each’firefly’ towards brighter, promising areas
in the search space, ensuring UAVs find efficient routes.
However, in fast-changing environments, the standard FA
may converge slowly or follow outdated paths unless
enhanced with adaptive steps or random walk. For N
fireflies in a D-dimensional space, each firefly compares
itself to all others (N—I interactions), leading to a
complexity of O(N’D). Each interaction includes a
distance calculation O(D), brightness comparison O(1),
and position update O(D). This quadratic scaling makes
the FA less efficient for large swarms but still manageable
in mid-sized UAV groups. The FA scales poorly as each
firefly compares with all others, causing comparisons to
grow rapidly with a swarm size. To address this,
introducing a fixed interaction radius or neighbourhood
filtering would reduce comparisons to nearby agents only,
improving scalability to O(%kN) and allowing the FA to
scale to larger UAV teams. Another issue is slow
convergence in dynamic environments, where outdated
solutions may mislead the swarm. A possible solution is to
incorporate an adaptive randomization factor that
increases when environmental changes are detected,
allowing the algorithm to re-diversify and respond more
effectively to sudden threats. The FA uses just a few
parameters: light absorption v, attractiveness [, and
randomization factor o. The algorithm is easy to
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implement, but performance is sensitive to tuning. Poor
settings can cause early convergence or weak exploration,
especially in complex and high-dimensional UAV tasks.
The FA enables implicit coordination as fireflies move
toward brighter neighbours, guiding UAVs to promising
areas. Without global memory, swarms may -cluster
around local optima unless randomness is added [17]. The
FA typically uses scalar fitness values. Multi-objective
routing is handled by combining factors into one score,
while being simple, this limits adaptability. The FA does
not support Pareto front maintenance unless extended with
specialized ~ Multi-Objective  Optimization (MOO)
techniques. The FA is extremely flexible, fitting well into
the conditions under which many UAVs must operate
where threats can change. If a new threat is detected, the
FA recalibrates the flight path by recalculating the
brightness of fireflies to avoid the threat. Due to its
reliable and flexible planning, UAVs maintain mission
effectiveness with minimal risk. In general, the firefly
algorithm is a powerful tool for UAV flight planning. The
FA is best for offline planning, smooth trajectories, and
moderately dynamic tasks. It is less suited to real-time
replanning or large UAV swarms [10, 11, 14].

Bat-inspired Algorithm (BA). The bat algorithm is
an advanced swarm intelligence technique inspired by the
echolocation behaviour of bats. The main principle of the
algorithm is that bats navigate by emitting sound pulses
and analyse the echoes returning from objects, building a
3D map of their surroundings. The algorithm copes with
navigation in three-dimensional space, where the main
goal is to determine the accident-free, shorter and safer
flight path. This makes the BA an invaluable tool for
UAVs that need to cross difficult terrain while avoiding
threats. The BA updates positions with a velocity-
frequency model [23]:

.
v =y

i i

+(x =x") £ ©)

(10)
where f, is frequency, and x* is the global best. The

-1
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algorithm explores the search space where potential
solutions are represented by bats which move towards
more promising regions. As they approach better solution,
the algorithm adjusts its exploration, reducing the volume
and frequency of the bats’ pulses. This way the BA
focuses on improving solutions while ensuring that UAVs
find optimal flight paths with a reduced collision risk and
minimal exposure to threats. However, standard BA may
lag in fast-changing situations without adaptive control
mechanisms. Each bat updates frequency, velocity,
position, and, optionally, loudness, with total cost per
iteration O(ND). This makes the BA lighter than the FA or
the ACO and suitable to real-time or embedded UAV

tasks. The BA does not require pairwise comparisons.
Each agent updates using only its own state and the global
best. This yields linear complexity, scaling well even with
large swarms. The BA uses a few parameters, hence the
algorithm is simple to implement, but performance
depends heavily on balancing exploration and explo-
itation. Coordination is implicit. Bats adjust their path
using the global best solution, which enables alignment
toward a shared goal without direct communication.
Though less interactive than the PSO, this mechanism
supports emergent coordination in UAV groups [17, 20].
The standard BA also combines multiple criteria into a
single scalar. The BA is ideal for fuel-efficient routing,
smooth trajectories, and energy-aware target tracking. It is
less suited to fast responses under high uncertainty
without enhancements. The BA is highly effective in
global optimization, such as UAV trajectory planning,
where it navigates through dynamic terrains and adapts to
changing conditions with minimal computational cost.
However, it can sometimes struggle with local search,
causing it to get stuck in local optima. To overcome this, a
local intensification phase can be introduced (such as a
refined random walk triggered when swarm diversity
drops), allowing UAVs to escape local optima without
sacrificing global convergence. Additionally, the perfor-
mance of the BA heavily depends on parameter settings
like a pulse rate and frequency. A promising solution is to
apply adaptive parameter tuning, where these values
adjust dynamically based on convergence speed or
environmental volatility. This would improve the al-
gorithm responsiveness in rapidly changing conditions of
the UAV mission. With powerful global search ca-
pabilities, the BA is widely used in tasks requiring
navigation through complex and dynamic environments
[7,11,15].

Grey Wolf Optimizer (GWO). The grey wolf
optimization algorithm models the hierarchical structure,
behaviour, and hunting mechanisms of grey wolves. One
of the key features of the GWO is its ability to model
collective search, where agents (wolves) play different
roles depending on their position in the pack. o wolves
direct the search and select the optimal route,  and &
wolves refine it, while ® wolves follow the collective
strategy. This way the GWO provides position updates
that do not focus only on the position of one leader, which
helps to avoid premature convergence to a single local
optimum [24]:

X, + X, + X,
— s

In dynamic UAYV tasks, the GWO adapts well due to
this leader-based approach, allowing agents to react to
changing conditions collaboratively. Studies have shown

X(t+1)= (11)
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the GWO outperforms several metaheuristics in terms of
path cost and convergence when navigating dynamic or
multi-target environments. In UAVs, this behaviour
means efficient search and optimisation of flight paths in
three-dimensional space with constraints. The algorithm
ability to balance between exploration and exploitation
makes it well suited to finding optimal or near-optimal
paths for UAVs, allowing them to cover large areas
efficiently while avoiding threats. Avoiding premature
convergence is a key benefit of the GWO, allowing UAVs
to find globally optimal routes in complex environments.
However, in large-scale, optimization problems the GWO
can suffer from, are premature convergence, leading to
suboptimal solutions. Additionally, GWO risks falling
into local optima in complicated and multi-dimensional
environments, causing suboptimal waypoint selection. To
address this, a diversity control mechanism can be
introduced—such as periodically reinitializing a portion of
the omega wolves or injecting controlled noise into
position updates to maintain exploration and prevent early
stagnation. Additionally, the performance of the GWO in
complex environments can be improved by adopting a
dynamic role adaptation, where the leadership structure (a,
B, 0) is periodically reassessed based on recent fitness
improvement rather than static rankings. This would
promote adaptability and robustness during long or
dynamic UAV missions. For N agents in D dimensions
each agent evaluates fitness O(7), updates positions based
on 3 best agents — O(D), total per iteration 7= O(ND).
No pairwise comparison is required, making the GWO
more efficient than the FA or the ACO in computation.
Because the GWO relies only on global bests and not
agent-to-agent comparison, the algorithm scales linearly
with population size. This makes the GWO suitable for
large UAV fleets and swarm control with minimal
bottlenecks. The GWO has minimal parameters, and its
update mechanism is simple. However, some sensitivity to
population size and the balance between exploration and
exploitation exists, especially in complex environments
[17, 20]. A GWO hierarchical model enables
decentralized coordination, with agents guided by alpha,
beta, and delta wolves, being ideal for multi-UAV
systems. It avoids scalarization by tracking multiple top
solutions, preserving swarm diversity and supporting
trade-offs across objectives like distance, energy, and risk.
The GWO remains scalable and suitable for large groups
where coordination and coordinated search are needed. It
is easy to see how this would be ideal for military
applications where the terrain cannot always be assured to
be safe [6, 11, 14].

Whale Optimization Algorithm (WOA). The
Whale Optimization Algorithm is inspired by the bubble
net hunting strategy of humpback whales. It mimics the

social behaviour and hunting mechanisms of whales, in
particular their method of catching prey using a spiral
bubble net. The encirclement stage allows gradual
approach to the best solution. The WOA is effectively
used to optimise path tracking and navigation for
unmanned vehicles. The WOA identifies the best (with
least errors) navigation paths, ensuring safe and efficient
navigation for autonomous vehicles in challenging
environments, key formula for it being:

X.(t)-4-D, p<0,5

X(t+1)=1 . . (12)
D' -e" -cos(2nl)+ X. (1), p=0,5

Here, X.(t)is the best solution so far, and the

random number p switches between spiral and circular
paths. This mechanism helps the WOA adapt by either
exploring new regions or exploiting known good areas.
However, like most population-based algorithms, standard
responsiveness of the WOA to sudden environmental
changes is limited without adaptation techniques. For each
whale in a population of size N and dimension D, the
position update requires best-solution distance O(D) and
randomized movement O(D). Total cost per iteration is
T =O(ND). This is efficient and suitable for onboard UAV
systems, especially when real-time constraints are mo-
derate. The WOA does not perform pairwise comparisons
and only requires knowledge of the global best, so it
scales linearly with swarm size. For large UAV groups, it
remains computationally practical. All whales adjust their
paths based on the current best solution, which drives
collective behaviour. While not explicitly collaborative
like the ACO, the WOA enables implicit coordination,
making it useful for decentralized UAV mission planning
[20]. The WOA typically scalarizes multiple objectives
into a single fitness value, this allowing basic trade-offs
(e.g., between distance, energy, and risk). An important
advantage of the WOA is its adaptability to different
environmental conditions. The WOA requires minimal
parameters (spiral coefficient b, coefficients 4 and C, and
random factors). It is simple to implement, but perfor-
mance varies with the balance between exploration (spiral
movement) and exploitation (shrinking encirclement).
However, algorithm balances exploration and exploitation,
by adaptively changing trajectories in the search space,
helping reduce overfitting to local optima. Another benefit
is that this optimization converges to a better solution in
fewer iteration compared with other algorithms, making it
well-suited for real-time applications, which requires
quick responses. However, performance of the algorithm
largely depends on selection of initial parameters and
optimization with the WOA can become complex when
tasks are very dynamic or large in scale. Also, the WOA
sometimes falls into local optima, especially in complex
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and multidimensional search spaces. Thus, a key limitation of
the WOA is its limited responsiveness in highly dynamic
environments, where the reliance on a single best solution
can cause the swarm to stagnate or overfit to outdated paths.
To address this, a multi-leader memory mechanism can be
introduced, where a small archive of recent best solutions
guides exploration. This would diversify the search and
enable quicker adaptation to environmental changes. Additio-
nally, to reduce the risk of local optima entrapment,
incorporating a randomized reinitialization for stagnant

agents could periodically introduce diversity, helping UAVs
escape misleading trajectories and improving overall
robustness in complex path planning tasks. The WOA suits to
energy-efficient routing, semi-dynamic planning, and smooth
trajectories. Overall, its adaptability and efficiency make it a
valuable tool in the development of autonomous UAV
systems [11, 14].

For better understanding and comparison, the
properties of ACO, ABC, PSO, GSO, FA, BA, GWO,
WOA are presented in Table.

ACO, ABC, PSO, GSO, FA, BA, GWO, WOA comparison

ACO ABC PSO GSO FA BA GWO WOA
Performance in Lo Lo Moderate
. wW- wW- . - . .
Dynamic Low-Moderate | Moderate-High . Moderate-High | Moderate-High | Low-Moderate
: Moderate Moderate High
Environments
ional . . .
Compu.tatlona Moderate Moderate Moderate Moderate Moderate High High High
Efficiency
. Moderate— . . .
Scalability Low Moderate Moderate Moderate High High High High
Ease of
Impl -
.mp emen.ta Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate
tion and Fine-
Tuning
. Pre-flight & Real-time L Threat Dy.namlc. Ml.lm_. Energy-efficient
Optimal Use Route . Multi-region avoidance, tracking with | coordination . .
L mid-scale UAV . . routing with
Cases Optimization . L UAV search, mission limited and threat-aware ..
planning coordination . . low reactivity
planning resources routing
Collaborative
M — . M — .
Task Moderate Moderate odc.:rate Moderate-High odc.:rate Moderate High Moderate
High High
Management
Limited Limited
.- . . Limi . .. . High
Ability to (weighted Limited 1m.1teq Limited Limited Limited ' . (scalar
. (scalarization, . (tracks multiple | . .
Handle scalar (scalarized . (basic (scalar scores, | (scalar fitness, . objective, lacks
. . .. true multi- L. . top solutions
Multiple heuristic, no |objectives,no| . . scalarization, no | lacks Pareto | multi-objective . Pareto front
Objectives Pareto Pareto front) objective needs Pareto support) tracking)  |support limited) without unless
] MOPSO) scalarization)
support) extended)

Discussion of research results. This paper examines
different systems and algorithms associated with swarm
intelligence techniques that are used in unmanned vehicle
(UV) systems. Results have suggested that each of these
algorithms has its own different areas of strength and
weaknesses that affect their efficiency under various
operating conditions. The ant colony optimization (ACO)
algorithm has shown high efficiency in routing and path
optimization tasks, especially in conditions where high
accuracy and efficiency are required. On the other hand, it
has been noticed that the ACO has limitations in the late
stages of searching, which may slow down the
convergence process and make this method less suitable in
areas where fast response is required [12]. The artificial
bee colony (ABC) algorithm has demonstrated high
adaptability to dynamic environments and the ability to
effectively avoid local minima, which is critical for
military operations and rescue missions [13]. However,
experiments have shown that this algorithm has some
difficulties with fast convergence at local levels, which

may require additional parameter optimization to improve
its efficiency. The particle swarm optimization (PSO)
algorithm has proven to be one of the best tools for
optimising trajectories in complex environments such as
underwater vehicles (UUVs). One of its strong features is
the ability to quickly adapt to changes and ensure safe
navigation. However, the downside of the PSO is that it
quite often results in premature convergence to local
optima, which can reduce the overall efficiency of the
algorithm in complex and multidimensional spaces [14,
15]. The glow-worm swarm optimization (GSO) and the
firefly algorithm (FA) are highly effective in coordinating
the exploration of several alternative optimal routes
simultaneously by UVs [14]. This makes them useful
tools for solving tasks that require high flexibility and the
ability to adapt to new conditions. Despite the previous
statement, the quality of the results from these algorithms
depends on the set of the parameters, which may be
problematic under challenging operating conditions. The
bat algorithm (BA) has shown significant performance on
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3D navigation tasks, but its local search may not be so
effective, sometimes leading to getting stuck in local
optimum [15]. The grey wolf optimizer (GWO) and whale
optimization algorithm (WOA) have demonstrated high
efficiency in providing stable and safe navigation in
complex and dynamic environments [14]. However, they
can also experience the problem of premature
convergence of the optimization process, which limits
their use in circumstances that require global optimization.
In conclusion, some difficulties arise in the course of
optimising the navigation systems of the unmanned
vehicles (UVs) in complex and dynamic environments.
While many of the swarm intelligence algorithms have
undergone some improvements, the challenge of global
optimization without settling for suboptimal or local
optima still persists. This is a serious concern because it
impacts the ability of the unmanned vehicles to perform
with high accuracy and reliability, especially when there is
a need to respond to quick and unpredictable environ-
mental changes. Another important problem is the
adjustment of algorithm parameters that significantly
influences their efficiency. If the tuning is incorrect, then
the solution is not optimal and will degrade the
performance of the system as well as the overall success
of the mission. This problem becomes even more relevant
when a task is to be performed in real time, when the
speed of decision making as well as the accuracy in doing
this is very crucial. Therefore, the main problem is the
enhancement of swarm intelligence algorithms so that
they can be used in dynamic and complex environments
and development of the adaptive parameter control
techniques to improve reliability and stability of unman-
ned systems. So, basing on the results of the work
performed, it is possible to formulate the following
scientific novelty and practical significance of the research
results.

Scientific novelty of the obtained research results is a
comprehensive analysis and comparison of various swarm
intelligence algorithms used in unmanned systems.

Practical significance of the research results lies in the
possibility of optimising navigation systems for UVs,
which allows for increasing their efficiency and reliability
when performing tasks in difficult conditions. In
particular, the results of the study can be used to improve
control and navigation systems, which will ensure the safe
operation of autonomous vehicles in various environ-
ments.

Conclusions

The paper presents an in-depth review of the
performance and potential of different swarm intelligence,
that is, driven algorithms and their incorporation in
unmanned vehicles to address the problems of route
optimization and navigation in a complex and dynamic

environment. Various algorithms were investigated,
including Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC), Particle Swarm Optimization (PSO),
Glow-Worm Swarm Optimization (GSO), Firefly Algo-
rithm (FA), Bat Algorithm (BA), Grey Wolf Optimizer
(GWO), and Whale Optimization Algorithm (WOA). The
results show that these algorithms demonstrate significant
potential for tasks such as route planning, resource
allocation, and real-time adaptation to changes in the
environment, but there are challenges, in particular, in
their adapting to dynamic environments. Each algorithm
has its own unique advantages, but a common problem is
the risk of premature convergence to local optima, which
limits their effectiveness in global optimization. Also, it
has been established that the adjustment of the parameters
of the algorithms is very important for the quality of the
work done, especially in real time.

This convergence allows more robust decision-
making processes, improved adaptability, and effective
coordination in complex tasks. In order to improve their
scalability and adaptability for use in the UVs, further
research should focus on developing hybrid approaches
that take advantage of multiple algorithms. Such enhan-
cements are fundamental, taking into account the need to
ensure operational efficiency in unmanned vehicles that
have to operate under optimal but rather undesirable
conditions while performing complicated tasks.
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BUKOPUCTAHHS POMMOBOI'O
IHTEJIEKTY B BE3IIIVIOTHUX
AITAPATAX

Amnacracis bognap, Irop Paé6iiiuyk,
IMaBao Cepmiok, Auapiii ®eyan

Jlocli/UKeHO BHUKOPHCTaHHS aIrOPUTMIB POHOBOro iHTe-
nexty B Oe3ninoraux anaparax (BITA), akueHToBaHo yBary Ha ix
3HAYHUX TIIepeBarax Juisl IiJABUIIEHHS e(EeKTHBHOCTI Ta
MIPOAYKTUBHOCTI IMX cHucTeM. be3minoTHi amapatw, ski MOXYTh
(YHKLIIOHYBaTH aBTOHOMHO a0 MiJ MUCTAHIIHHAM KepyBaH-
HM, BifIrpalOTh KIIOUOBY POJIb y TAaKUX cdepax, [K CIIOo-
CTEPEXCHHS, TOLIYKOBO-PSTYBaIbHI OIepallii, CUIbChKE I'OCIIO-
JIapcTBO Ta BikicbkoBi Ail. OcHOBHUI (oKyc cTaTTi 30cepeLKEHO
Ha TaKuX aIrOPUTMax, SIK ONTHMI3allisi MypallMHUX KOJOHIH
(ACO), mryyna 6pxonuHa xonoHist (ABC), onrumizariist poro
yactuaok (PSO), onrrrmizarist poro cBiTiLdKiB (GSO), anropurm
ceimmaka (FA), anropurm kaxana (BA), omrumizamist ciporo
BoBka (GWO) ta amropurm onrumizamii kxutiB  (WOA).
[pYHTOBHO MPOAHATI30BAHO MPHHUMIIK POOOTH  KOXKHOTO
aJIrOpUTMY, IXHE 3acrocyBaHHs y BITA, a Takox OLIHEHO IXHIO
e(eKTUBHICT y IMHAMIYHMX yMOBaXx. TaKoX HPOCTEKEHO
KJIIOUOBI II€peBard KOXKHOrO IrOPUTMY Ta IXHI OOMEKCHHS,
Taki SIK 1oTpeba B 0OUMCIIIOBAIBHUX pecypcax i BiNOBIIHICTH
[IEBHOMY CEPE/IOBHILY. AJITOPUTMH PO3IVISHYTO 3 TOUYKH 30py
YIPaB/IiHHS KPUTUYHO BaxUMBUMU (yHKiisamu BITA, Takumu sik
po3monin pecypciB 1 KoopAauHamis Hid y OaraToareHTHHX
CHCTEMaX, IO € BaXUIMBUM JUI BHUKOHAHHS CKJIAJHHX MiCIH.
Oco0nuBy yBary 30CEpeKEHO Ha aaNTUBHOCTI KOXKHOIO
JIrOpUTMY, OCOOJIMBO B YMOBaxX HenepeadadyBaHOro Ta
CKJIQTHOTO CEpe/IOBMINA, J¢ IBHAKA 3MiHa roBeliHkH BITA
MOKe BH3HA4aTH ycIix Micii. OKpiM IIbOro, 30CepekeHo yBary
Ha 3JaTHOCTI KOXHOTO ITOPUTIMY aJalTyBaTHCA IO HOBOI
iHpopmarii B pexuMi pealpHOrO 4acy, IO BIJKpHBAE
MIePCHEKTHBY JUIS IBUIIECHHS NPOIYKTUBHOCTI Ta HAIHHOCTI
BITA y cxnamHux ymoBax. OKpeMHH aKIEHT 3pOOJNCHO Ha
KOOpJMHALIl 3aBJaHb y POWOBOMY IHTENEKTi, IMiJKPECITIOYN
HOro 31aTHICTh HOKPAIyBaTH TPYHOBY B3a€EMOJIIO OE3ITIIOTHIX
anapariB (BITA) ta yxBaseHHs pilieHb U1 epeKTHBHOI pobOTH
Y CKJIaJIHUX 1 IMHaMiYHMX yMOBax. 3alpONOHOBAHO INIMOOKHUIA
aHaJli3 aIropuTMIB pPOHOBOrO IHTENEKTY Ta HAJaHO PeKo-
MeHZaNil moxo BHOOpY HAHOUIBII e(QEeKTUBHOrO ITiIXOmy
3a5iexHO BiJ crnenudiku 3aBpaHHsA 1 tumy BITA. Kpim Toro,
CTBOPEHO MOpIBHMIbHY TAaONULIO KIFOYOBUX BIACTHBOCTEH
ITOPUTMIB Ta 3pOOJIEHO OIS AHAJIOTIYHUX JIOCIIPKEHb, II0
MOPIBHIOIOTh  POHOBI  ayropurMu. MaiiOyTHi  JOCIIJKEHHS
OyoyTh 30Cepe/DKeHI Ha BIIOCKOHAJIEHHI MacIITabOBaHOCTI,
aJaNTUBHOCTI Ta IHTErpamil IMX alropuTIMiB i3 HOBITHIMH
TEXHOJIOTISIMH I PO3B’S3aHHA CKIAJHUX 3aBJaHb y MIiCisfX
BITA.
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