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Abstract: This article explores the use of swarm intel-
ligence algorithms in unmanned vehicles (UVs), focuses on 
their main advantages for improving the efficiency and 
productivity of systems. Unmanned vehicles, which can 
operate autonomously or under remote control, play a 
significant role in such areas as surveillance, search and 
rescue, agriculture and military operations. The main focus 
of the article is on algorithms such as ant colony 
optimisation (ACO), artificial bee colony (ABC), particle 
swarm optimization (PSO), glow-worm swarm optimi-
zation (GSO), firefly algorithm (FA), bat algorithm (BA), 
grey wolf optimizer (GWO), and whale optimization 
algorithm (WOA). Each of these algorithms is discussed in 
detail, particularly their core principles, specific 
applications in UVs, and their levels of effectiveness in 
different environments. Each algorithm has been examined 
to highlight its operational strengths and its limitations, such 
as computational demands and environmental suitability. 
This paper discusses the algorithms in terms of managing 
critical functions of UVs, such as resource allocation and 
multi-agent coordination, which are essential for complex 
mission scenarios. Particular attention is paid to the 
adaptability of each algorithm, especially in unpredictable 
or hostile environments, where rapid recalibration of UV 
behaviour is necessary for mission success. By analysing 
each algorithm capacity to adjust the UV to new data in 
real-time, the article highlights their potential to optimize 
UV performance and reliability in challenging contexts. 
Special attention is given to collaborative task management 
in swarm intelligence, emphasizing its ability to enhance 
unmanned aerial vehicle (UAV) group coordination and 
decision-making for efficient operation in complex and 
dynamic scenarios. In general, the article provides deep 
analysis of swarm intelligence algorithms, and the 
information that will help choose the most effective 
algorithm to help solve specific tasks using different types 
of UVs. Future research will focus on improving the 
scalability, adaptability, and integration of these algorithms 
with latest technologies in order to enhance their 
effectiveness in solving complex UV missions. In addition, 
a comparative table of the main characteristics of the 
algorithms was created and a review of similar studies 
comparing swarm algorithms was made. 

Key words: Multi-agent systems, optimization 
algorithms, task coordination, adaptive systems, dynamic 
scenarios. 

1. Introduction 
Unmanned vehicles (UVs) are a type of vehicle that 

can be controlled remotely or programmed to perform a 
task autonomously. It is hard to deny that UVs have 
rapidly gained popularity and now play a significant role 
in all areas of human life. They can be used for 
surveillance, search and rescue, agriculture and forestry, 
as well as military purposes. Swarm intelligence is one of 
the most significant areas in the study of algorithms for 
UVs. Swarm intelligence is a field that aims to build fully 
distributed decentralised systems in which the overall 
functionality of the system arises from the interaction of 
individual agents with each other and the environment. To 
effectively perform the tasks, appropriate algorithms are 
used, such as ant colony optimisation (ACO), artificial bee 
colony (ABC), particle swarm optimisation (PSO), glow-
worm swarm optimisation (GSO), firefly algorithm (FA), 
bat-inspired algorithm (BA), grey wolf optimiser (GWO), 
whale optimisation algorithm (WOA). They are used to 
solve problems related to route planning, target search, 
resource allocation, and coordination of UV groups. 
However, despite a large number of studies in this area, 
the question of the appropriate and effective use of 
algorithms for different tasks and types of UVs still re-
mains relevant. 

The main objective of this study is to review and 
analyse existing swarm intelligence algorithms and their 
application to improve the performance and efficiency of 
UAVs. This article analyses the advantages and disadvan-
tages of algorithms in different usage conditions and 
provides recommendations for the effective application of 
a particular algorithm for a given task and UAV, for 
example, in cases of military operations, environmental 
research, or disaster relief. 

The object of research is the processes of applying 
and implementing swarm intelligence in unmanned 
vehicles. 

The subject of research are algorithms and methods of 
swarm intelligence applied to different types of unmanned 
vehicles. 

The purpose of the work is to study and analyse the 
use of swarm intelligence in unmanned vehicles to 
improve their performance and efficiency. 
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To achieve this purpose, the following main research 
objectives are identified: 

● analyse existing swarm intelligence algorithms; 
● evaluate the performance of these algorithms; 
● identify the advantages and disadvantages. 
Materials and methods of research. In the work the 

following materials and methods were used: modern 
swarm intelligence algorithms, such as Particle Swarm 
Optimisation (PSO), Ant Colony Optimisation (ACO) and 
Artificial Bee Colony (ABC), glow-worm swarm 
optimisation (GSO), firefly algorithm (FA), bat-inspired 
algorithm (BA), grey wolf optimiser (GWO), whale 
optimisation algorithm (WOA); methods for analysing the 
performance of algorithms in unmanned vehicles (UVs); 
methods of data processing and estimation to determine 
the effectiveness of algorithms in different conditions. 

Analysis of recent research and publications. One of 
the global challenges in the application of swarm intel-
ligence algorithms for unmanned vehicles is the problem 
of adaptation to specific environmental conditions and 
tasks. Many scientific papers have been published on this 
topic, the article Swarm Intelligence: Concepts, Models, 
and Applications being one of them, which addresses the 
global problem of using swarm intelligence in UVs, in 
particular, improving the efficiency of algorithms for 
different tasks and types of UVs. The authors analysed the 
existing approaches and methods, highlighted their pros 
and cons in different applications. They emphasise that the 
effectiveness of the algorithm selection depends on the 
specific conditions and type of the task being performed 
by the UV [1]. One of the main aspects highlighted by the 
authors of A Review of Swarm Robotics Tasks is the need 
for a more detailed study and adaptation of swarm 
intelligence algorithms to specific conditions of use, 
which will ensure more efficient operation of UAVs in 
various fields, such as search and rescue, surveillance, and 
other tasks [2]. In the article Swarm Based Optimisation 
Algorithms For Task Allocation In Multi-Robot Systems: 
A Comprehensive Review, the authors describe swarm 
intelligence algorithms in detail, consider their underlying 
principles, their application in various fields, advantages, 
disadvantages, and highlight the problem of task 
allocation in multi-robot systems, including unmanned 
vehicle systems. According to the authors, this work can 
lead to understanding the swarm optimization algorithms 
which will enhance the possibility of applying multi-robot 
systems to solve real-world problems with increasing 
levels of complexity [3]. As for more specific examples in 
the article Motion Planning of UAV Swarm: Recent 
Challenges and Approaches, the authors consider the 
challenges associated with the use of UAV in different 
tasks and suggest improved algorithms to enhance the 
efficiency of the tasks. The authors have explored 
methods and models of swarm planning: control, route 

planning, architecture, communication, monitoring and 
tracking as well as security issues. Furthermore, the 
authors highlight that the efficiency of algorithms may 
also range significantly from one specific environment 
and task to another, which raises a question about further 
improvement in their performance [4]. In recent years, 
autonomous underwater vehicles also have made sig-
nificant progress, especially in the fields of oceanography, 
military and underwater research. The authors of the 
article Path Planning for Autonomous Underwater 
Vehicles say that route planning is really important in 
allowing AUVs to operate efficiently: helping them 
navigate properly to avoid getting stuck and use less 
energy. The authors proposed addressing this issue by 
merging two algorithms in order to enhance the com-
putational efficiency [5]. The article Review of Multiple 
Unmanned Surface Vessels Collaborative Search and 
Hunting Based on Swarm Intelligence highlights the 
challenges in coordinating multiple unmanned surface 
vessels for tasks like cooperative search and hunting. The 
authors discuss the advantages and limitations of swarm 
intelligence algorithms, emphasizing their ability to 
enhance collaboration and improve task efficiency. They 
propose optimization methods to address existing 
challenges and suggest future research directions, such as 
adapting algorithms to dynamic environments and 
improving fault tolerance in Multiple Unmanned Surface 
Vessel (MUSV) systems [6]. Many approaches are used 
today to improve the efficiency of algorithms, as shown 
above, scientists also combine algorithms to achieve the 
highest performance. Thus, a comprehensive analysis of 
the literature on the subject of the study suggests that 
increasing the efficiency of adaptation and application of 
swarm intelligence algorithms for different types of 
unmanned vehicles and usage conditions remains an 
urgent problem. Developers suggested some methods for 
solving these problems, however further research and 
improvement of existing methods are required to ensure 
the effective outcome of operations of unmanned vehicles 
in various applications. 

2. Research results and their discussion 
Ant colony optimization (ACO). The ant colony 

optimization algorithm is widely used in UVs for solving 
complex route planning and optimization problems. The 
algorithm mimics how ants find food using pheromone 
traces. The ant chooses the next step based on how many 
pheromones other ants have left along the path (i.e., the 
most visited places and thus considered to be the optimal 
solution) and how heuristically attractive the path is (e.g., 
short). This approach helps the algorithm to avoid getting 
stuck on early stages and helps to find new paths using 
pheromone evaporation. The key formula is the next step 
(path) probability formula [16]: 
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heuristic visibility. Considering  two alternative paths 
i j→  and i k→  with 4ijτ = , 2ikτ = , α = 1, β = 2, and 

distances 10ijd = , 5ikd = , as a result, we get 0.33ijP =  

and 0.67ikP = . Each local ratio is scaled linearly, so 
despite slow initial convergence, computational cost 
remains moderate and rarely grows exponentially. Howe-
ver, when environments shift quickly, updating ijτ  can 
lag, making real-time responses low or moderate at best. 

The main advantage of the ACO is its ability to 
distribute computation and avoid premature convergence. 
The ACO is often used in tasks that require finding 
globally optimal paths. One of the biggest advantages is 
fast convergence in the later stages, as well as a quick 
approach to the optimal or near-optimal solution, 
especially in the final stages of the search. Another key 
advantage is memorability, when pheromone traces help 
to ‛remember’ previous decisions to influence future ones. 
However, tuning parameters like α, β, and pheromone 
decay is crucial; poor values may cause early convergence 
or inefficient exploration. Multiple UAVs share 
pheromone updates, allowing them to benefit from other 
partial solutions, though concurrent updates can 
sometimes conflict [17, 20]. As for scalability, each 
denominator demands M numeric products and additions 
thus overhead is O(M). Larger swarms may strain runtime, 
but basic expansions still work well. The ACO can handle 
multiple objectives by combining them into a single 
weighted heuristic ijη . For example, distance plus energy 

 ije  can be combined as 1 2
ij

ij ijd e
ω ω

η = + , where ω  is their 

weights. This approach is feasible but remains simpler 
than full multi-objective optimization since it reduces 
multiple goals to one scalar. The ACO performs best in 
static environments but can be adapted for dynamic ones. 
One of the key drawbacks is its slow convergence during 
the initial iterations due to the reliance on accumulated 
pheromones, which delays path discovery. Additionally, 
fixed parameters, especially the pheromone evaporation 
rate, can result in premature convergence or prolonged 
exploration. To improve performance, a dynamic 
evaporation rate is proposed: a higher rate during early 
iterations to encourage diverse exploration, followed by a 
gradual decrease to stabilize the convergence around 
promising solutions. Also, local pheromone resets in areas 
with rapidly changing data can prevent UAVs from 

relying on outdated route data. These adjustments improve 
responsiveness and path precision in semi-dynamic 
environments. Overall, the ACO is best for moderate-
speed route optimization with partially changing 
constraints, performing well for tasks like stable obstacle 
avoidance or multi-target navigation, but less ideal where 
real-time reactivity and massive scalability dominate [3, 8, 
12].  

Artificial bee colony (ABC). An artificial bee colony 
algorithm, inspired by the honeybees, is widely used for 
route planning for Unmanned Combat Aerial Vehicles 
(UCAVs) due to its effective balance between exploration 
and exploitation. It models the behaviour of three types of 
bees: employed, onlooker and scout. Local search is 
performed by employed and onlooker bees, improving on 
solutions already found. Employed bees generate new 
solutions by mutating existing good ones, then onlooker 
bees select the best solutions for improvement. This 
allows the algorithm to quickly converge to optimal or 
near-optimal solutions. Meanwhile, scout bees perform a 
global search function, randomly looking for new 
solutions. This helps to avoid local minimums, which is 
important for finding optimal routes. However, the local 
exploitation of the ABC is less efficient than its global 
search, which slowly converges to the optimal solution 
when fast decisions are needed. ABC main update 
formula is [18]: 

 ( ),i i i k i kv x x xφ= + − , (2) 

where ix  is the current path, kx  a random neighbour, and 

,  i kφ is a random number between −1 and 1. This method 
helps explore possible routes. However, if the “limit” (the 
number of unsuccessful tries before a bee abandons a 
solution) is too high, the algorithm reacts slowly to sudden 
changes, making real-time performance only low to 
moderate.  The ABC is easy to implement, requiring just a 
few parameters. However, performance is sensitive to the 
“limit” and colony balance, so some tuning is needed, 
because incorrect settings of these parameters can lead to 
suboptimal performance or premature convergence. In the 
ABC, onlooker bees choose paths based on fitness scores 
[18]: 
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f
=

∑
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For example, with scores [0.2, 0.3, 0.5, 0.8, 1.2], the 
best path (1.2) gets a 40 % chance of being picked. This 
selection uses simple math, just additions and divisions, so 
the algorithm does about O(N) operations. That means 
computational cost grows steadily, keeping ABC efficient 
for mid-sized problems while still focusing on better 
routes. The ABC has linear complexity O(N), making it 
efficient for mid-sized UAV groups. For larger swarms, 
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performance may drop unless optimized. Collaboration in 
the ABC is indirect, bees share solution quality through 
fitness values, not pheromones. Onlooker bees focus on 
strong paths, while scouts explore new ones. This 
decentralized system supports flexible coordination, but 
with less global awareness than the ACO or the PSO [17, 
20]. The ABC handles multiple goals by combining them 
into one using weighted sums which allow easy com-
parison. However, it lacks advanced methods like Pareto 
fronts, limiting flexibility in complex trade-offs. A key 
drawback of the Artificial Bee Colony (ABC) algorithm is 
its slow local convergence caused by strong global search 
and weak local refinement. The fixed “limit” parameter 
for abandoning poor solutions also reduces responsiveness 
in dynamic environments. To improve adaptability, a 
dynamic limit based on environmental changes or con-
vergence speed is proposed. Lowering the limit in 
unstable conditions enables quicker solution updates. 
Additionally, enhancing local search using gradient-based 
or Lévy-flight-inspired movements can boost refinement. 
These changes aim to improve real-time ABC respon-
siveness while preserving its strengths in decentralized 
coordination for dynamic UAV route optimization. 
Overall, the ABC is ideal for pre-flight planning, threat 
avoidance, and target allocation, but not suited for fast-
changing, real-time UAV control [3, 7, 13].  

Particle Swarm Optimization (PSO). A Particle 
swarm optimization algorithm is inspired by the behaviour 
of birds forming flocks to search for food. It uses the 
collective behaviour of the particles to get global 
optimisation with an iterative method, where particles 
adjust to their trajectory after considering individual 
experience and interaction with others, similar to how 
birds will not collide with others in flight. The PSO has 
been widely used in obstacle avoidance and trajectory 
optimization tasks for unmanned underwater vehicles. The 
algorithm finds the most efficient and safe route in an 
underwater environment, considering constraints such as 
obstacles, depth and the need to minimise power 
consumption. By considering the UUV trajectories as 
particles in a swarm, the PSO dynamically re-optimizes 
these trajectories based on the data received from vehicles. 
This helps the UUV to follow the correct path and avoid 
stalls even with sudden change of trajectory.  The PSO 
updates particles using [19]:  

 ( ) ( ) ( ) ( )1 1 2 21i i i i iv t v t c r p x c r g xω+ = + − + − , (4) 

 ( ) ( ) ( )1 1i i ix t x t v t+ = + + . (5) 

Here, ix  is the  current drone route, ip  its personal 
best, and g the swarm best. The values ω , 1c , and 

2  c control momentum, personal memory, and group 
influence. In dynamic settings, relying too much on past 

bests can slow adaptation, so improved PSO variants 
adjust these values or add randomness for faster response. 
Each PSO iteration performs three operations per particle: 
velocity update O(D), position update O(D), and fitness 
evaluation O(1) or O(D). Total cost is 

( ) ( ) 2  N D fitnesscomplexity O ND= + ≈ , scaling steadily 
without combinatorial growth, making the PSO efficient 
for real-time UV tasks. The total effort of the PSO scales 
linearly: T = O(ND), where N = number of particles, 
D = dimensionality. Doubling either particles or 
dimensions doubles workload. However, since the PSO 
does not require population-wide interaction, it remains 
scalable in distributed UV applications. The standard PSO 
handles multiple objectives by scalarizing them. This 
approach simplifies optimization, but can miss Pareto-
optimal trade-offs. At the initial stage, the PSO has a high 
convergence rate, but at later stages it can slow down, 
which may require additional improvements to the 
algorithm to increase its efficiency. One of the main 
disadvantages of the PSO is that it can get stuck in local 
optima, leading to inefficient task performance. It is easy 
to implement the PSO with just three main parameters and 
no mutation, crossover, or pheromones. Defaults often 
work well, though tuning improves results. Initialization 
and boundaries are easier than in many other algorithms. 
Swarm coordination in the PSO relies on the shared global 
best g, guiding each agent update. Though agents do not 
communicate directly, their actions stay aligned, enabling 
coordinated UV behaviour without central control [17, 
20]. A key limitation of the standard Particle Swarm 
Optimization (PSO) is its tendency to get trapped in local 
optima, especially in later stages, reducing adaptability in 
dynamic UUV environments. Its reliance on historical 
best positions hinders responsiveness to rapid changes. To 
address this, a re-randomization mechanism for stagnating 
particles, those without recent improvement, can be 
introduced. Additionally, the use of adaptive inertia 
weighting, which decreases over time, encourages early 
exploration and later convergence. These enhancements 
improve the resilience, adaptability, and real-time 
performance of the PSO while preserving its simplicity 
and speed, making it more effective for UV coordination 
and continuous path re-optimization. The PSO is suited to 
real-time routing, multi-UV coordination, low-resource 
systems, and swarm control. However, it is less effective 
with rapidly changing goals or strict discrete constraints 
[1, 8, 15].  

Glow-Worm Algorithm (GSO). The algorithm is 
inspired by the behaviour of fireflies, which emit light 
using a chemical called luciferin. They use it to attract 
prey and coordinate their swarming movements. This 
behaviour is the main principle of the GSO algorithm, 
making it useful in tasks requiring path optimization. This 
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approach balances exploring new solutions and exploiting 
current ones using the ability of fireflies to dynamically 
adapt their search radius. The GSO updates each agent’s 
luciferin (signal strength) and position using [21]: 

 ( ) ( ) ( ) ( )( )1 1i i il t p l t J x tγ+ = − + , (6) 

 ( ) ( ) ( ) ( )
( ) ( )

1  j i
i i

j i

x t x t
x t x t s

x t x t

−
+ = + ⋅

−
, (7) 

where il  is luciferin, p  is the decay constant, γ is 
luciferin gain, and jx  is a neighbour with a stronger 
signal. The GSO forms multiple swarms for flexible 
adaptation, but its responsiveness depends on decay and 
sensing range, which may limit speed in fast-changing 
conditions. Thus, the GSO differs from other algorithms, 
because it does not focus on finding a single global 
solution, but looks for multiple solutions with varying 
values of the objective function. The algorithm divides the 
swarm into groups, each converging to different local 
optima, allowing the UAV to explore multiple viable 
paths simultaneously. This decentralized behaviour 
enables parallel search and coordination, making it ideal 
for multi-objective or multi-region UAV tasks [20]. The 
GSO helps the UAV avoid premature convergence to 
suboptimal solutions, a common problem in dynamic 
environments. By directing each firefly (representing the 
UAV) to brighter, more promising areas in the search 
space, the GSO decreases the risk of falling into local 
optimum. In each iteration, the position of the UAV is 
modified and the focus is modulated by the luciferin level 
described as the attractive potential of a location in the 
search space. Each GSO iteration involves luciferin 
update O(1), neighbour checking O(N), and movement 
update O(D). Since each of the N agents compares itself to 
all others, total cost becomes O(ND+N2). This O(N2) 
neighbour search is a GSO main bottleneck. To address 
this, it is proposed to introduce a fixed-radius or grid-
based neighbourhood filtering strategy. This would reduce 
comparison overhead to O(kN), making the algorithm 
significantly more scalable for large UAV swarms. Addi-
tionally, GSO responsiveness in fast-changing environ-
ments is limited by static luciferin decay settings. A 
potential solution is to implement a dynamic decay 
adjustment, where the decay rate increases in rapidly 
changing zones to encourage faster response and new path 
discovery. The GSO relies on tuning four key parameters: 
step size, luciferin decay, gain, and neighbourhood range. 
Though being simple in design, its performance depends 
heavily on these settings: too small the radius limits 
collaboration, too large the convergence slowdown. 
Proper tuning is essential but manageable. The GSO uses 
a fitness function, which can incorporate weighted criteria. 

This scalarization supports multi-objective optimization in 
a basic form. The GSO does not natively support Pareto 
fronts, but it handles multi-criteria routing well with 
custom scoring functions. In general, GSO excels in 
distributed surveillance, search and rescue, and adaptive 
navigation. It is less suited for time-critical updates or 
very large swarms without neighbourhood filtering [8, 9, 
14].  

Firefly algorithm (FA). The firefly algorithm is 
inspired by fireflies and their bioluminescent behaviour, 
where flashing signals indicate attractive positions, 
guiding the search for optimal solutions. The FA is widely 
used for optimizing flight paths in complex and dynamic 
battlefield conditions. In UAV applications, the FA starts 
with a random set of solutions representing potential flight 
paths, maintaining diversity in the solution space and 
avoiding premature convergence to local optima. It allows 
UAVs to efficiently avoid threats and minimise fuel 
consumption while exploring and converging on optimal 
routes. The FA updates positions based on the formula 
[22]: 

( ) ( ) ( ) ( )( ) ( )
2

01 e ijr
i i j i ix t x t x t x t tγβ α−+ = + − + ε , (8) 

where ix  is the current solution, jx  is a more attractive 

firefly, ijr  is the distance between them, and ( )i tαε  adds 
randomness. This balances exploration and exploitation, 
by guiding each’firefly’ towards brighter, promising areas 
in the search space, ensuring UAVs find efficient routes. 
However, in fast-changing environments, the standard FA 
may converge slowly or follow outdated paths unless 
enhanced with adaptive steps or random walk. For N 
fireflies in a D-dimensional space, each firefly compares 
itself to all others (N−1 interactions), leading to a 
complexity of O(N2D). Each interaction includes a 
distance calculation O(D), brightness comparison O(1), 
and position update O(D). This quadratic scaling makes 
the FA less efficient for large swarms but still manageable 
in mid-sized UAV groups. The FA scales poorly as each 
firefly compares with all others, causing comparisons to 
grow rapidly with a swarm size. To address this, 
introducing a fixed interaction radius or neighbourhood 
filtering would reduce comparisons to nearby agents only, 
improving scalability to O(kN) and allowing the FA to 
scale to larger UAV teams. Another issue is slow 
convergence in dynamic environments, where outdated 
solutions may mislead the swarm. A possible solution is to 
incorporate an adaptive randomization factor that 
increases when environmental changes are detected, 
allowing the algorithm to re-diversify and respond more 
effectively to sudden threats. The FA uses just a few 
parameters: light absorption γ, attractiveness β0, and 
randomization factor α. The algorithm is easy to 
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implement, but performance is sensitive to tuning. Poor 
settings can cause early convergence or weak exploration, 
especially in complex and high-dimensional UAV tasks. 
The FA enables implicit coordination as fireflies move 
toward brighter neighbours, guiding UAVs to promising 
areas. Without global memory, swarms may cluster 
around local optima unless randomness is added [17]. The 
FA typically uses scalar fitness values. Multi-objective 
routing is handled by combining factors into one score, 
while being simple, this limits adaptability. The FA does 
not support Pareto front maintenance unless extended with 
specialized Multi-Objective Optimization (MOO) 
techniques. The FA is extremely flexible, fitting well into 
the conditions under which many UAVs must operate 
where threats can change. If a new threat is detected, the 
FA recalibrates the flight path by recalculating the 
brightness of fireflies to avoid the threat. Due to its 
reliable and flexible planning, UAVs maintain mission 
effectiveness with minimal risk. In general, the firefly 
algorithm is a powerful tool for UAV flight planning. The 
FA is best for offline planning, smooth trajectories, and 
moderately dynamic tasks. It is less suited to real-time 
replanning or large UAV swarms [10, 11, 14].  

Bat-inspired Algorithm (BA). The bat algorithm is 
an advanced swarm intelligence technique inspired by the 
echolocation behaviour of bats. The main principle of the 
algorithm is that bats navigate by emitting sound pulses 
and analyse the echoes returning from objects, building a 
3D map of their surroundings. The algorithm copes with 
navigation in three-dimensional space, where the main 
goal is to determine the accident-free, shorter and safer 
flight path. This makes the BA an invaluable tool for 
UAVs that need to cross difficult terrain while avoiding 
threats. The BA updates positions with a velocity-
frequency model [23]: 

 ( )1 * t t t
i i i iv v x x f−= + − , (9) 

 1t t t
i i ix x v−= + , (10) 

where if  is frequency, and *x  is the global best. The 
algorithm explores the search space where potential 
solutions are represented by bats which move towards 
more promising regions. As they approach better solution, 
the algorithm adjusts its exploration, reducing the volume 
and frequency of the bats’ pulses. This way the BA 
focuses on improving solutions while ensuring that UAVs 
find optimal flight paths with a reduced collision risk and 
minimal exposure to threats.  However, standard BA may 
lag in fast-changing situations without adaptive control 
mechanisms. Each bat updates frequency, velocity, 
position, and, optionally, loudness, with total cost per 
iteration O(ND). This makes the BA lighter than the FA or 
the ACO and suitable to real-time or embedded UAV 

tasks. The BA does not require pairwise comparisons. 
Each agent updates using only its own state and the global 
best. This yields linear complexity, scaling well even with 
large swarms. The BA uses a few parameters, hence the 
algorithm is simple to implement, but performance 
depends heavily on balancing exploration and explo-
itation. Coordination is implicit. Bats adjust their path 
using the global best solution, which enables alignment 
toward a shared goal without direct communication. 
Though less interactive than the PSO, this mechanism 
supports emergent coordination in UAV groups [17, 20]. 
The standard BA also combines multiple criteria into a 
single scalar. The BA is ideal for fuel-efficient routing, 
smooth trajectories, and energy-aware target tracking. It is 
less suited to fast responses under high uncertainty 
without enhancements. The BA is highly effective in 
global optimization, such as UAV trajectory planning, 
where it navigates through dynamic terrains and adapts to 
changing conditions with minimal computational cost. 
However, it can sometimes struggle with local search, 
causing it to get stuck in local optima. To overcome this, a 
local intensification phase can be introduced (such as a 
refined random walk triggered when swarm diversity 
drops), allowing UAVs to escape local optima without 
sacrificing global convergence. Additionally, the perfor-
mance of the BA heavily depends on parameter settings 
like a pulse rate and frequency. A promising solution is to 
apply adaptive parameter tuning, where these values 
adjust dynamically based on convergence speed or 
environmental volatility. This would improve the al-
gorithm responsiveness in rapidly changing conditions of 
the UAV mission. With powerful global search ca-
pabilities, the BA is widely used in tasks requiring 
navigation through complex and dynamic environments 
[7, 11, 15].  

Grey Wolf Optimizer (GWO). The grey wolf 
optimization algorithm models the hierarchical structure, 
behaviour, and hunting mechanisms of grey wolves. One 
of the key features of the GWO is its ability to model 
collective search, where agents (wolves) play different 
roles depending on their position in the pack. α wolves 
direct the search and select the optimal route, β and δ 
wolves refine it, while ω wolves follow the collective 
strategy. This way the GWO provides position updates 
that do not focus only on the position of one leader, which 
helps to avoid premature convergence to a single local 
optimum [24]:  

 ( )1
3

X X X
X t α β δ+ +

+ =

r r r
r

. (11) 

In dynamic UAV tasks, the GWO adapts well due to 
this leader-based approach, allowing agents to react to 
changing conditions collaboratively. Studies have shown 
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the GWO outperforms several metaheuristics in terms of 
path cost and convergence when navigating dynamic or 
multi-target environments. In UAVs, this behaviour 
means efficient search and optimisation of flight paths in 
three-dimensional space with constraints. The algorithm 
ability to balance between exploration and exploitation 
makes it well suited to finding optimal or near-optimal 
paths for UAVs, allowing them to cover large areas 
efficiently while avoiding threats. Avoiding premature 
convergence is a key benefit of the GWO, allowing UAVs 
to find globally optimal routes in complex environments. 
However, in large-scale, optimization problems the GWO 
can suffer from, are premature convergence, leading to 
suboptimal solutions.  Additionally, GWO risks falling 
into local optima in complicated and multi-dimensional 
environments, causing suboptimal waypoint selection. To 
address this, a diversity control mechanism can be 
introduced–such as periodically reinitializing a portion of 
the omega wolves or injecting controlled noise into 
position updates to maintain exploration and prevent early 
stagnation. Additionally, the performance of the GWO in 
complex environments can be improved by adopting a 
dynamic role adaptation, where the leadership structure (α, 
β, δ) is periodically reassessed based on recent fitness 
improvement rather than static rankings. This would 
promote adaptability and robustness during long or 
dynamic UAV missions. For N agents in D dimensions 
each agent evaluates fitness O(1), updates positions based 
on 3 best agents → O(D), total per iteration T = O(ND). 
No pairwise comparison is required, making the GWO 
more efficient than the FA or the ACO in computation. 
Because the GWO relies only on global bests and not 
agent-to-agent comparison, the algorithm scales linearly 
with population size. This makes the GWO suitable for 
large UAV fleets and swarm control with minimal 
bottlenecks. The GWO has minimal parameters, and its 
update mechanism is simple. However, some sensitivity to 
population size and the balance between exploration and 
exploitation exists, especially in complex environments 
[17, 20]. A GWO hierarchical model enables 
decentralized coordination, with agents guided by alpha, 
beta, and delta wolves, being ideal for multi-UAV 
systems. It avoids scalarization by tracking multiple top 
solutions, preserving swarm diversity and supporting 
trade-offs across objectives like distance, energy, and risk. 
The GWO remains scalable and suitable for large groups 
where coordination and coordinated search are needed. It 
is easy to see how this would be ideal for military 
applications where the terrain cannot always be assured to 
be safe [6, 11, 14]. 

Whale Optimization Algorithm (WOA). The 
Whale Optimization Algorithm is inspired by the bubble 
net hunting strategy of humpback whales. It mimics the 

social behaviour and hunting mechanisms of whales, in 
particular their method of catching prey using a spiral 
bubble net. The encirclement stage allows gradual 
approach to the best solution.  The WOA is effectively 
used to optimise path tracking and navigation for 
unmanned vehicles. The WOA identifies the best (with 
least errors) navigation paths, ensuring safe and efficient 
navigation for autonomous vehicles in challenging 
environments, key formula for it being: 

( ) ( )
( ) ( )

*

'
*

,  0,5
1  

cos 2 ,  0,5bl

X t A D p
X t

D e l X t pπ

 − ⋅ <+ =
+ ≥ ⋅ ⋅

r
r

r r . (12) 

Here, ( )*  X t
r

is the best solution so far, and the 
random number p switches between spiral and circular 
paths. This mechanism helps the WOA adapt by either 
exploring new regions or exploiting known good areas. 
However, like most population-based algorithms, standard 
responsiveness of the WOA to sudden environmental 
changes is limited without adaptation techniques. For each 
whale in a population of size N and dimension D, the 
position update requires best-solution distance O(D) and 
randomized movement O(D). Total cost per iteration is 
T =O(ND). This is efficient and suitable for onboard UAV 
systems, especially when real-time constraints are mo-
derate. The WOA does not perform pairwise comparisons 
and only requires knowledge of the global best, so it 
scales linearly with swarm size. For large UAV groups, it 
remains computationally practical. All whales adjust their 
paths based on the current best solution, which drives 
collective behaviour. While not explicitly collaborative 
like the ACO, the WOA enables implicit coordination, 
making it useful for decentralized UAV mission planning 
[20]. The WOA typically scalarizes multiple objectives 
into a single fitness value, this allowing basic trade-offs 
(e.g., between distance, energy, and risk). An important 
advantage of the WOA is its adaptability to different 
environmental conditions. The WOA requires minimal 
parameters (spiral coefficient b, coefficients A and C, and 
random factors). It is simple to implement, but perfor-
mance varies with the balance between exploration (spiral 
movement) and exploitation (shrinking encirclement). 
However, algorithm balances exploration and exploitation, 
by adaptively changing trajectories in the search space, 
helping reduce overfitting to local optima. Another benefit 
is that this optimization converges to a better solution in 
fewer iteration compared with other algorithms, making it 
well-suited for real-time applications, which requires 
quick responses. However, performance of the algorithm 
largely depends on selection of initial parameters and 
optimization with the WOA can become complex when 
tasks are very dynamic or large in scale. Also, the  WOA  
sometimes  falls into  local optima,  especially   in  complex  
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and multidimensional search spaces. Thus, a key limitation of 
the WOA is its limited responsiveness in highly dynamic 
environments, where the reliance on a single best solution 
can cause the swarm to stagnate or overfit to outdated paths. 
To address this, a multi-leader memory mechanism can be 
introduced, where a small archive of recent best solutions 
guides exploration. This would diversify the search and 
enable quicker adaptation to environmental changes. Additio-
nally, to reduce the risk of local optima entrapment, 
incorporating a randomized reinitialization for stagnant 

agents could periodically introduce diversity, helping UAVs 
escape misleading trajectories and improving overall 
robustness in complex path planning tasks. The WOA suits to 
energy-efficient routing, semi-dynamic planning, and smooth 
trajectories. Overall, its adaptability and efficiency make it a 
valuable tool in the development of autonomous UAV 
systems [11, 14].   

For better understanding and comparison, the 
properties of ACO, ABC, PSO, GSO, FA, BA, GWO, 
WOA are presented in Table. 

 
ACO, ABC, PSO, GSO, FA, BA, GWO, WOA comparison  

 ACO ABC PSO GSO FA BA GWO WOA 
Performance in 

Dynamic 
Environments 

Low- 
Moderate 

Low- 
Moderate Low-Moderate Moderate-High Moderate-

High Moderate-High Moderate-High Low-Moderate 

Computational 
Efficiency 

Moderate Moderate Moderate Moderate Moderate High High High 

Scalability Low Moderate Moderate Moderate Moderate–
High High High High 

Ease of 
Implementa-
tion and Fine-

Tuning 

Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate 

Optimal Use 
Cases 

Route 
Optimization 

Pre-flight & 
mid-scale 
planning 

Real-time 
UAV 

coordination 

Multi-region 
UAV search, 

Threat 
avoidance, 

mission 
planning 

Dynamic 
tracking with 

limited 
resources 

Multi- 
coordination 

and threat-aware 
routing 

Energy-efficient 
routing with 

low reactivity 

Collaborative 
Task 

Management 
Moderate Moderate Moderate–

High Moderate–High Moderate–
High Moderate High Moderate 

Ability to 
Handle 

Multiple 
Objectives 

Limited 
(weighted 

scalar 
heuristic, no 

Pareto 
support) 

Limited 
(scalarized 

objectives, no 
Pareto front) 

Limited 
(scalarization, 

true multi-
objective needs 

MOPSO) 

Limited 
(basic 

scalarization, no 
Pareto support) 

Limited 
(scalar scores, 
lacks Pareto 

tracking) 

Limited 
(scalar fitness, 
multi-objective 
support limited) 

High 
(tracks multiple 

top solutions 
without 

scalarization) 

Limited 
(scalar 

objective, lacks 
Pareto front 

unless 
extended) 

 
Discussion of research results. This paper examines 

different systems and algorithms associated with swarm 
intelligence techniques that are used in unmanned vehicle 
(UV) systems. Results have suggested that each of these 
algorithms has its own different areas of strength and 
weaknesses that affect their efficiency under various 
operating conditions. The ant colony optimization (ACO) 
algorithm has shown high efficiency in routing and path 
optimization tasks, especially in conditions where high 
accuracy and efficiency are required. On the other hand, it 
has been noticed that the ACO has limitations in the late 
stages of searching, which may slow down the 
convergence process and make this method less suitable in 
areas where fast response is required [12]. The artificial 
bee colony (ABC) algorithm has demonstrated high 
adaptability to dynamic environments and the ability to 
effectively avoid local minima, which is critical for 
military operations and rescue missions [13]. However, 
experiments have shown that this algorithm has some 
difficulties with fast convergence at local levels, which 

may require additional parameter optimization to improve 
its efficiency. The particle swarm optimization (PSO) 
algorithm has proven to be one of the best tools for 
optimising trajectories in complex environments such as 
underwater vehicles (UUVs). One of its strong features is 
the ability to quickly adapt to changes and ensure safe 
navigation. However, the downside of the PSO is that it 
quite often results in premature convergence to local 
optima, which can reduce the overall efficiency of the 
algorithm in complex and multidimensional spaces [14, 
15]. The glow-worm swarm optimization (GSO) and the 
firefly algorithm (FA) are highly effective in coordinating 
the exploration of several alternative optimal routes 
simultaneously by UVs [14]. This makes them useful 
tools for solving tasks that require high flexibility and the 
ability to adapt to new conditions. Despite the previous 
statement, the quality of the results from these algorithms 
depends on the set of the parameters, which may be 
problematic under challenging operating conditions. The 
bat algorithm (BA) has shown significant performance on 



Use of Swarm Intelligence in Unmanned Vehicles  

 

15 

3D navigation tasks, but its local search may not be so 
effective, sometimes leading to getting stuck in local 
optimum [15]. The grey wolf optimizer (GWO) and whale 
optimization algorithm (WOA) have demonstrated high 
efficiency in providing stable and safe navigation in 
complex and dynamic environments [14]. However, they 
can also experience the problem of premature 
convergence of the optimization process, which limits 
their use in circumstances that require global optimization. 
In conclusion, some difficulties arise in the course of 
optimising the navigation systems of the unmanned 
vehicles (UVs) in complex and dynamic environments. 
While many of the swarm intelligence algorithms have 
undergone some improvements, the challenge of global 
optimization without settling for suboptimal or local 
optima still persists. This is a serious concern because it 
impacts the ability of the unmanned vehicles to perform 
with high accuracy and reliability, especially when there is 
a need to respond to quick and unpredictable environ-
mental changes. Another important problem is the 
adjustment of algorithm parameters that significantly 
influences their efficiency. If the tuning is incorrect, then 
the solution is not optimal and will degrade the 
performance of the system as well as the overall success 
of the mission. This problem becomes even more relevant 
when a task is to be performed in real time, when the 
speed of decision making as well as the accuracy in doing 
this is very crucial. Therefore, the main problem is the 
enhancement of swarm intelligence algorithms so that 
they can be used in dynamic and complex environments 
and development of the adaptive parameter control 
techniques to improve reliability and stability of unman-
ned systems. So, basing on the results of the work 
performed, it is possible to formulate the following 
scientific novelty and practical significance of the research 
results. 

Scientific novelty of the obtained research results is a 
comprehensive analysis and comparison of various swarm 
intelligence algorithms used in unmanned systems. 

Practical significance of the research results lies in the 
possibility of optimising navigation systems for UVs, 
which allows for increasing their efficiency and reliability 
when performing tasks in difficult conditions. In 
particular, the results of the study can be used to improve 
control and navigation systems, which will ensure the safe 
operation of autonomous vehicles in various environ-
ments. 

Conclusions 
The paper presents an in-depth review of the 

performance and potential of different swarm intelligence, 
that is, driven algorithms and their incorporation in 
unmanned vehicles to address the problems of route 
optimization and navigation in a complex and dynamic 

environment. Various algorithms were investigated, 
including Ant Colony Optimization (ACO), Artificial Bee 
Colony (ABC), Particle Swarm Optimization (PSO), 
Glow-Worm Swarm Optimization (GSO), Firefly Algo-
rithm (FA), Bat Algorithm (BA), Grey Wolf Optimizer 
(GWO), and Whale Optimization Algorithm (WOA). The 
results show that these algorithms demonstrate significant 
potential for tasks such as route planning, resource 
allocation, and real-time adaptation to changes in the 
environment, but there are challenges, in particular, in 
their adapting to dynamic environments. Each algorithm 
has its own unique advantages, but a common problem is 
the risk of premature convergence to local optima, which 
limits their effectiveness in global optimization. Also, it 
has been established that the adjustment of the parameters 
of the algorithms is very important for the quality of the 
work done, especially in real time.  

This convergence allows more robust decision-
making processes, improved adaptability, and effective 
coordination in complex tasks. In order to improve their 
scalability and adaptability for use in the UVs, further 
research should focus on developing hybrid approaches 
that take advantage of multiple algorithms. Such enhan-
cements are fundamental, taking into account the need to 
ensure operational efficiency in unmanned vehicles that 
have to operate under optimal but rather undesirable 
conditions while performing complicated tasks. 
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ВИКОРИСТАННЯ РОЙОВОГО 
ІНТЕЛЕКТУ В БЕЗПІЛОТНИХ 

АПАРАТАХ 

Анастасія Боднар, Ігор Рабійчук,  
Павло Сердюк, Андрій Фечан 

Досліджено використання алгоритмів ройового інте-
лекту в безпілотних апаратах (БПА), акцентовано увагу на їх 
значних перевагах для підвищення ефективності та 
продуктивності цих систем. Безпілотні апарати, які можуть 
функціонувати автономно або під дистанційним керуван-
ням, відіграють ключову роль у таких сферах, як спо-
стереження, пошуково-рятувальні операції, сільське госпо-
дарство та військові дії. Основний фокус статті зосереджено 
на таких алгоритмах, як оптимізація мурашиних колоній 
(ACO), штучна бджолина колонія (ABC), оптимізація рою 
частинок (PSO), оптимізація рою світлячків (GSO), алгоритм 
світлячка (FA), алгоритм кажана (BA), оптимізація сірого 
вовка (GWO) та алгоритм оптимізації китів (WOA). 
Ґрунтовно проаналізовано принципи роботи кожного 
алгоритму, їхнє застосування у БПА, а також оцінено їхню 
ефективність у динамічних умовах.  Також простежено 
ключові переваги кожного алгоритму та їхні обмеження, 
такі як потреба в обчислювальних ресурсах і відповідність 
певному середовищу. Алгоритми розглянуто з точки зору 
управління критично важливими функціями БПА, такими як 
розподіл ресурсів і координація дій у багатоагентних 
системах, що є важливим для виконання складних місій. 
Особливу увагу зосереджено на адаптивності кожного 
алгоритму, особливо в умовах непередбачуваного та 
складного середовища, де швидка зміна поведінки БПА 
може визначати успіх місії. Окрім цього, зосереджено увагу 
на здатності кожного алгоритму адаптуватися до нової 
інформації в режимі реального часу, що відкриває 
перспективи для підвищення продуктивності та надійності 
БПА у складних умовах. Окремий акцент зроблено на 
координації завдань у ройовому інтелекті, підкреслюючи 
його здатність покращувати групову взаємодію безпілотних 
апаратів (БПА) та ухвалення рішень для ефективної роботи 
у складних і динамічних умовах. Запропоновано глибокий 
аналіз алгоритмів ройового інтелекту та надано реко-
мендації щодо вибору найбільш ефективного підходу 
залежно від специфіки завдання і типу БПА. Крім того, 
створено порівняльну таблицю ключових властивостей 
алгоритмів та зроблено огляд аналогічних досліджень, що 
порівнюють ройові алгоритми. Майбутні дослідження 
будуть зосереджені на вдосконаленні масштабованості, 
адаптивності та інтеграції цих алгоритмів із новітніми 
технологіями для розв’язання складних завдань у місіях 
БПА.  
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