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Abstract: The article provides an overview of modern
approaches to mathematical modelling and synthesis of
control systems for rotary-wing unmanned aerial vehicles
(UAVs) and fixed-wing UAVS. It considers kinematic and
dynamic models describing the translational and rotational
motion of the mentioned types of UAVs, taking into
account aerodynamic forces, moments, and gyroscopic ef-
fects. The general principles of mathematical model deve-
lopment, their adaptation for various classes of aerial
vehicles, and their application in the synthesis of automatic
control systems are analyzed. Particular attention is given
to the analysis of stabilization systems and trajectory
tracking, including those synthesized using PID controllers,
LQR controllers, adaptive methods, model predictive
control, and intelligent control theory. The dependence of
control strategy selection on the type of UAV, flight
characteristics, and mission objectives is examined.
Keywords: unmanned aerial vehicles; kinematic model;
dynamic model; rotary-wing UAVS; fixed-wing UAVS;
automatic control systems; flight stabilization; nonlinear
control.

1. Introduction

Over the past decades, unmanned aerial vehicles
(UAVs) have undergone significant development and are
now actively used in various domains, including military
operations, agriculture, cartography, and logistics [1].
Modern sensors, such as multispectral cameras and LiDAR
systems, enable UAVs to efficiently collect data during
remote sensing missions. The ability to perform real-time
onboard data processing, thereby implementing
autonomous decision-making systems [2], has substantially
expanded the functionality of UAVs and increased their
effectiveness across multiple applications.

As the range of UAV applications continues to grow,
so does the demand for improved control methodologies.
Contemporary UAV control approaches increasingly
integrate innovations such as artificial intelligence (Al),
blockchain, and distributed decision-making systems
[3,4]. Al enhances trajectory planning algorithms and
enables autonomous responses to environmental changes;
blockchain technologies ensure secure data exchange
between UAVs and ground stations; and distributed
decision-making systems support effective coordination
within  UAV swarms. Together, these innovations

significantly improve operational safety, reduce the risk of
unauthorized access to control systems, and optimize
navigation processes [4-6].

The primary challenges of UAV control include:.

« Ensuring real-time operation. UAVs are
equipped with cameras, laser scanners (LiDAR), radar
sensors, and other devices that generate large volumes of
data, which must be processed rapidly for decision-making
[7]. This challenge is particularly critical for autonomous
systems, where it is necessary not only to collect data but
also to analyze it on the fly for navigation and object
identification [8].

» Energy resource limitations. The flight time of a
UAV is constrained by battery capacity, which directly
affects the ability to process large data streams without
compromising performance. This necessitates algorithmic
optimization and energy-efficient computation [8, 9].

Addressing these challenges is crucial for achieving
high-precision object detection and identification, as well
as for enabling fully autonomous UAV operations in
diverse environments. Consideration of the UAVs’ limited
energy and computational resources, along with effective
sensor data fusion and computational platform optimi-
zation, represent key directions for further advancement of
real-time UAV control technologies [10, 11].

2. Classification of UAVs according to aero-
dynamic characteristics

UAVs are classified according to various criteria [12].
The generally accepted classification of unmanned aerial
vehicles is based on aerodynamic characteristics (Fig. 1),
which provides for three main categories: multi-rotor,
fixed-wing and hybrid [3, 13, 14].

Multirotor systems are characterized by high
maneuverability and the ability to operate in confined
spaces, which makes them effective for tasks such as aerial
photography, infrastructure inspection, as well as logistical
and technically complex missions. As an example of an
aircraft with a multirotor aerodynamic configuration, Fig. 2
shows the VVampire unmanned aerial system developed by
the Ukrainian company SkyFall. The image is reproduced
from the official website of the Vinnytsia Regional Military
Administration [44].
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Fig. 1. Classification of UAVs according to aerodynamic characteristics
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Fig. 4. External view of the Ciconia hybrid system [42]
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Fixed-wing UAVs offer longer flight endurance and
higher efficiency, which is critically important for long-
range missions, such as reconnaissance, mapping, or
agricultural field monitoring. As an example of a fixed-
wing aircraft, Fig. 3 shows the MINI SHARK unmanned
aerial vehicle developed by the Ukrainian company
Ukrspecsystems. The image is reproduced from the
official website of the manufacturer [43].

Hybrid systems combine the advantages of both
previously mentioned types, enabling their use for complex
missions, such as extended monitoring with vertical take-
off and landing capabilities [3]. As an example of a hybrid
system, Figure 4 shows the Ciconia unmanned aerial
system developed by the Ukrainian company Deviro. The
image is reproduced from the official website of the
manufacturer [42]. The system features vertical take-off
and landing (VTOL) capabilities.

Multi-rotor and fixed-wing UAVs are the most
common types, so this article will focus primarily on them.

3. Mathematical models of unmanned aerial

vehicles

Mathematical models of unmanned aerial vehicles
(UAVs) are essential tools for the synthesis of control
systems, as they allow the evaluation of UAV
characteristics under various conditions without the need
for costly and time-consuming physical testing [17]. The
initial stage involves modelling the physical system using
nonlinear differential equations. The complexity of
processes in a moving object necessitates the use of various
approximations and simplifications [20]. In particular,
UAVs can be represented by simplified models with three
degrees of freedom (3-DOF). 3-DOF models treat the UAV
as a point mass capable of moving in three spatial
coordinates (along the x, y, and z axes). Such models do not
account for rotational motion, mass-inertia properties, or
aerodynamic moments. Despite their limited accuracy, 3-
DOF models require fewer computational resources and are
therefore widely used in the early stages of control system
design [17] or for the development of simplified
controllers.

For more accurate modelling, six degrees of freedom
(6-DOF) models are employed, which fully represent the
motion dynamics. A 6-DOF model is described by a system
of twelve coupled first-order differential equations. This
approach is significantly more precise but requires higher
computational resources [19]. In 6-DOF models, the UAV
is considered as a rigid body with three translational and
three rotational degrees of freedom. These models account
for [20]: the vehicle mass mmm; moments of inertia J, Jy,
Jz: linear and angular velocities in the body-fixed
coordinate system (U, V, W, P, Q, R); orientation angles
(p,0,vy); position in the inertial coordinate system

(Py, Pg, h); gravitational effects; and aerodynamic forces
and moments.

3.1. Kinematic model of UAV

The kinematic model describes the relationship
between the spatial position and orientation of a UAV and
its linear and angular velocities. In the model of a micro
aerial vehicle (MAV) presented in [20], the UAV s
considered as a rigid body with six degrees of freedom,
whose motion is formalized through a body-fixed
coordinate system (body frame) and an inertial coordinate
system (inertial frame).

3.1.1. Kinematics of translational motion

The position of a UAV in space is defined in the inertial
coordinate system Fi by the vector
p = [Pn, Pe» pd]T, which describes the vehicle’s location
along the north-east-down (NED) directions. The linear
velocity v, = [u, 1, ] is defined in the body-fixed
coordinate system. The relationship between the velocity in
the body-fixed frame and the change in position in the
inertial frame is determined using the rotation matrix
R, (¢, 6,¢) [15, 19, 20, 21]:

. pn u
P=| P |=Rp(4:6.%)| V|, (4.1)
pd w

where ¢, 6, w — Euler angles (roll, pitch, yaw).

The matrix Rvb erforms the rotational transformation
between the coordinate systems and is given by [20]:

CoC,  S4S¢C, —C4S, C4SyC, +5,S,
R =|CgS, S48, +C4C, C4SpS, —S,C, |- (4.2)
—Sy $4Co C4Cy
3.1.2. Kinematics of rotational motion

The orientation of the vehicle in space is described by
three Euler angles. The angular velocities [p,q,7]7,
defined in the body-fixed coordinate system, are related to
the time derivatives of the orientation angles as follows
[15, 19-21]:

| [1 singtand cosgtand |[ p
0|=0  cos¢ —sing || q
W 0 sing/secd cosgl/sect || r

, (4.3)

Equations (4.1) and (4.3) constitute the kinematic
model of a UAV with six degrees of freedom. This model
describes the changes in the vehicle’s position and
orientation in space under the influence of its linear and
angular velocities. The presented relationships serve as the
basis for the subsequent development of a dynamic model,



28 Maksym Shepliakov

which additionally accounts for the vehicle’s mass, forces,
moments, and inertia characteristics.

3.2. Dynamic model of UAV

Dynamic modelling of unmanned aerial vehicles is
based on the classical equations of motion for a rigid body
with six degrees of freedom. These include three
translational degrees of freedom (motion along the
coordinate axes) and three rotational degrees of freedom
(rotation about the corresponding axes). This approach
allows both rotary-wing and fixed-wing UAVs to be
described using a single rigid-body motion mathematical
model [20, 22].

The basis of the dynamic description is Newton’s
second law for translational motion and Euler’s equations
for rotational motion. The system of equations is given as
follows [15, 20, 22]:

me+aq)x(me):ﬁb, (4.4)

T on+ @y, x(T@,)=M,, (4.5)
where m is the mass of the vehicle; v}, is the linear velocity
in the body-fixed coordinate system; w,, is the angular

velocity vector; T, — is the differentiation time constant; Fb)

is the vector of forces applied to the body; m is the vector
of moments; is the inertia tensor relative to the center of
mass [20].

When developing models for control system synthesis
and computational experiments, simplifications are often
employed, in particular assumptions about the symmetry of
the structure, the diagonal form of the inertia tensor, and the
negligible effects  of gyroscopic moments. These
simplifications allow equations to be formulated that can be
efficiently solved analytically, which is important for real-
time control implementation [20, 22].

The overall structure of the UAV dynamic description
is common across different configurations; however, the
specific modelling of forces and moments largely depends
on the type of aerial vehicle. External disturbances, such as
wind and changes in air humidity, as well as interactions
with sensors and control systems, significantly affect UAV
behaviour. According to [15], a full dynamic model is
required to ensure reliable autonomous control under
dynamic conditions.

3.3. Dynamic model of multi-rotor UAVs

The dynamic model of multirotor UAVs describes the
motion of a rigid body with six degrees of freedom. The
most commonly used approaches for developing such a
model are based on the Newton—Euler or Lagrange—Euler
methods [22-25].

3.3.1. Newton-Euler general model

The translational dynamics of a quadcopter, according
to the Newton—Euler model, are described by the following
equations [23]:

X = ﬂ(cosgﬁsin&cosz// +singsing ) —k,x+d;, (4.6)
m

. Ul - - - .

y =—L(cosgsingsiny —singcosy ) —k,y +d,, (4.7)
m

)
7==L(cosgcosd)—g—k;z+d;,  (4.8)

m
where Uys is the total thrust force of the rotors; ki is the
velocity damping coefficients.

The rotational motion is described by the following
equations [23]:

- U, J Iy =1z
¢ = I——I—9 +- 22 Gy — k4¢+Md¢’ (4.9)
o IU zz_xx
§= 02 o, + B Gk, (010
yy yy Yy
. U4 IX Iyy
W= |_ + — ¢0 k6l// + Md;// ’ (411)

Z
where U, Us Us are the moments produced by the
difference in rotor speeds; J;is a moment of inertia of rotors;
oy is rotor speed; Mg~ is disturbance.

In equations (4.6)—(4.11), forces and moments are
presented in a generalized form, without detailing their
physical nature. However, for a more accurate description
of the real dynamics of a quadcopter, these components can
be decomposed into their constituent parts.

In particular, the force acting on the vehicle in the
body-fixed coordinate system includes the vertical thrust
and a component accounting for aerodynamic damping
[22]:

Fes =Tz, -D-V,, (4.12)

where T is the total thrust; zy is the vertical vector; D is the
damping matrix, which includes aerodynamic and induced
moments; and v, s the linear velocity vector in the body-
fixed coordinate system.

Additionally, changes in rotor speeds lead to the
generation of inertial moments associated with the
gyroscopic effect. These moments are accounted for as a
separate term in the rotational motion equation. According
to [25], the gyroscopic moment is modeled as:

0

r..=wx| 0 |,

o (4.13)

J,o,
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where o is the angular velocity; Jris the rotor’s moment of
inertia; cris the total rotor spin rate.

This gyroscopic moment is particularly pronounced
during rapid changes in rotor speeds, which are
characteristic of maneuvers involving sudden increases or
decreases in thrust, and can significantly affect the vehicle's
rotational dynamics.

3.3.2. Lagrange—Euler model

The Lagrange—Euler method is based on an energy
description of motion. As stated in [25], the dynamic model
is constructed on the basis of the Lagrange function

L=T-V,
where T is kinetic energy; V is potential energy.
The equations of motion are derived using the classical

formula:
d( oL oL
el Bl e
dt{ oq; og;

where (; are generalised coordinates; Q; are generalised
forces including thrust, aerodynamic forces, moments and
disturbances.

This approach is particularly effective for accounting
for complex nonlinear effects and constructing stable
control systems based on Lyapunov functions [24, 25].

(4.14)

(4.15)

3.3.3. Taking disturbances into account in a
dynamic model

In real operating conditions, multi-rotor UAVsS are
subject to complex external influences, including wind
loads, local turbulence, changes in air density, etc. These
influences are difficult to model analytically, but they
significantly affect the accuracy of trajectory tracking and
system stability. Therefore, modern models often include
explicit disturbances in the dynamics structure, which are
then evaluated or compensated for at the control level. In
[24], the dynamics of a quadcopter are presented taking into
account disturbances that are explicitly added to the
equations of motion. In particular, for vertical translational
motion, the model has the following form:

; 1 S

Z =—cosgcosfF, —g—=-7+d,,
m m

where Z is the vertical acceleration of the UAV in the
inertial coordinate system; m is the mass of the quadcopter;
¢ — is the roll angle; 0 is is the pitch angle; F is the total
vertical thrust generated by all rotors; g is the acceleration
due to gravity; &, is the damping coefficient; z is the vertical
velocity; d; is an external disturbance.

Disturbance compensation is implemented by
incorporating disturbance observers into the control system
structure. In particular, in [24], a Nonlinear Harmonic
Disturbance Observer (NHDO) is implemented, designed
to estimate periodic or smooth disturbances. The observer

(4.16)

extends the dynamic model and allows disturbances to be
compensated based on the estimated value d, :

T d

I:T

i,nom

- (4.17)

In contrast, [23] considers the classical Disturbance
Observer (DOB), where disturbances are estimated as the
error between the actual and nominal dynamics. This
approach is simpler but less accurate in the case of complex
or time-varying disturbances.

3.4. Dynamic model of a fixed-wing UAV

Fixed-wing unmanned aerial vehicles are modelled as
rigid bodies with six degrees of freedom (6DOF) subject to
aerodynamic, gravitational and traction forces, as well as
moments. Unlike multi-rotor aircraft, lift in fixed-wing
UAVs occurs only under conditions of steady translational
motion. The structure of the dynamic model is based on
Newton—Euler equations [20].

3.4.1. Translation motion

Translational motion describes the change in position
and velocity of the center of mass under the action of
applied forces. The position in a fixed inertial coordinate

Pn
system (NED) is defined by the vector: p = [P ], and the
p

e
d
linear velocity in the body-fixed coordinate system is
u
described by the vector: v, = [v] The translational
W

motion equation in the body-fixed coordinate system is
given as [20]:

+F

thrust

+F

m\7b+a)><(m\7b)=|E aravity

aero

,(4.18)

where m is the mass of the vehicle; w = [p, q,7]7 is the

angular velocity vector; ﬁ;em, Iihmst, ﬁgravity denote the
aerodynamic force, thrust force, and gravitational force,
respectively.

The aerodynamic force vector is decomposed into lift
L, drag D, and side force Y which are mathematically
described as [19]:

1

LZE V?SC, (a), (4.19)
1.

D=E V2SCp (o), (4.20)

Y= % pV2SCy (B), (4.21)

where p is the air density, V' is the relative flow velocity, S
is the wing area, « is the angle of attack, S is the sideslip
angle; Cy, Cp, Cy are the aerodynamic coefficients.
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3.4.2. Rotational motion

Rotational motion is described by the equation of
moments, recorded in the coordinate system associated
with the centre of mass [20]:

Jo+ox(Jo)=My, +M
where ] is the inertia tensor of the vehicle; Maero is the

moment due to aerodynamic forces; Mmmml is the moment
generated by control surfaces (elevators, rudder, ailerons).

The mathematical description of the moments is given
as [15]:

(4.22)

control !

M =%pVZSECm(a,q,5e), (4.23)
L =%pVZSbC| (B.p.6,), (4.24)
N =% V2ShC, (B,r1,5,), (4.25)

where C is the mean aerodynamic chord; b is the wingspan;
8,y 0,4, O, are the deflection angles of the corresponding
control surfaces; and C,,, C;, C, are the aerodynamic
moment coefficients.

3.4.3. Thrust Effect

In general, thrust is modeled as a quadratic function of
the propeller speed or approximated as a function of the
thrust control signal. The analytical thrust model presented
in [15] is given as:

E _1 D*C, n 2
TP 60) '
where D is the propeller diameter C; s the thrust

coefficient; and n is the rotational speed in revolutions per
minute (RPM).

(4.25)

3.4.4.External disturbances
In the dynamic modeling of a fixed-wing UAV,
external disturbances are considered as uncontrolled
influences from the environment that are not included in the
nominal dynamic model. Such disturbances include not
only wind loads but also turbulence, variations in air
density, local atmospheric disturbances, thermal updrafts,

as well as uncertain or difficult-to-model external effects
caused by terrain or asymmetries in the aircraft (e.g., wing
icing or thrust asymmetry) [19, 21].

To account for these effects, the dynamic model is
extended by adding external disturbances to the right-hand
sides of the force and moment equations. The modified
translational motion equation becomes:

MY+ @x (M, ) =

_F

aero

B B . (429
+ Fthrust + Fgravity + df (t)

where Jf (t) is the external disturbance vector, describing
the force projections along the three spatial directions (in
the body-fixed coordinate system).

Similarly, the rotational motion equation is extended
to:

J &+ @x(ID) =M 0 + M oo + iy (1) ,(4:27)

where cfm(t) is the disturbance moment vector,
representing additional rotational influences around the
three axes of the vehicle.

This approach was proposed in [20], where external
disturbances are included as vectorial terms in the force and
moment equations. In [19], a scalar interpretation of
disturbances is implemented. Additional variables, e.g., dg,
and dg;, are introduced directly into the equations of the
corresponding dynamic channels to model the effects. Both
approaches are compatible with modern disturbance-
resistant and adaptive control methods.

4. Control System Architecture of an Unmanned
Aerial Vehicle (UAV)

Modern unmanned aerial vehicles employ a GNC
(Guidance, Navigation, Control) architecture, which
serves as the basis for autonomous UAV control. It
provides trajectory planning, determination of the current
state of the vehicle, and adjustment of motion according to
the assigned objectives [15]. The GNC architecture for a
UAV is shown in Fig. 5.

Desired = Reference Control
Trajectories | Guidance System | Trajectories Signals ce—
»> (Pure Pursuit, Controller 9 UAV [— _‘I
Proportional Navigation, (LQR, PID, SMC, MPC) . . .
Pseudo Pursuit) —H Vision |
Estimated | |
States . s :
Estimated States Navigati | e | §
Estimator gv'g;r':" le— .8
4 | | &
—1 mu |-
| |
L onss ||
B -

Fig. 5. GNC architecture for a UAV [15]
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The three main components required to ensure the
autonomous operation of unmanned aerial vehicles (UAVS)
include Guidance, Navigation, and Control (GNC) systems.
The Guidance subsystem is responsible for generating the
flight path, taking into account the current coordinates of the
UAV, target waypoints, and external conditions such as wind
speed and other possible disturbances. It employs various
methods, including proportional and other orientation
algorithms, which help adapt the route to achieve optimal
vehicle performance [15].

The Navigation subsystem determines the current
position, velocity, and orientation of the UAV by analyzing
data from sensors [16, 17]. The main sources of information
for this process are GNSS receivers, inertial measurement
units (IMUs), gyroscopes, and Pitot tubes. To improve the
accuracy of navigation estimates, state estimators (e.g.,
Kalman filters) are often used, allowing sensor data and
estimator outputs to be combined, ensuring reliability
even in the presence of noise or incomplete information
[17].

The Control subsystem ensures stabilization and
adjustment of the UAV’s motion according to the trajectory
generated by the guidance system. This is achieved through
control signals sent to actuators such as motors and control
surfaces. Various control methods are employed in UAVS,
including classical approaches based on Proportional-
Integral-Derivative (PID) controllers, as well as modern
approaches incorporating neural networks and fuzzy logic-
based systems [18, 19]. The main objective is to maintain
stable flight even in the presence of external disturbances.

Model-Based
Controllers

5. UAV Control Systems

Development of effective control systems is one of the
key tasks in the creation of unmanned aeri al vehicles
(UAVsS). The dynamics of multirotor UAVs are
characterized by a high degree of nonlinearity, low
damping of oscillations, and strong interdependence
between control channels. These vehicles are capable of
vertical takeoff and landing (VTOL) and can hover in place
for extended periods, which imposes specific requirements
for stabilization and compensation of external influences
[22]. Traditionally, classical PID controllers are used for
controlling such vehicles; however, as mission complexity
increases, there is growing interest in nonlinear and
adaptive c ontrol methods.

Fixed-wing UAVSs, on the other hand, exhibit higher
energy efficiency and the ability for long-endurance flight
due to the lift generated by the wing. Their dynamics are
closer to those of light aircraft, allowing the application of
linear control methods when flying near a nominal opera-
ting regime. However, during rapid trajectory changes or
under wind disturbances, the use of nonlinear or distur-
bance-resistant control methods becomes necessary [26].

The choice of a control strategy is determined by
several factors:

o the type of vehicle (multirotor or fixed-wing);

o the complexity of the task (stabilization, trajectory
tracking, coordination of group flights);

o the level of external disturbances and uncertainty in
the mathematical model;

e requirements for accuracy, responsiveness, and
energy consumption.

Flight Control
Techniques

‘ !

Model-Free
(learning-based)
Controllers

‘

Linear
Controllers

q Reinforcement
Fuzzy Logic Neural Network

Nonlinear
Controllers

n LQR/LQG H-infinity Control Gain Scheduling

MPC

(Model Predictive
Confrol)

[

SMC
(Sliding Mode

Control)

N Feedback NMPC 5
Backstepping (Nonlinear MPC) Adaptive Control

Fig. 6. Classification of modern UAV control systems
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Modern UAV control methods are conventionally
divided into model-based control methods and learning-
based methods [15, 17, 22, 23, 25]. Fig. 6 presents a
generalized structure of these approaches.

The category “Model-Based Controllers” encompas-
ses systems based on the use of an analytical or empirical
mathematical model of the vehicle [20]. This group
includes both linear and nonlinear approaches.

Linear control systems include PID control, Linear
Quadratic Regulator (LQR), Linear Quadratic Gaussian
Controller (LQG), robust control with optimization based
on the Hoo criterion, Gain Scheduling, and Linear Model
Predictive Control (MPC) [20, 25].

Nonlinear methods are implemented through Sliding
Mode Control (SMC), Feedback Linearization,
Backstepping, Nonlinear Model Predictive Control
(Nonlinear MPC), and Adaptive Control [22, 24].

The second category, “Learning-Based Cont-
rollers,” includes approaches that minimize dependence on
an accurate mathematical model by using artificial
intelligence and machine learning methods [23]. This group
includes Fuzzy Logic systems, Neural Networks, and
Reinforcement Learning algorithms.

A comparative analysis of the main UAV control
systems is presented in Table 1.

The choice of control strategy is determined by the type
of vehicle, the nature of the task, the expected level of
external disturbances, as well as the available
computational resources and the requirements for system
stability and adaptability [20, 23, 25].

5.1. Proportional-integral-derivative (PI1D) control

Proportional-Integral-Derivative (PID) control is one
of the fundamental methods used for designing
stabilization and trajectory-tracking systems for unmanned
aerial vehicles (UAVS).

In multirotor UAV control systems, PID controllers are
most commonly applied to stabilize angular rates and
attitude angles (pitch, roll, yaw), as well as to regulate
altitude. Each stabilization channel has a separate PID
controller, which ensures the required quality of
stabilization even in the presence of moderate disturbances
[22]. The error e(t) is defined as the difference between the
desired and actual angle or rate (e.g., roll ¢, pitch 6, yaw ).
A key feature of using PID for multirotor UAVs is the need
to coordinate control signals among multiple motors to
achieve the desired torque or thrust [22, 25].

In fixed-wing aircraft, PID controllers are used to
stabilize flight parameters such as altitude, airspeed, angle
of attack, heading, and trajectory [20]. Unlike multirotor
platforms, in fixed-wing UAVS, the control signals act on
aerodynamic surfaces: ailerons (8a), elevator (), and
rudder (3;). For example, altitude control is based on pitch
control through a PID controller:

e(t) = hyer(t) — h(D), (5.1)

Table 1

Comparison of modern UAV control systems [17]

UAV control

Advantages Disadvantages
system
PID Ease of Sensitivity to noise
implementation and and disturbances
setup
LOR/LQG Optimal control, Requires a complete

guaranteed stability
margin, engineering
convenience

state vector and an
accurate model

H-infinity Control

Resilience to
uncertainties and
disturbances

High computational
cost, complexity of
setup

Gain Scheduling

Efficient operation in
a wide range of
modes, taking into
accountnonlinear
properties

Stability issues
during transition
between modes,
design complexity

Model Predictive
Control (MPC)

Taking into account
constraints on inputs
and states,
multivariate control

High dependence on
the accuracy of the
forecast model

Sliding Mode
Control (SMC)

High resistance to
uncertainties and
disturbances, good
tracking
characteristics

Chattering or
shaking effect

Backstepping

Excellent tracking and
disturbance compen-
sation capabilities,
effective for under-
controlled systems

Requires precise
mathematical
model, high
computational
complexity

Feedback
Linearization

Efficient control of
nonlinear systems,
good tracking quality

The need for an
accurate
mathematical
model, high
computational cost

Nonlinear MPC

Ability to work with

High computational

(NMPC) strong nonlinearities complexity, need for
and system constraints | powerful processors

Adaptive Control | Adaptation to variable | Complex setup, high
and unknown system computational load
parameters, resistance
to disturbances

Fuzzy Logic Does not require an Complexity of rule

exact mathematical
model, flexibility in
configuration

development,
dependence on
expert knowledge

Neural Network

High ability to
approximate complex
systems, ability to
learn

The need for large
amounts of data for
training, the
complexity of
validation

Reinforcement
Learning

Learning optimal
behavior without an
explicit model

Requires a large
amount of training
data,instability

where hre(t) is the desired altitude and h(t); h(t) is the
actual altitude. Similar PID structures are applied to control
heading using the rudder and roll angle using the ailerons
[20]. The main feature of PID application in fixed-wing
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UAVs is the need to account for the coupling between
control channels, which creates the necessity for using
multiloop stabilization systems [20, 25].

5.2. Linear-quadratic regulator (LQR)

The Linear Quadratic Regulator (LQR) is a classical
optimal control system synthesis method based on the
minimization of a quadratic functional. It is effective when
applied to linear or linearized system models and ensures
an optimal balance between control quality and energy
expenditure [20,28].

In control systems of multirotor unmanned aerial
vehicles, LQR is used for stabilizing the orientation and
position of the vehicle in space [27, 28]. Typically, the
system is linearized around the hovering state, where
angular deviations and velocities are small. The linearized
dynamics of a quadcopter for the angular coordinates e.g.,
roll @, pitch 8, yaw y are described by the following
equations [28]:

=0
Ly % (5.2)
1
ll)=I—U4,

are ly, lyy, 1z are the moments of inertia of the quadcopter;
Uz, Us, Us are the control torques around the respective
axes.

The state vector is defined as:

x=[p,96,0,9,9]". (5.3)
The control vector has the form:
u = [U,, U3, Uy]". (5.4)

The application of LQR ensures effective stabilization
of the wvehicle’s orientation even under external
disturbances and inaccuracies of the mathematical model
[27].

In a fixed-wing aircraft, LQR is applied to stabilize
altitude, velocity, heading, and navigation parameters
under conditions of steady straight-line flight [20, 21]. The
linearized longitudinal dynamics of the aircraft are
described by the following system of equations [20]:

u = Xyu+ Xyw + Zy9 — gcosdy + X0,
W =Zyu+ Zyw + Zy9 — gsindy + Zs,6,,

q =Mu+ M,w+ Myq + Ms,b, (5.5)
9=q,
h = —usind + wcosd,

where U, W are the velocity components of the aircraft;; g
is the pitch angular velocity; @ is the angle of attack; h is
the flight altitude; O is the elevator deflection; g is the
acceleration due to gravity; Xu, Xw, Zu, Zw, My, My, Mq—are
the coefficients obtained experimentally or through
aerodynamic modeling.

The state vector has the form:

X = [u! w, Q; 7-91 h]T (56)
The control input is defined by the equation:
u = 6,. (5.7

The use of LQR to stabilise longitudinal motion
reduces altitude and angle of attack errors with minimal
energy consumption [21].

5.3. Nonlinear control with predictive models (Non-
linear MPC)

Nonlinear Model Predictive Control (NMPC) is an
extension of the classical MPC approach that allows the full
nonlinear dynamics of the system to be considered when
constructing control actions. This method is viewed as an
intermediate between classical and intelligent approaches
since, on the one hand, it relies on a mathematical model of
the system, while on the other — it enables the use of
optimization methods and machine learning, in particular
for modeling dynamics or generating trajectories [23].

The main idea of NMPC is to determine the optimal
sequence of control actions over a finite time horizon by
minimizing a cost function subject to dynamic constraints.
The general mathematical formulation of the problem is as
follows [23]:

min [ L@@ u@)dr 69
subject to:
x = f(x' u)' x(t) = xOF
xt)eEX, u@x)eU, Ve[t t+T]. (5.9

where x(7) is the system state vector at time t; u(7) is the
control input vector; f(x,u) is the nonlinear system
dynamics model; x is a derivative of the state vector with

... d . I
respect to time, i.e., X = d—:; x(t) = x, is the initial state

of the system at time t; X, U are the admissible sets of
states and controls, respectively; €(x,u) is the cost
function defining the optimization objective; T is a
prediction horizon; Vvt € [t,t + T] indicates that the
dynamic and constraint conditions for states and controls
must hold at all times within the prediction horizon.

At each iteration, only the first element of the optimal
control sequence is applied to the system, after which the
optimization is repeated with the updated state.

In multirotor UAV control systems, NMPC is applied
for stabilization, trajectory tracking, and obstacle
avoidance. NMPC implementations account for the
nonlinear dynamics of the vehicle, physical constraints on
control signals, and the influence of external disturbances,
which is critically important for performing complex
maneuvers in real time [23].
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The main advantages of applying NMPC in multirotor
systems are: the ability to actively incorporate constraints
on control inputs; adaptability to changing dynamic
environmental conditions; and high trajectory accuracy
even in confined spaces. NMPC is particularly effective for
maneuvering in environments with high dynamic demands
and limited space. The main drawbacks include the high
computational complexity of the optimization algorithms,
which requires the use of specialized numerical methods
and powerful computational resources [23].

When applied to fixed-wing UAVs, NMPC-based
approaches demonstrate a variety of implementations
depending on the control objectives. In [29], a full
implementation of nonlinear MPC is proposed for the task
of three-dimensional tracking of a ground target using a
fixed-wing UAV. The system models the full nonlinear
dynamics of the UAV in space, taking into account
constraints on control signals and the physical
characteristics of the vehicle. To ensure closed-loop system
stability, a stabilizer synthesized using the Lyapunov
method is introduced. The optimization problem is solved
using a global heuristic method (bat algorithm), which
significantly reduces real-time computational costs.
Experimental tests showed that the proposed approach
provides reliable tracking of both stationary and moving
targets, even in the presence of wind disturbances [29].

Another approach to using NMPC is presented in [30],
where NMPC is applied to optimize a parameter within the
structure of an already stable nonlinear guidance law based
on Lyapunov stability theory. Specifically, a coefficient is
optimized that determines prediction and compensation of
trajectory tracking errors. The proposed method
demonstrated advantages over fixed-parameter and fuzzy-
logic approaches, particularly under crosswind conditions
[30].

5.4. Adaptive Control

Adaptive control is a class of methods that enables
automatic adjustment of system parameters in real time to
compensate for uncertainties in the object’s dynamics or
changes in external conditions.

Adaptive control of multirotor UAVs allows
compensation for the effects of external disturbances,
changes in mass, moments of inertia, and other factors that
vary during flight. One example is the use of MRAC
(Model Reference Adaptive Control) with neural networks
for quadcopters [27]. In this implementation, the neural
network is embedded within the controller structure and
approximates unknown nonlinearities of the dynamics in
real time. This increases trajectory tracking accuracy in the
presence of parametric uncertainties and disturbances.

To compensate for varying characteristics of the
quadcopter, an Extended Classical Adaptive Approach
(ECAA) has been developed, which adapts the controller
parameters based on changes in mass or distribution of
moments of inertia [32]. This approach ensures system

stability even with significant variations in object
parameters. Among adaptive control methods for
multirotor UAVs, a Simple Adaptive Control (SAC)
scheme with an adaptive anti-windup compensator is also
used. This approach stabilizes the quadcopter’s orientation
in cases of control signal saturation, maintaining system
stability without requiring changes to the control structure
[31].

For fixed-wing UAVS, adaptive control is aimed at
compensating for uncertainties in aerodynamic parameters,
which may vary depending on flight mode or external
conditions. Adaptive Backstepping is implemented in
fixed-wing UAV control systems, ensuring stable
trajectory tracking in the presence of model uncertainties.
The control system is constructed based on sequential
stabilization of errors relative to the desired trajectory while
simultaneously adapting to unknown aerodynamic
parameters. This allows maintaining control quality under
changing flight conditions and performing complex
maneuvers in real operational environments [19].

5.5. Fuzzy control

Fuzzy control is a class of methods based on using
fuzzy rules to generate control actions in systems with
uncertain or complex dynamics. The most commonly used
algorithms are Mamdani and Sugeno, depending on the
required precision and computational complexity.

In multirotor UAVs, fuzzy control systems are used to
stabilize position and orientation under uncertainties and
wind disturbances. A fuzzy PID controller is built using
three input variables: position error, derivative of error, and
integral of error. The implementation of fuzzy control
improves trajectory tracking accuracy and enhances
quadcopter stability compared to standard PID controllers
[33].

Adaptability is further increased by emulating the
behavior of the fuzzy PID controller using a Recurrent
Neural Network (RNN), which reduces computational load
while  maintaining  stabilization  accuracy  [34].
Additionally, integrating fuzzy logic with Radial Basis
Function Neural Networks (RBF NN) is used to optimize
PID parameters in real time, improving the system’s
adaptability to changes in object dynamics [35].

In fixed-wing UAVS, fuzzy control systems are applied
to improve the stability and accuracy of altitude and
heading stabilization, as well as to compensate for lateral-
axis oscillations during flight under challenging conditions.
Such systems allow the aircraft’s response to adapt to
changing external influences without the need to retune
controller parameters.

The structure of the fuzzy controller is based on
classical principles for designing stabilizers for automatic
altitude and heading control. The input data are the values
of altitude deviation, heading deviation, and the derivatives
of these errors, which are then converted into fuzzy sets for
further processing. The control rule base is formed based
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on the correspondence between the magnitude of
deviations and the required control moments for the
ailerons, elevator, and rudder. The use of fuzzy logic in the
stabilization loops of fixed-wing UAVs improves system
response under variable environmental conditions,
increases adaptability to wind disturbances, and ensures
smooth flight adjustments [20].

5.6. Neural networks in UAV control systems

Neural Networks (NN) are used in unmanned aerial
vehicle (UAV) control systems as tools for approximating
system dynamics, compensating for disturbances,
stabilizing, and optimizing trajectories without the need for
an explicit mathematical model [37]. Despite this, neural
networks on their own are not classical control systems.
They are considered as alternative or auxiliary intelligent
controllers ~ (Learning-Based  Controllers),  which
complement or replace specific modules of the control
system. This allows the system to adapt to complex
aerodynamic characteristics of the vehicle and changing

external conditions [36, 37].

Table 2 presents the main application areas and typical

examples of the use of different neural network
architectures in UAV control systems.
Table 2
Type of neural Main purpose Features of Sour-
network application in UAVs es
Feedforward Approximation | Creating control [8,
Neural of control models to stabilize 37]
Networks functions or the position and
(FNN) dynamics orientation of UAVs
Radial Basis Compensation Robust local control [27]
Function of local in complex
Networks uncertainties environments for
(RBF-NN) multi-rotor UAVs
Recurrent Neural| Predicting Fixed-wing UAV [34,
Networks future states trajectory planning, 36]
(RNN), LSTM obstacle avoidance
Fractal Neural | Generalization Use in stabilization [38]
Networks and resistance problems in complex
to overtraining dynamics
Neural Adaptive Compensation for [27]
Networks at compensation unknown dynamics
MRAC control in multi-rotor UAVs
Neural Position control | Application for [39]
Networks in in the plane stabilizing fixed-
S-Plane wing UAVs in windy
Models conditions
Hybrid Integrating the Improving the [34]
approaches flexibility of stability and
(Fuzzy+NN) fuzzy control adaptability of
and neural net- | trajectory control
work training

Fractal Neural Networks demonstrate high resistance
to overfitting and the ability to generalize complex
dependencies, making them suitable for use in advanced
control scenarios [38]. Integrating neural networks into
MRAC-type (Model Reference Adaptive Control) adaptive

control structures allows compensation for unknown
dynamics by minimizing trajectory errors relative to a
reference model [27].

In multirotor UAVS, neural networks are integrated to
stabilize position and orientation, compensate for external
disturbances, and handle variable dynamic characteristics.
For mode-transition tasks in complex vehicles, particularly
in ducted fan UAVSs, neural networks are used to generate
control moments during transitions from hovering to
horizontal flight. Closed-loop system stability in these
approaches is ensured using Lyapunov functions [40].

In fixed-wing UAVSs, neural networks are employed
for trajectory planning and flight control under variable
external conditions. The use of recurrent networks, such as
LSTM, enables prediction of future wvehicle states,
optimizing the route while accounting for wind loads and
energy consumption [36]. Additionally, control signals are
constructed based on a neural model in the S-plane,
improving navigation accuracy of fixed-wing UAVS in
challenging atmospheric conditions [39].

In more advanced implementations, hybrid strategies
are considered, where neural networks are integrated with
other approaches, such as fuzzy logic. The combination of
a fuzzy PID controller with a recurrent neural network
significantly improves the stability of trajectory tracking,
even under substantial changes in environmental
parameters [34].

The use of neural networks in UAV control systems
opens wide opportunities to enhance adaptability,
resistance to external disturbances, and flight autonomy
under complex and variable conditions [37, 41].

6. Conclusions

The review found, that mathematical modelling of
unmanned aerial vehicles (UAVS) is based on kinematic
and dynamic models that account for both translational and
rotational motion of the vehicle. For rotary-wing UAVS,
modeling typically focuses on aerodynamic forces and
moments, while fixed-wing aircraft are mainly modelled
using aerodynamic flight models.

The analysis of existing control systems has shown that
classical approaches, including proportional-integral-
derivative (PID) and linear-quadratic control (LQR),
remain fundamental for stabilization and implementation of
simple trajectory-tracking tasks. However, under con-
ditions of diverse disturbances and parametric uncertainty
of models, the application of such approaches is relatively
inefficient.

Control systems employing nonlinear model predictive
control (NMPC), adaptive strategies, or artificial intelli-
gence methods provide the capability to execute complex
UAV trajectories even under significant disturbances and
varying parameters.

The choice of a mathematical model and the
corresponding control strategy depends on the type of UAV
and the specifics of the tasks to be performed.
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CYYACHI CTPATEI'II KEPYBAHHS amanTUBHUX MeToMiB, MeToxy model predictive control, a

BE3HI .JIOTHI/IMI/I ABI AHIﬁHHMH TaKOXK Teopi'i iHTeJ‘IeKTyaJ'ILHOI‘O KEpYyBaHHH. HpoaHani-
30BaHO 3aJICKHICTH BHOOPY CTpaTerii KepyBaHHS BiJ THITY
CUCTEMAMN amapara, XapaKTepPHCTHK MOJIbOTY Ta IUIFOBUX 33/1a4.
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HaBezneHo cywacHi miaxoau 1O MaTeMaTHYHOTO MOJIe-
JIOBaHHA Ta CHHTE3y CHCTEM KepyBaHHS POTOPHHMH
0E3MUIOTHUMH JIITATBHUMH arapataMi Ta Oe3MUIOTHUMHU
armapataMM 3 HEpyXOMUM KpuioM. Po3risiHyTo KiHema-
TUYHI Ta TUHAMIYHI MOJIEN, III0 ONHCYIOTh TOCTYTAIEHAN
i obeprampHUil pyx 3a3HaueHux THIiB BIUJIA, 3 ypaxy-
BaHHSM acPOAMHAMIYHUX CHJI, MOMCHTIB Ta TiPOCKOIIYHUX
edexkriB. [IpoaHanizoBaHo 3arajibHi IPUHIMIHA HOOYIOBH
MaTeMaTHYHHX MOJEJIEH, TX ananTauiro Uit pisHUX KJIaciB

NTAJILHAX aNapaTiB Ta BUKOPUCTAHHS y MPOLECi CHHTE3Y for engineering p_rojec.ts. H.is_ regearch focusgs on inte_lligent
methods for object identification and optimal trajectory

generation for unmanned aerial vehicles.
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