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Abstract: The article provides an overview of modern 

approaches to mathematical modelling and synthesis of 

control systems for rotary-wing unmanned aerial vehicles 

(UAVs) and fixed-wing UAVs. It considers kinematic and 

dynamic models describing the translational and rotational 

motion of the mentioned types of UAVs, taking into 

account aerodynamic forces, moments, and gyroscopic ef-

fects. The general principles of mathematical model deve-

lopment, their adaptation for various classes of aerial 

vehicles, and their application in the synthesis of automatic 

control systems are analyzed. Particular attention is given 

to the analysis of stabilization systems and trajectory 

tracking, including those synthesized using PID controllers, 

LQR controllers, adaptive methods, model predictive 

control, and intelligent control theory. The dependence of 

control strategy selection on the type of UAV, flight 

characteristics, and mission objectives is examined. 

Keywords: unmanned aerial vehicles; kinematic model; 

dynamic model; rotary-wing UAVs; fixed-wing UAVs; 

automatic control systems; flight stabilization; nonlinear 
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1. Introduction  

Over the past decades, unmanned aerial vehicles 

(UAVs) have undergone significant development and are 

now actively used in various domains, including military 

operations, agriculture, cartography, and logistics [1]. 

Modern sensors, such as multispectral cameras and LiDAR 

systems, enable UAVs to efficiently collect data during 

remote sensing missions. The ability to perform real-time 

onboard data processing, thereby implementing 

autonomous decision-making systems [2], has substantially 

expanded the functionality of UAVs and increased their 

effectiveness across multiple applications. 

As the range of UAV applications continues to grow, 

so does the demand for improved control methodologies. 

Contemporary UAV control approaches increasingly 

integrate innovations such as artificial intelligence (AI), 

blockchain, and distributed decision-making systems 

[3, 4]. AI enhances trajectory planning algorithms and 

enables autonomous responses to environmental changes; 

blockchain technologies ensure secure data exchange 

between UAVs and ground stations; and distributed 

decision-making systems support effective coordination 

within UAV swarms. Together, these innovations 

significantly improve operational safety, reduce the risk of 

unauthorized access to control systems, and optimize 

navigation processes [4–6]. 

The primary challenges of UAV control include:. 

• Ensuring real-time operation. UAVs are 

equipped with cameras, laser scanners (LiDAR), radar 

sensors, and other devices that generate large volumes of 

data, which must be processed rapidly for decision-making 

[7]. This challenge is particularly critical for autonomous 

systems, where it is necessary not only to collect data but 

also to analyze it on the fly for navigation and object 

identification [8]. 

• Energy resource limitations. The flight time of a 

UAV is constrained by battery capacity, which directly 

affects the ability to process large data streams without 

compromising performance. This necessitates algorithmic 

optimization and energy-efficient computation [8, 9]. 

Addressing these challenges is crucial for achieving 

high-precision object detection and identification, as well 

as for enabling fully autonomous UAV operations in 

diverse environments. Consideration of the UAVs’ limited 

energy and computational resources, along with effective 

sensor data fusion and computational platform optimi-

zation, represent key directions for further advancement of 

real-time UAV control technologies [10, 11]. 

2. Classification of UAVs according to aero-

dynamic characteristics 

UAVs are classified according to various criteria [12]. 

The generally accepted classification of unmanned aerial 

vehicles is based on aerodynamic characteristics (Fig. 1), 

which provides for three main categories: multi-rotor, 

fixed-wing and hybrid [3, 13, 14]. 

Multirotor systems are characterized by high 

maneuverability and the ability to operate in confined 

spaces, which makes them effective for tasks such as aerial 

photography, infrastructure inspection, as well as logistical 

and technically complex missions. As an example of an 

aircraft with a multirotor aerodynamic configuration, Fig. 2 

shows the Vampire unmanned aerial system developed by 

the Ukrainian company SkyFall. The image is reproduced 

from the official website of the Vinnytsia Regional Military 

Administration [44]. 
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Fig. 1. Classification of UAVs according to aerodynamic characteristics 

  

Fig. 2. Multirotor unmanned aerial vehicle ‘Vampire’ 

(Multirotor UAV) [44] 

Fig. 3. External view of the fixed-wing UAV “MINI SHARK” 

[43] 

 

Fig. 4. External view of the Ciconia hybrid system [42] 
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Fixed-wing UAVs offer longer flight endurance and 

higher efficiency, which is critically important for long-

range missions, such as reconnaissance, mapping, or 

agricultural field monitoring. As an example of a fixed-

wing aircraft, Fig. 3 shows the MINI SHARK unmanned 

aerial vehicle developed by the Ukrainian company 

Ukrspecsystems. The image is reproduced from the 

official website of the manufacturer [43]. 

Hybrid systems combine the advantages of both 

previously mentioned types, enabling their use for complex 

missions, such as extended monitoring with vertical take-

off and landing capabilities [3]. As an example of a hybrid 

system, Figure 4 shows the Ciconia unmanned aerial 

system developed by the Ukrainian company Deviro. The 

image is reproduced from the official website of the 

manufacturer [42]. The system features vertical take-off 

and landing (VTOL) capabilities. 

Multi-rotor and fixed-wing UAVs are the most 

common types, so this article will focus primarily on them.  

3. Mathematical models of unmanned aerial 

vehicles 

Mathematical models of unmanned aerial vehicles 

(UAVs) are essential tools for the synthesis of control 

systems, as they allow the evaluation of UAV 

characteristics under various conditions without the need 

for costly and time-consuming physical testing [17]. The 

initial stage involves modelling the physical system using 

nonlinear differential equations. The complexity of 

processes in a moving object necessitates the use of various 

approximations and simplifications [20]. In particular, 

UAVs can be represented by simplified models with three 

degrees of freedom (3-DOF). 3-DOF models treat the UAV 

as a point mass capable of moving in  three spatial 

coordinates (along the x, y, and z axes). Such models do not 

account for rotational motion, mass-inertia properties, or 

aerodynamic moments. Despite their limited accuracy, 3-

DOF models require fewer computational resources and are 

therefore widely used in the early stages of control system 

design [17] or for the development of simplified 

controllers. 

For more accurate modelling, six degrees of freedom 

(6-DOF) models are employed, which fully represent the 

motion dynamics. A 6-DOF model is described by a system 

of twelve coupled first-order differential equations. This 

approach is significantly more precise but requires higher 

computational resources [19]. In 6-DOF models, the UAV 

is considered as a rigid body with three translational and 

three rotational degrees of freedom. These models account 

for [20]: the vehicle mass mmm; moments of inertia 𝐽𝑋, 𝐽𝑌,

𝐽𝑍; linear and angular velocities in the body-fixed 

coordinate system (U, V, W, P, Q, R); orientation angles 

(𝜑, 𝜃, 𝜓); position in the inertial coordinate system 

(𝑃𝑁 , 𝑃𝐸 , ℎ); gravitational effects; and aerodynamic forces 

and moments. 

3.1. Kinematic model of UAV 

The kinematic model describes the relationship 

between the spatial position and orientation of a UAV and 

its linear and angular velocities. In the model of a micro 

aerial vehicle (MAV) presented in [20], the UAV is 

considered as a rigid body with six degrees of freedom, 

whose motion is formalized through a body-fixed 

coordinate system (body frame) and an inertial coordinate 

system (inertial frame). 

3.1.1. Kinematics of translational motion 

The position of a UAV in space is defined in the inertial 

coordinate system Fi by the vector  

𝑝 = [𝑝𝑛, 𝑝𝑒 , 𝑝𝑑]𝑇, which describes the vehicle’s location 

along the north-east-down (NED) directions. The linear 

velocity 𝜐𝑏⃗⃗⃗⃗⃗ = [𝓊, 𝓋, 𝓌]𝑇 is defined in the body-fixed 

coordinate system. The relationship between the velocity in 

the body-fixed frame and the change in position in the 

inertial frame is determined using the rotation matrix  

𝑅𝜐𝑏(𝜙, 𝜃, 𝜓) [15,  19, 20, 21]: 
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where φ, θ, ψ – Euler angles (roll, pitch, yaw). 

The matrix Rυb erforms the rotational transformation 

between the coordinate systems and is given by [20]: 
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3.1.2. Kinematics of rotational motion 

The orientation of the vehicle in space is described by 

three Euler angles. The angular velocities [𝑝, 𝑞, 𝑟]𝑇 , 

defined in the body-fixed coordinate system, are related to 

the time derivatives of the orientation angles as follows 

[15, 19–21]: 
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Equations (4.1) and (4.3) constitute the kinematic 

model of a UAV with six degrees of freedom. This model 

describes the changes in the vehicle’s position and 

orientation in space under the influence of its linear and 

angular velocities. The presented relationships serve as the 

basis for the subsequent development of a dynamic model, 
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which additionally accounts for the vehicle’s mass, forces, 

moments, and inertia characteristics. 

3.2. Dynamic model of UAV 

Dynamic modelling of unmanned aerial vehicles is 

based on the classical equations of motion for a rigid body 

with six degrees of freedom. These include three 

translational degrees of freedom (motion along the 

coordinate axes) and three rotational degrees of freedom 

(rotation about the corresponding axes). This approach 

allows both rotary-wing and fixed-wing UAVs to be 

described using a single rigid-body motion mathematical 

model [20, 22]. 

The basis of the dynamic description is Newton’s 

second law for translational motion and Euler’s equations 

for rotational motion. The system of equations is given as 

follows [15, 20, 22]: 

  
˙

b b b bmv mv F  
rrr r

, (4.4) 

  
˙

b b b bM    
rr r r

, (4.5) 

where m is the mass of the vehicle; 𝜐𝑏⃗⃗⃗⃗⃗ is the linear velocity 

in the body-fixed coordinate system; 𝜔𝑏⃗⃗⃗⃗⃗⃗  is the angular 

velocity vector; TД – is the differentiation time constant; 𝐹𝑏
⃗⃗⃗⃗⃗ 

is the vector of forces applied to the body; 𝑀𝑏
⃗⃗ ⃗⃗ ⃗⃗  is the vector 

of moments; is the inertia tensor relative to the center of 

mass [20]. 

When developing models for control system synthesis 

and computational experiments, simplifications are often 

employed, in particular assumptions about the symmetry of 

the structure, the diagonal form of the inertia tensor, and the 

negligible effects  of gyroscopic moments. These 

simplifications allow equations to be formulated that can be 

efficiently solved analytically, which is important for real-

time control implementation [20, 22]. 

The overall structure of the UAV dynamic description 

is common across different configurations; however, the 

specific modelling of forces and moments largely depends 

on the type of aerial vehicle. External disturbances, such as 

wind and changes in air humidity, as well as interactions 

with sensors and control systems, significantly affect UAV 

behaviour. According to [15], a full dynamic model is 

required to ensure reliable autonomous control under 

dynamic conditions. 

3.3. Dynamic model of multi-rotor UAVs 

The dynamic model of multirotor UAVs describes the 

motion of a rigid body with six degrees of freedom. The 

most commonly used approaches for developing such a 

model are based on the Newton–Euler or Lagrange–Euler 

methods [22–25]. 

3.3.1. Newton-Euler general model 

The translational dynamics of a quadcopter, according 

to the Newton–Euler model, are described by the following 

equations [23]: 
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where U1 is the total thrust force of the rotors; ki is the 

velocity damping coefficients. 

The rotational motion is described by the following 

equations [23]: 
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where U2, U3, U4 are the moments produced by the 

difference in rotor speeds; Jr is a moment of inertia of rotors; 

ωr  is rotor speed; Md* is disturbance. 

In equations (4.6)–(4.11), forces and moments are 

presented in a generalized form, without detailing their 

physical nature. However, for a more accurate description 

of the real dynamics of a quadcopter, these components can 

be decomposed into their constituent parts. 

In particular, the force acting on the vehicle in the 

body-fixed coordinate system includes the vertical thrust 

and a component accounting for aerodynamic damping 

[22]: 

 res b bF Tz D v  
r r

, (4.12) 

where T is the total thrust; zb is the vertical vector; D is the 

damping matrix, which includes aerodynamic and induced 

moments; and 𝑣𝑏⃗⃗⃗⃗⃗ s the linear velocity vector in the body-

fixed coordinate system. 

Additionally, changes in rotor speeds lead to the 

generation of inertial moments associated with the 

gyroscopic effect. These moments are accounted for as a 

separate term in the rotational motion equation. According 

to [25], the gyroscopic moment is modeled as: 

 gyr
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where ω is the angular velocity; Jr is the rotor’s moment of 

inertia; ωr is the total rotor spin rate. 

This gyroscopic moment is particularly pronounced 

during rapid changes in rotor speeds, which are 

characteristic of maneuvers involving sudden increases or 

decreases in thrust, and can significantly affect the vehicle's 

rotational dynamics. 

3.3.2. Lagrange–Euler model 

The Lagrange–Euler method is based on an energy 

description of motion. As stated in [25], the dynamic model 

is constructed on the basis of the Lagrange function 

 L T V  , (4.14) 

where T is kinetic energy; V is potential energy. 

The equations of motion are derived using the classical 

formula: 

 i

i i

d L L
Q

dt q q

  
  

  &
, (4.15) 

where qi are generalised coordinates; Qi  are generalised 

forces  including thrust, aerodynamic forces, moments and 

disturbances. 

This approach is particularly effective for accounting 

for complex nonlinear effects and constructing stable 

control systems based on Lyapunov functions [24, 25]. 

3.3.3. Taking disturbances into account in a 

dynamic model 

In real operating conditions, multi-rotor UAVs are 

subject to complex external influences, including wind 

loads, local turbulence, changes in air density, etc. These 

influences are difficult to model analytically, but they 

significantly affect the accuracy of trajectory tracking and 

system stability. Therefore, modern models often include 

explicit disturbances in the dynamics structure, which are 

then evaluated or compensated for at the control level. In 

[24], the dynamics of a quadcopter are presented taking into 

account disturbances that are explicitly added to the 

equations of motion. In particular, for vertical translational 

motion, the model has the following form: 

 
1 z

z zz cos cos F g z d
m m


    &&& , (4.16) 

where 𝑧̈ is the vertical acceleration of the UAV in the 

inertial coordinate system; m is the mass of the quadcopter; 

φ – is the roll angle; θ is is the pitch angle; Fz is the total 

vertical thrust generated by all rotors; g is the acceleration 

due to gravity; ξz is the damping coefficient; 𝑧̇ is the vertical 

velocity; dz is an external disturbance. 

Disturbance compensation is implemented by 

incorporating disturbance observers into the control system 

structure. In particular, in [24], a Nonlinear Harmonic 

Disturbance Observer (NHDO) is implemented, designed 

to estimate periodic or smooth disturbances. The observer 

extends the dynamic model and allows disturbances to be 

compensated based on the estimated value 𝑑𝑖̂ : 

 , i i nom id   . (4.17) 

In contrast, [23] considers the classical Disturbance 

Observer (DOB), where disturbances are estimated as the 

error between the actual and nominal dynamics. This 

approach is simpler but less accurate in the case of complex 

or time-varying disturbances. 

3.4. Dynamic model of a fixed-wing UAV 

Fixed-wing unmanned aerial vehicles are modelled as 

rigid bodies with six degrees of freedom (6DOF) subject to 

aerodynamic, gravitational and traction forces, as well as 

moments. Unlike multi-rotor aircraft, lift in fixed-wing 

UAVs occurs only under conditions of steady translational 

motion. The structure of the dynamic model is based on 

Newton–Euler equations [20]. 

3.4.1. Translation motion 

Translational motion describes the change in position 

and velocity of the center of mass under the action of 

applied forces. The position in a fixed inertial coordinate 

system (NED) is defined by the vector: 𝑝 = [

𝑝𝑛

𝑝𝑒

𝑝𝑑

], and the 

linear velocity in the body-fixed coordinate system is 

described by the vector: 𝜐𝑏⃗⃗⃗⃗⃗ = [
𝑢
𝜐
𝜔

].  The translational 

motion equation in the body-fixed coordinate system is 

given as [20]: 

  
˙

aero thrust gravityb bmv mv F F F    
r r rr r

ω , (4.18) 

where 𝑚 is the mass of the vehicle; 𝛚 = [𝑝, 𝑞, 𝑟]𝑇 is the 

angular velocity vector; 𝐹⃗aero, 𝐹⃗thrust, 𝐹⃗gravity denote the 

aerodynamic force, thrust force, and gravitational force, 

respectively. 

The aerodynamic force vector is decomposed into lift  

L, drag D, and side force Y which are mathematically 

described as [19]: 

  21

2
LL V SC  , (4.19) 

  21

2
DD V SC  , (4.20) 

  21

2
YY V SC  , (4.21) 

where 𝜌 is the air density, 𝑉 is the relative flow velocity, 𝑆 

is the wing area, 𝛼 is the angle of attack, 𝛽 is the sideslip 

angle; 𝐶𝐿, 𝐶𝐷, 𝐶𝑌 are the aerodynamic coefficients. 
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3.4.2. Rotational motion 

Rotational motion is described by the equation of 

moments, recorded in the coordinate system associated 

with the centre of mass [20]: 

   aero controlJ J M M     
r r

& , (4.22) 

where J is the inertia tensor of the vehicle; 𝑀⃗⃗⃗aero is the 

moment due to aerodynamic forces; 𝑀⃗⃗⃗control is the moment 

generated by control surfaces (elevators, rudder, ailerons). 

The mathematical description of the moments is given 

as [15]: 

  21
, ,

2
m eM V S cC q   , (4.23) 

  21
  , ,
2

l aL V SbC p   , (4.24) 

  21
, ,

2
n rN V SbC r   , (4.25) 

where 𝑐‾ is the mean aerodynamic chord; 𝑏 is the wingspan; 

𝛿𝑒, 𝛿𝑎, 𝛿𝑟  are the deflection angles of the corresponding 

control surfaces; and 𝐶𝑚, 𝐶𝑙, 𝐶𝑛 are the aerodynamic 

moment coefficients. 

3.4.3. Thrust Effect 

In general, thrust is modeled as a quadratic function of 

the propeller speed or approximated as a function of the 

thrust control signal. The analytical thrust model presented 

in [15] is given as: 

 
2

41

2 60
T T

n
F D C

 
  

 
, (4.25) 

where 𝐷 is the propeller diameter 𝐶𝑇 s the thrust 

coefficient; and 𝑛 is the rotational speed in revolutions per 

minute (RPM). 

3.4.4. External disturbances 

In the dynamic modeling of a fixed-wing UAV, 

external disturbances are considered as uncontrolled 

influences from the environment that are not included in the 

nominal dynamic model. Such disturbances include not 

only wind loads but also turbulence, variations in air 

density, local atmospheric disturbances, thermal updrafts, 

as well as uncertain or difficult-to-model external effects 

caused by terrain or asymmetries in the aircraft (e.g., wing 

icing or thrust asymmetry) [19, 21]. 

To account for these effects, the dynamic model is 

extended by adding external disturbances to the right-hand 

sides of the force and moment equations. The modified 

translational motion equation becomes: 

 
 

 

˙

aero thrust gravity

b b

f

mv mv

F F F d t

  
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rr r

rr r r , (4.26) 

where 𝑑𝑓(𝑡) is the external disturbance vector, describing 

the force projections along the three spatial directions (in 

the body-fixed coordinate system). 

Similarly, the rotational motion equation is extended 

to: 

    
˙

aero control mJ J M M d t      
rr rr r r

,(4.27) 

where 𝑑𝑚(𝑡) is the disturbance moment vector, 

representing additional rotational influences around the 

three axes of the vehicle. 

This approach was proposed in [20], where external 

disturbances are included as vectorial terms in the force and 

moment equations. In [19], a scalar interpretation of 

disturbances is implemented. Additional variables, e.g., d9, 

and dθ1, are introduced directly into the equations of the 

corresponding dynamic channels to model the effects. Both 

approaches are compatible with modern disturbance-

resistant and adaptive control methods. 

4. Control System Architecture of an Unmanned 

Aerial Vehicle (UAV) 

Modern unmanned aerial vehicles employ a GNC 

(Guidance, Navigation, Control) architecture, which 

serves as the basis for autonomous UAV control. It 

provides trajectory planning, determination of the current 

state of the vehicle, and adjustment of motion according to 

the assigned objectives [15]. The GNC architecture for a 

UAV is shown in Fig. 5. 

 

Fig. 5. GNC architecture for a UAV [15] 
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The three main components required to ensure the 

autonomous operation of unmanned aerial vehicles (UAVs) 

include Guidance, Navigation, and Control (GNC) systems. 

The Guidance subsystem is responsible for generating the 

flight path, taking into account the current coordinates of the 

UAV, target waypoints, and external conditions such as wind 

speed and other possible disturbances. It employs various 

methods, including proportional and other orientation 

algorithms, which help adapt the route to achieve optimal 

vehicle performance [15]. 

The Navigation subsystem determines the current 

position, velocity, and orientation of the UAV by analyzing 

data from sensors [16, 17]. The main sources of information 

for this process are GNSS receivers, inertial measurement 

units (IMUs), gyroscopes, and Pitot tubes. To improve the 

accuracy of navigation estimates, state estimators (e.g., 

Kalman filters) are often used, allowing sensor data and 

estimator outputs to be combined, ensuring reliability  

even in the presence of noise or incomplete information 

[17]. 

The Control subsystem ensures stabilization and 

adjustment of the UAV’s motion according to the trajectory 

generated by the guidance system. This is achieved through 

control signals sent to actuators such as motors and control 

surfaces. Various control methods are employed in UAVs, 

including classical approaches based on Proportional-

Integral-Derivative (PID) controllers, as well as modern 

approaches incorporating neural networks and fuzzy logic-

based systems [18, 19]. The main objective is to maintain 

stable flight even in the presence of external disturbances. 

 

5. UAV Control Systems 

Development of effective control systems is one of the 

key tasks in the creation of unmanned aeri al vehicles 

(UAVs). The dynamics of multirotor UAVs are 

characterized by a high degree of nonlinearity, low 

damping of oscillations, and strong interdependence 

between control channels. These vehicles are capable of 

vertical takeoff and landing (VTOL) and can hover in place 

for extended periods, which imposes specific requirements 

for stabilization and compensation of external influences 

[22]. Traditionally, classical PID controllers are used for 

controlling such vehicles; however, as mission complexity 

increases, there is growing interest in nonlinear and 

adaptive c ontrol methods. 

Fixed-wing UAVs, on the other hand, exhibit higher 

energy efficiency and the ability for long-endurance flight 

due to the lift generated by the wing. Their dynamics are 

closer to those of light aircraft, allowing the application of 

linear control methods when flying near a nominal opera-

ting regime. However, during rapid trajectory changes or 

under wind disturbances, the use of nonlinear or distur-

bance-resistant control methods becomes necessary [26]. 

The choice of a control strategy is determined by 

several factors: 

 the type of vehicle (multirotor or fixed-wing); 

 the complexity of the task (stabilization, trajectory 

tracking, coordination of group flights); 

 the level of external disturbances and uncertainty in 

the mathematical model; 

 requirements for accuracy, responsiveness, and 

energy consumption. 

 

Fig. 6. Classification of modern UAV control systems 
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Modern UAV control methods are conventionally 

divided into model-based control methods and learning-

based methods [15, 17, 22, 23, 25]. Fig. 6 presents a 

generalized structure of these approaches. 

The category “Model-Based Controllers” encompas-

ses systems based on the use of an analytical or empirical 

mathematical model of the vehicle [20]. This group 

includes both linear and nonlinear approaches. 

Linear control systems include PID control, Linear 

Quadratic Regulator (LQR), Linear Quadratic Gaussian 

Controller (LQG), robust control with optimization based 

on the H∞ criterion, Gain Scheduling, and Linear Model 

Predictive Control (MPC) [20, 25]. 

Nonlinear methods are implemented through Sliding 

Mode Control (SMC), Feedback Linearization, 

Backstepping, Nonlinear Model Predictive Control 

(Nonlinear MPC), and Adaptive Control [22, 24]. 

The second category, “Learning-Based Cont-

rollers,” includes approaches that minimize dependence on 

an accurate mathematical model by using artificial 

intelligence and machine learning methods [23]. This group 

includes Fuzzy Logic systems, Neural Networks, and 

Reinforcement Learning algorithms. 

A comparative analysis of the main UAV control 

systems is presented in Table 1. 

The choice of control strategy is determined by the type 

of vehicle, the nature of the task, the expected level of 

external disturbances, as well as the available 

computational resources and the requirements for system 

stability and adaptability [20, 23, 25]. 

5.1. Proportional-integral-derivative (PID) control 

Proportional-Integral-Derivative (PID) control is one 

of the fundamental methods used for designing 

stabilization and trajectory-tracking systems for unmanned 

aerial vehicles (UAVs). 

In multirotor UAV control systems, PID controllers are 

most commonly applied to stabilize angular rates and 

attitude angles (pitch, roll, yaw), as well as to regulate 

altitude. Each stabilization channel has a separate PID 

controller, which ensures the required quality of 

stabilization even in the presence of moderate disturbances 

[22]. The error e(t) is defined as the difference between the 

desired and actual angle or rate (e.g., roll φ, pitch θ, yaw ψ). 

A key feature of using PID for multirotor UAVs is the need 

to coordinate control signals among multiple motors to 

achieve the desired torque or thrust [22, 25]. 

In fixed-wing aircraft, PID controllers are used to 

stabilize flight parameters such as altitude, airspeed, angle 

of attack, heading, and trajectory [20]. Unlike multirotor 

platforms, in fixed-wing UAVs, the control signals act on 

aerodynamic surfaces: ailerons (δa), elevator (δe), and 

rudder (δr). For example, altitude control is based on pitch 

control through a PID controller: 

 𝑒(𝑡) = ℎ𝑟𝑒𝑓(𝑡) − ℎ(𝑡),                (5.1) 

Table 1 

Comparison of modern UAV control systems [17] 

UAV control 

system 
Advantages Disadvantages 

PID Ease of 

implementation and 

setup 

Sensitivity to noise 

and disturbances 

LQR / LQG Optimal control, 

guaranteed stability 

margin, engineering 

convenience 

Requires a complete 

state vector and an 

accurate model 

H-infinity Control Resilience to 

uncertainties and 

disturbances 

High computational 

cost, complexity of 

setup 

Gain Scheduling Efficient operation in 

a wide range of 

modes, taking into 

accountnonlinear 

properties 

Stability issues 

during transition 

between modes, 

design complexity 

Model Predictive 

Control (MPC) 

Taking into account 

constraints on inputs 

and states, 

multivariate control 

High dependence on 

the accuracy of the 

forecast model 

Sliding Mode 

Control (SMC) 

High resistance to 

uncertainties and 

disturbances, good 

tracking 

characteristics 

Chattering or 

shaking effect 

Backstepping Excellent tracking and 

disturbance compen-

sation capabilities, 

effective for under-

controlled systems 

Requires precise 

mathematical 

model, high 

computational 

complexity 

Feedback 

Linearization 

Efficient control of 

nonlinear systems, 

good tracking quality 

The need for an 

accurate 

mathematical 

model, high 

computational cost 

Nonlinear MPC 

(NMPC) 

Ability to work with 

strong nonlinearities 

and system constraints 

High computational 

complexity, need for 

powerful processors 

Adaptive Control Adaptation to variable 

and unknown system 

parameters, resistance 

to disturbances 

Complex setup, high 

computational load 

Fuzzy Logic Does not require an 

exact mathematical 

model, flexibility in 

configuration 

Complexity of rule 

development, 

dependence on 

expert knowledge 

Neural Network High ability to 

approximate complex 

systems, ability to 

learn 

The need for large 

amounts of data for 

training, the 

complexity of 

validation 

Reinforcement 

Learning 

Learning optimal 

behavior without an 

explicit model 

Requires a large 

amount of training 

data,instability 

 

where href(t) is the desired altitude and h(t); h(t) is the 

actual altitude. Similar PID structures are applied to control 

heading using the rudder and roll angle using the ailerons 

[20]. The main feature of PID application in fixed-wing 
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UAVs is the need to account for the coupling between 

control channels, which creates the necessity for using 

multiloop stabilization systems [20, 25]. 

5.2. Linear-quadratic regulator (LQR) 

The Linear Quadratic Regulator (LQR) is a classical 

optimal control system synthesis method based on the 

minimization of a quadratic functional. It is effective when 

applied to linear or linearized system models and ensures 

an optimal balance between control quality and energy 

expenditure [20,28]. 

In control systems of multirotor unmanned aerial 

vehicles, LQR is used for stabilizing the orientation and 

position of the vehicle in space [27, 28]. Typically, the 

system is linearized around the hovering state, where 

angular deviations and velocities are small. The linearized 

dynamics of a quadcopter for the angular coordinates e.g., 

roll φ, pitch θ, yaw ψ are described by the following 

equations [28]: 

 

𝜑̈ =
1

𝐼𝑥𝑥
𝑈2,

𝜃̈ =
1

𝐼𝑦𝑦
𝑈3,

𝜓̈ =
1

𝐼𝑧𝑧
𝑈4,

 (5.2) 

are Ixx, Iyy, Izz are the moments of inertia of the quadcopter; 

U2, U3, U4 are the control torques around the respective 

axes. 

The state vector is defined as: 

 𝑥 = [𝜑, 𝜑̇, 𝜃, 𝜃̇, 𝜓, 𝜓̇]𝑇. (5.3) 
The control vector has the form: 

 𝑢 = [𝑈2, 𝑈3, 𝑈4]𝑇. (5.4) 

The application of LQR ensures effective stabilization 

of the vehicle’s orientation even under external 

disturbances and inaccuracies of the mathematical model 

[27]. 

In a fixed-wing aircraft, LQR is applied to stabilize 

altitude, velocity, heading, and navigation parameters 

under conditions of steady straight-line flight [20, 21]. The 

linearized longitudinal dynamics of the aircraft are 

described by the following system of equations [20]: 

𝑢̇ = 𝑋𝑢𝑢 + 𝑋𝑤𝑤 + 𝑍𝜗𝜗 − 𝑔𝑐𝑜𝑠𝜗0 + 𝑋𝛿𝑒
𝛿𝑒 ,

𝑤̇ = 𝑍𝑢𝑢 + 𝑍𝑤𝑤 + 𝑍𝜗𝜗 − 𝑔𝑠𝑖𝑛𝜗0 + 𝑍𝛿𝑒
𝛿𝑒 ,

𝑞̇ = 𝑀𝑢𝑢 + 𝑀𝑤𝑤 + 𝑀𝑞𝑞 + 𝑀𝛿𝑒
𝛿𝑒 ,

𝜗̇ = 𝑞,

ℎ̇ = −𝑢𝑠𝑖𝑛𝜗 + 𝑤𝑐𝑜𝑠𝜗,

 (5.5) 

where u, w  are the velocity components of the aircraft;; q 

is the pitch angular velocity; θ is the angle of attack; h is 

the flight altitude;  δe is the elevator deflection;  g is the 

acceleration due to gravity;  Xu, Xw, Zu, Zw, Mu, Mw, Mq – are 

the coefficients obtained experimentally or through 

aerodynamic modeling. 

The state vector has the form: 

 𝑥 = [𝑢, 𝑤, 𝑞, 𝜗, ℎ]𝑇. (5.6) 
The control input is defined by the equation: 

 𝑢 =  𝛿𝑒. (5.7) 
The use of LQR to stabilise longitudinal motion 

reduces altitude and angle of attack errors with minimal 

energy consumption [21]. 

5.3. Nonlinear control with predictive models (Non-

linear MPC) 

Nonlinear Model Predictive Control (NMPC) is an 

extension of the classical MPC approach that allows the full 

nonlinear dynamics of the system to be considered when 

constructing control actions. This method is viewed as an 

intermediate between classical and intelligent approaches 

since, on the one hand, it relies on a mathematical model of 

the system, while on the other – it enables the use of 

optimization methods and machine learning, in particular 

for modeling dynamics or generating trajectories [23]. 

The main idea of NMPC is to determine the optimal 

sequence of control actions over a finite time horizon by 

minimizing a cost function subject to dynamic constraints. 

The general mathematical formulation of the problem is as 

follows [23]: 

 𝑚𝑖𝑛
𝑢(⋅)

∫ ℓ
𝑡+𝑇

𝑡
(𝑥(𝜏), 𝑢(𝜏)) 𝑑𝜏 (5.8) 

subject to: 

𝑥̇ = 𝑓(𝑥, 𝑢),  𝑥(𝑡) = 𝑥0,  

         𝑥(𝜏) ∈ 𝒳,  𝑢(𝜏) ∈ 𝒰, ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇]. (5.9) 

where 𝑥(𝜏) is the system state vector at time τ; 𝑢(𝜏) is the 

control input vector; 𝑓(𝑥, 𝑢) is the nonlinear system 

dynamics model; 𝑥̇ is a derivative of the state vector with 

respect to time, i.e., 𝑥̇ =
𝑑𝑥

𝑑𝑡
; 𝑥(𝑡) = 𝑥0 is  the initial state 

of the system at time 𝑡; 𝒳, 𝒰 are the admissible sets of 

states and controls, respectively; ℓ(𝑥, 𝑢) is the cost 

function defining the optimization objective; 𝑇 is a 

prediction horizon; ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇] indicates that the 

dynamic and constraint conditions for states and controls 

must hold at all times within the prediction horizon. 

At each iteration, only the first element of the optimal 

control sequence is applied to the system, after which the 

optimization is repeated with the updated state. 

In multirotor UAV control systems, NMPC is applied 

for stabilization, trajectory tracking, and obstacle 

avoidance. NMPC implementations account for the 

nonlinear dynamics of the vehicle, physical constraints on 

control signals, and the influence of external disturbances, 

which is critically important for performing complex 

maneuvers in real time [23]. 
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The main advantages of applying NMPC in multirotor 

systems are: the ability to actively incorporate constraints 

on control inputs; adaptability to changing dynamic 

environmental conditions; and high trajectory accuracy 

even in confined spaces. NMPC is particularly effective for 

maneuvering in environments with high dynamic demands 

and limited space. The main drawbacks include the high 

computational complexity of the optimization algorithms, 

which requires the use of specialized numerical methods 

and powerful computational resources [23]. 

When applied to fixed-wing UAVs, NMPC-based 

approaches demonstrate a variety of implementations 

depending on the control objectives. In [29], a full 

implementation of nonlinear MPC is proposed for the task 

of three-dimensional tracking of a ground target using a 

fixed-wing UAV. The system models the full nonlinear 

dynamics of the UAV in space, taking into account 

constraints on control signals and the physical 

characteristics of the vehicle. To ensure closed-loop system 

stability, a stabilizer synthesized using the Lyapunov 

method is introduced. The optimization problem is solved 

using a global heuristic method (bat algorithm), which 

significantly reduces real-time computational costs. 

Experimental tests showed that the proposed approach 

provides reliable tracking of both stationary and moving 

targets, even in the presence of wind disturbances [29]. 

Another approach to using NMPC is presented in [30], 

where NMPC is applied to optimize a parameter within the 

structure of an already stable nonlinear guidance law based 

on Lyapunov stability theory. Specifically, a coefficient is 

optimized that determines prediction and compensation of 

trajectory tracking errors. The proposed method 

demonstrated advantages over fixed-parameter and fuzzy-

logic approaches, particularly under crosswind conditions 

[30]. 

5.4. Adaptive Control 

Adaptive control is a class of methods that enables 

automatic adjustment of system parameters in real time to 

compensate for uncertainties in the object’s dynamics or 

changes in external conditions. 

Adaptive control of multirotor UAVs allows 

compensation for the effects of external disturbances, 

changes in mass, moments of inertia, and other factors that 

vary during flight. One example is the use of MRAC 

(Model Reference Adaptive Control) with neural networks 

for quadcopters [27]. In this implementation, the neural 

network is embedded within the controller structure and 

approximates unknown nonlinearities of the dynamics in 

real time. This increases trajectory tracking accuracy in the 

presence of parametric uncertainties and disturbances. 

To compensate for varying characteristics of the 

quadcopter, an Extended Classical Adaptive Approach 

(ECAA) has been developed, which adapts the controller 

parameters based on changes in mass or distribution of 

moments of inertia [32]. This approach ensures system 

stability even with significant variations in object 

parameters. Among adaptive control methods for 

multirotor UAVs, a Simple Adaptive Control (SAC) 

scheme with an adaptive anti-windup compensator is also 

used. This approach stabilizes the quadcopter’s orientation 

in cases of control signal saturation, maintaining system 

stability without requiring changes to the control structure 

[31]. 

For fixed-wing UAVs, adaptive control is aimed at 

compensating for uncertainties in aerodynamic parameters, 

which may vary depending on flight mode or external 

conditions. Adaptive Backstepping is implemented in 

fixed-wing UAV control systems, ensuring stable 

trajectory tracking in the presence of model uncertainties. 

The control system is constructed based on sequential 

stabilization of errors relative to the desired trajectory while 

simultaneously adapting to unknown aerodynamic 

parameters. This allows maintaining control quality under 

changing flight conditions and performing complex 

maneuvers in real operational environments [19]. 

5.5. Fuzzy control 

Fuzzy control is a class of methods based on using 

fuzzy rules to generate control actions in systems with 

uncertain or complex dynamics. The most commonly used 

algorithms are Mamdani and Sugeno, depending on the 

required precision and computational complexity. 

In multirotor UAVs, fuzzy control systems are used to 

stabilize position and orientation under uncertainties and 

wind disturbances. A fuzzy PID controller is built using 

three input variables: position error, derivative of error, and 

integral of error. The implementation of fuzzy control 

improves trajectory tracking accuracy and enhances 

quadcopter stability compared to standard PID controllers 

[33]. 

Adaptability is further increased by emulating the 

behavior of the fuzzy PID controller using a Recurrent 

Neural Network (RNN), which reduces computational load 

while maintaining stabilization accuracy [34]. 

Additionally, integrating fuzzy logic with Radial Basis 

Function Neural Networks (RBF NN) is used to optimize 

PID parameters in real time, improving the system’s 

adaptability to changes in object dynamics [35]. 

In fixed-wing UAVs, fuzzy control systems are applied 

to improve the stability and accuracy of altitude and 

heading stabilization, as well as to compensate for lateral-

axis oscillations during flight under challenging conditions. 

Such systems allow the aircraft’s response to adapt to 

changing external influences without the need to retune 

controller parameters. 

The structure of the fuzzy controller is based on 

classical principles for designing stabilizers for automatic 

altitude and heading control. The input data are the values 

of altitude deviation, heading deviation, and the derivatives 

of these errors, which are then converted into fuzzy sets for 

further processing. The control rule base is formed based 
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on the correspondence between the magnitude of 

deviations and the required control moments for the 

ailerons, elevator, and rudder. The use of fuzzy logic in the 

stabilization loops of fixed-wing UAVs improves system 

response under variable environmental conditions, 

increases adaptability to wind disturbances, and ensures 

smooth flight adjustments [20]. 

5.6. Neural networks in UAV control systems 

Neural Networks (NN) are used in unmanned aerial 

vehicle (UAV) control systems as tools for approximating 

system dynamics, compensating for disturbances, 

stabilizing, and optimizing trajectories without the need for 

an explicit mathematical model [37]. Despite this, neural 

networks on their own are not classical control systems. 

They are considered as alternative or auxiliary intelligent 

controllers (Learning-Based Controllers), which 

complement or replace specific modules of the control 

system. This allows the system to adapt to complex 

aerodynamic characteristics of the vehicle and changing 

external conditions [36, 37]. 

Table 2 presents the main application areas and typical 

examples of the use of different neural network 

architectures in UAV control systems. 

Table 2 

Type of neural 

network 

Main purpose Features of 

application in UAVs 

Sour-

es 

Feedforward 

Neural 

Networks 

(FNN) 

Approximation 

of control 

functions or 

dynamics 

Creating control 

models to stabilize 

the position and 

orientation of UAVs 

[8, 

37] 

Radial Basis 

Function 

Networks 

(RBF-NN) 

Compensation 

of local 

uncertainties 

Robust local control 

in complex 

environments for 

multi-rotor UAVs 

[27] 

Recurrent Neural 

Networks 

(RNN), LSTM 

Predicting 

future states 

Fixed-wing UAV 

trajectory planning, 

obstacle avoidance 

[34, 

36] 

Fractal Neural 

Networks 

Generalization 

and resistance 

to overtraining 

Use in stabilization 

problems in complex 

dynamics 

[38] 

Neural 

Networks at 

MRAC 

Adaptive 

compensation 

control 

Compensation for 

unknown dynamics 

in multi-rotor UAVs 

[27] 

Neural 

Networks in 

S-Plane 

Models 

Position control 

in the plane 

Application for 

stabilizing fixed-

wing UAVs in windy 

conditions 

[39] 

Hybrid 

approaches 

(Fuzzy+NN) 

Integrating the 

flexibility of 

fuzzy control 

and neural net-

work training 

Improving the 

stability and 

adaptability of 

trajectory control 

[34] 

 

Fractal Neural Networks demonstrate high resistance 

to overfitting and the ability to generalize complex 

dependencies, making them suitable for use in advanced 

control scenarios [38]. Integrating neural networks into 

MRAC-type (Model Reference Adaptive Control) adaptive 

control structures allows compensation for unknown 

dynamics by minimizing trajectory errors relative to a 

reference model [27]. 

In multirotor UAVs, neural networks are integrated to 

stabilize position and orientation, compensate for external 

disturbances, and handle variable dynamic characteristics. 

For mode-transition tasks in complex vehicles, particularly 

in ducted fan UAVs, neural networks are used to generate 

control moments during transitions from hovering to 

horizontal flight. Closed-loop system stability in these 

approaches is ensured using Lyapunov functions [40]. 

In fixed-wing UAVs, neural networks are employed 

for trajectory planning and flight control under variable 

external conditions. The use of recurrent networks, such as 

LSTM, enables prediction of future vehicle states, 

optimizing the route while accounting for wind loads and 

energy consumption [36]. Additionally, control signals are 

constructed based on a neural model in the S-plane, 

improving navigation accuracy of fixed-wing UAVs in 

challenging atmospheric conditions [39]. 

In more advanced implementations, hybrid strategies 

are considered, where neural networks are integrated with 

other approaches, such as fuzzy logic. The combination of 

a fuzzy PID controller with a recurrent neural network 

significantly improves the stability of trajectory tracking, 

even under substantial changes in environmental 

parameters [34]. 

The use of neural networks in UAV control systems 

opens wide opportunities to enhance adaptability, 

resistance to external disturbances, and flight autonomy 

under complex and variable conditions [37, 41]. 

6. Conclusions 

The review found, that mathematical modelling of 

unmanned aerial vehicles (UAVs) is based on kinematic 

and dynamic models that account for both translational and 

rotational motion of the vehicle. For rotary-wing UAVs, 

modeling typically focuses on aerodynamic forces and 

moments, while fixed-wing aircraft are mainly modelled 

using aerodynamic flight models. 

The analysis of existing control systems has shown that 

classical approaches, including proportional-integral-

derivative (PID) and linear-quadratic control (LQR), 

remain fundamental for stabilization and implementation of 

simple trajectory-tracking tasks. However, under con-

ditions of diverse disturbances and parametric uncertainty 

of models, the application of such approaches is relatively 

inefficient. 

Control systems employing nonlinear model predictive 

control (NMPC), adaptive strategies, or artificial intelli-

gence methods provide the capability to execute complex 

UAV trajectories even under significant disturbances and 

varying parameters. 

The choice of a mathematical model and the 

corresponding control strategy depends on the type of UAV 

and the specifics of the tasks to be performed. 
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СУЧАСНІ СТРАТЕГІЇ КЕРУВАННЯ 

БЕЗПІЛОТНИМИ АВІАЦІЙНИМИ 

СИСТЕМАМИ 

Максим Шепляков 

Наведено сучасні підходи до математичного моде-

лювання та синтезу систем керування роторними 

безпілотними літальними апаратами та безпілотними 

апаратами з нерухомим крилом. Розглянуто кінема-

тичні та динамічні моделі, що описують поступальний 

і обертальний рух зазначених типів БПЛА, з ураху-

ванням аеродинамічних сил, моментів та гіроскопічних 

ефектів. Проаналізовано загальні принципи побудови 

математичних моделей, їх адаптацію для різних класів 

літальних апаратів та використання у процесі синтезу 

систем автоматичного керування. Особливу увагу 

зосереджено аналізу систем стабілізації й відпрацю-

вання заданої траєкторії руху, зокрема, синтезованих  

із застосуванням  ПІД-регуляторів,    LQR-регуляторів,   

адаптивних методів, методу model predictive control, а 

також теорії інтелектуального керування.  Проаналі-

зовано залежність вибору стратегії керування від типу 

апарата, характеристик польоту та цільових задач. 
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