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Abstract: In this work, a comprehensive approach to 

the sensitivity analysis of state-variable control systems is 

proposed. The advantages of systems synthesized by a 

feedback linearization method are demonstrated being 

compared to a system synthesized by the modal control 

method, both in terms of sensitivity to changes in the 

moment of inertia of the second mass and in terms of 

control quality. The influence of applying a PI controller 

and a PIμ-controller on the sensitivity of the system to 

changes in the moment of inertia of the second mass and on 

the speed of response and overshoot of the output coor-

dinate in systems synthesized by the feedback linearization 

method is analyzed. 

Keywords:feedback linearization method, PI 

controller, sensitivity function of the synthesized system, 

two-mass system. 

Introduction 

In many modern technological processes, in particular, 

the manufacture of metal products on rolling mills, the 

paper industry, long shafts are available to connect an 

electromechanical converter with an actuator. The 

consideration of processes in such electric drives is 

traditionally reduced to the analysis of work based on a 

two-mass model (Fig. 1) [1–3]. 

 

Fig. 1. Structural diagram of the two-mass system model 

To reduce the order of the system under study when 

analyzing processes in the two-mass system and the actuator 

on the basis of the theory of different-speed systems, 

processes in an electromagnetic circuit are neglected. In 

addition to speed control systems, in technological processes 

there is often a need to regulate the position. Such problems 

are characteristic, in particular, for robotic systems [4], or 

steel smelting systems in arc steelmaking furnaces [5]. In 

these cases, the two-mass model is also used to consider the 

processes. The mathematical description of the two-mass 

positional system shown in Fig. 1 in a vector-matrix form has 

the form: 
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where A, B, B1 are the matrix of the system and the 

matrices of the control and disturbing influences, 

respectively; C is the observability matrix of the system; M 

is the moment on the engine shaft; 𝜔1 and 𝜔2 are the 

angular velocities of rotation of the first and second masses 

of the two-mass system; 𝑀12 is the elastic moment; 𝜑  is 

the displacement; 𝑎𝑓1 , 𝑎𝑓2, 𝛽  are coefficients 

characterizing the influence of external and internal viscous 

friction; 𝐽
1
, 𝐽
2
  are moments of inertia of the first and second 

masses; 𝑐12 is the shaft stiffness coefficient. 

Such a two-mass system is characterized by the presence 

of natural shaft oscillations with a frequency
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  [1, 2, 6], as well as changes in 

parameters during the system operation. Characteristic for 

technological processes is the change in the moment of 

inertia of the second mass 𝐽2 [7]. The works [8–10] are 

devoted to reducing the influence of oscillatory processes in 
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the two-mass systems. A typical approach to the synthesis of 

control systems in the two-mass systems is controlling by the 

state variables of the system [9, 11–13]. In this case, such 

tasks as the synthesis of estimators [11, 12] to obtain 

information about the state variables of the system and the 

synthesis of coupling coefficients by the state variables, 

which will ensure robustness to parametric disturbances with 

high control quality [13, 14], are solved. 

Traditionally, to reduce the sensitivity to parametric 

disturbances, sliding control or robust control based on 𝐻2  ,

𝐻∞ norms is used [13–17]. An important element of the 

synthesis of feedback coefficients for the state variables of 

the system is the placement of the poles of the system 

transfer function [18, 19]. In the case of the synthesis of 

modal control for the full state vector [5] or control using 

the feedback linearization method [20, 21], the feedback 

coefficients for the state variables are determined on the 

basis of one of the standard linear forms. In this case, the 

task of choosing the geometric mean root 𝜔0 that 

determines the cutoff frequency of the system and affects 

the value of the feedback coefficients for the state variables 

arises. In the case of positional systems, the synthesis of 

control effects using the two-mass model of the mechanical 

part [11, 22, 23] may be complicated by additional 

restrictions on the accuracy of working out a given 

trajectory of motion or positioning of the actuator, the 

absence of overshoot, etc. 

Considering the widespread use of control systems 

based on the variables of the system state vector and the 

presence of parametric disturbances caused by both the 

peculiarities of the technological process and the errors in 

determining the parameters of the two-mass model of the 

mechanical part, it is advisable, in our opinion, to analyze 

the parametric sensitivity of various control systems. 

Sensitivity analysis of a system synthesized by the 

modal control method. 

The matrix transfer function of a closed-loop system in 

the case of full state vector control is defined as follows: 
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where s is the Laplace operator; I is the identity matrix;

 1 2 3 4k k k kK is the vector of feedback 

coefficients on the state variables of the system. Then the 

transfer function from the initial coordinate of the system 

to the control signal (here and further the influence of 

external viscous friction 𝑎𝑓1 = 0 𝑎𝑓2 = 0 is neglected) is 

as follows: 
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Accordingly, with the desired location of the roots of 

the characteristic polynomial 𝐻(𝑠) = 𝑠4 + 𝛼1 ∙ 𝜔0 ∙ 𝑠
3 +

+ 𝛼2 ∙ 𝜔0
2 ∙ 𝑠2 + 𝛼3 ∙ 𝜔0

3 ∙∙ 𝑠 + 𝛼4 ∙ 𝜔0
4 given, the vector of 

feedback coefficients on the state variables as a solution to 

the system of equations formed by equating the coefficients 

at the corresponding powers of the polynomials Den(s) and 

H(s) is found. In the case of being focused on the binomial 

form of the root distribution, the feedback coefficients on 

the state variables of the system are respectively equal to: 

𝑘1 =
𝐽1 ∙ 𝐽2 ∙ 4 ∙ 𝜔0 − 𝛽 ∙ (𝐽1 + 𝐽2)

𝐽2
; 𝑘4 =

𝜔0
4 ∙ 𝐽1 ∙ 𝐽2
𝑐12

 

𝑘2 =
𝐽1 ∙ 𝐽2 ∙ 6 ∙ 𝜔0
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− 
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−
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On the other hand, in steady state at s = 0: 

𝜑(0)

𝑀(0)
=

𝑐12
𝐽1 ∙ 𝐽2
𝑐12 ∙ 𝑘4
𝐽1 ∙ 𝐽2

=
1

𝑘4
 

and therefore: 

𝜔0
4 ∙ 𝐽1 ∙ 𝐽2
𝑐12

=
𝑀(𝑡 → ∞)

𝜑(𝑡 → ∞)
 

and then: 

𝜔0
4 =

𝑀(𝑡 → ∞)

𝜑(𝑡 → ∞)
∙
𝑐12
𝐽1 ∙ 𝐽2

 ∙
𝐽1 + 𝐽2
𝐽1 + 𝐽2

= 

=
𝑀(𝑡 → ∞)

𝜑(𝑡 → ∞)
∙
(2 ∙ 𝜋 ∙ 𝑓)2

𝐽1 + 𝐽2
, 

where 𝑓 is the natural frequency of oscillations of the long 

shaft. 

In the case of changing the moment of inertia of the 

second mass ∆𝐽2 to matrix A of the system, it will take the 

following form: 
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𝐴∗ =
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The matrix transfer function of the closed-loop system 

is determined taking into account the change in the moment 

of inertia of the second mass: 

𝑻(𝑠) = (𝑠 ∙ 𝑰 − 𝑨∗ + 𝑩 ∙ 𝑲)−1 ∙ 𝐁, 
and the transfer function from the system initial coordinate 

to the control signal is as follows: 
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To analyze the sensitivity of the system to the action 

of parametric disturbances, either the distance between the 

transfer functions is used [24]: 

Ψ(𝑊,𝑊∗) =
|𝑊(𝑗𝜔) −𝑊∗(𝑗𝜔)|

√1 + |𝑊(𝑗𝜔)|2 ∙ √1 + |𝑊𝑊∗(𝑗𝜔)(𝑗𝜔)|2
 

or the sensitivity function is applied [25]: 

𝑆𝑒𝑛𝑠(𝑠, 𝛾) =

𝑊(𝑠, 𝛾) −𝑊∗(𝑠, 𝛾 + ∆𝛾)
𝑊(𝑠, 𝛾)
∆𝛾
𝛾

. 

Having constructed the logarithmic amplitude-phase 

frequency characteristic (LPFC) of the sensitivity function 

and analyzing the value of the system gain to the cutoff 

frequency, we can conclude about the sensitivity of the 

synthesized system to parametric perturbation. 

 

The sensitivity function to changes in the moment of 
inertia of the second mass taking into account: 

𝐷𝑒𝑛∗(𝑠) = 𝐷𝑒𝑛(𝑠) +
∆𝑆(𝑠)

𝐽1 ∙ 𝐽2
 , 𝑁𝑢𝑚∗(𝑠) = 𝑁𝑢𝑚(𝑠) 

will take the following form: 
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and taking into account the synthesized feedback 
coefficients on the system state variables: 

𝑆𝑒𝑛𝑠(𝑠, 𝐽2) =

𝐽2 ∙ (

𝐽1 ∙ 𝑠
4 + (𝛽 +

𝐽1 ∙ 𝐽2 ∙ 4 ∙ 𝜔0 − 𝛽 ∙ (𝐽1 + 𝐽2)
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Fig. 2. LPFC of the sensitivity function of the control system 

for the full state vector when the moment of inertia of the second 

mass is decreasing ( ) and increasing (__) 

Fig. 2 shows the LPFC of the sensitivity functions 

according to the full vector of the state of the control system 

synthesized for the binomial form of the root distribution at 

𝜔0 = 1, obtained for the following system parameters: 

moments of inertia of the first and second masses  

𝐽1 = 1 кг ∙ м
2,   𝐽2 = 1 кг ∙ м

2; coefficient of internal 

viscous friction 𝜔0 = 1, 𝐽1 = 1 𝑘𝑔 ∙ 𝑚
2,   𝐽2 = 1 𝑘𝑔 ∙ 𝑚

2, 

  𝛽 = 10; shaft stiffness coefficient 𝑐12 = 10000. The 

obtained results demonstrate significant sensitivity of the 

system to changes in the moment of inertia of the second 

mass, especially in the direction of its increase. 
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The transfer function of the system when the moment of 

inertia of the second mass is being changed and after substitu- 

ting the synthesized feedback coefficients for the system 

state variables and replacing:∆𝐽2 = 𝛿 ∙ 𝐽2  will have the form 

𝑊∗(𝑠) =
𝜑(𝑠)

𝑀(𝑠)
=

𝑐12+𝛽∙𝑠

𝐽1∙𝐽2∙(1+𝛿)

𝑠4+(4∙𝜔0−
𝐽1
𝐽2
∙
𝛿

1+𝛿
∙𝛽)∙𝑠3+4∙𝜔0

3∙
1

1+𝛿
∙𝑠+𝜔0

4∙
1

1+𝛿
+→

→(6∙𝜔0
2−

𝐽1
𝐽2
∙
𝛿

1+𝛿
∙𝑐12−4∙𝜔0

3∙
𝛿

1+𝛿
∙
𝛽

𝑐12
+

𝛿

1+𝛿
∙
𝛽2

𝑐12
2 ∙𝜔0

4∙)∙𝑠2

. 

Analysis of the obtained transfer function allows 

for concluding that at certain ratios of the system 

parameters, the change in the moment of inertia of the 

second mass can cause instability of the positional 

system. The range of change in the deviations 

[𝛿min, 𝛿max] of the moment of inertia of the second 

mass, as a function of the system parameters, can be 

easily found using the algebraic Hurwitz criterion. To 

obtain the range of change, it is enough to find the 

second-order determinant of the Hurwitz matrix and, 

equating it to zero, find the roots of the quadratic 

equation with respect to  𝛿: 
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Fig. 3. Transient characteristics of the positional modal control 

system at a value corresponding to the parameters at the stage  

of system synthesis ( ___), as well as when the moment of inertia 

of the second mass is decreasing (__  10 %  ___  6 %  ___2 %) 

and increasing (_ _0.1 %) 

Fig. 3 shows the transient characteristics of a two-mass 

positional system when the moment of inertia of the second 

mass and the system parameters given above change. 

Analysis of the obtained results makes it possible to state 

that a decrease in the moment of inertia of the second mass 

in a positional system synthesized by the modal control 

method leads to an increase in the oscillations of the 

system. At the same time, even a slight increase in this 

parameter can lead to unstable operation of such a system. 

Thus, the application of the modal control method to 

obtain the desired nature of the transient process in a 

positional two-mass system requires fairly precise models 

of the system. 

Sensitivity analysis of a system synthesized by the 

feedback linearization method. 

With the observation matrix С = [0 0 0 1], the 

matrix transfer function of a closed-loop system 

synthesized by the feedback linearization method is defined 

as follows: 

𝑻𝒇𝒍(𝑠) = 

= (𝑠 ∙ 𝐈 − 𝐀 + 𝐁 ∙ (𝐂 ∙ 𝐀2 ∙ 𝐁)−1(𝐂 ∙ 𝐀3 + 𝐊𝒇𝒍 ∙ 𝐙))
−1

× 

× 𝐁 ∙ (𝐂 ∙ 𝐀2 ∙ 𝐁)−1, 

where s is the Laplace operator; I is the identity matrix; 

𝐊𝒇𝒍 = [𝑘1𝑓𝑙 𝑘2𝑓𝑙 𝑘3𝑓𝑙] is the vector of feedback 

coefficients in the variables 𝑦, 𝑦̇, 𝑦̈;   𝐙 = [
𝐶
𝐶 ∙ 𝐴
𝐶 ∙ 𝐴2

] is the 

matrix of the connection between the variables 𝑦, 𝑦̇, 𝑦̈ and 

the state vector of the system x. The conversion function 

from the initial coordinate of the system to the control 

signal will have the form: 

𝑊𝑓𝑙(𝑠) =
1

𝑠3 + 𝑘3𝑓𝑙 ∙ 𝑠
2 + 𝑘2𝑓𝑙 ∙ 𝑠 + 𝑘1𝑓𝑙   

. 

Equating the coefficients of the denominator of the 

transfer function of the system to the coefficients at the 

corresponding powers of the characteristic polynomial, 

which provides the desired placement of the roots, we 

obtain 𝑊𝑓𝑙(𝑠)𝐻а𝑓𝑙(𝑠) = 𝑠
3 + 𝛼1𝑓𝑙 ∙ 𝜔0 ∙ 𝑠

2 + 

+ 𝛼2𝑓𝑙 ∙ 𝜔0
2 ∙ 𝑠 + 𝛼3𝑓𝑙 ∙ 𝜔0

3𝑘3𝑓𝑙 = 𝛼1𝑓𝑙 ∙ 𝜔0, 

𝑘2𝑓𝑙 = 𝛼2𝑓𝑙 ∙ 𝜔0
2𝑘1𝑓𝑙 = 𝛼3𝑓𝑙 ∙ 𝜔0

3. Respectively, the 

matrix transfer function, which takes into account the 

change in the moment of inertia of the second mass, will 

have the form: 

𝐓𝑓𝑙
∗ (𝑠) = (𝑠 ∙ 𝑰 − 𝑨∗ + 𝑩 ∙ (𝑪 ∙ 𝑨2 ∙ 𝑩)−1(𝑪 ∙ 𝑨3 +

+ 𝑲𝒇𝒍 ∙ 𝒁
∗))

−1

∙ 𝐁 ∙ (𝐂 ∙ 𝐀2 ∙ 𝐁)−1. 
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Here 

𝒁∗ = [
𝐶

𝐶 ∙ 𝑨∗

𝐶 ∙ 𝑨∗2
] 

is the matrix of the connection between the variables 𝑦, 𝑦̇, 𝑦̈ 

and the state vector of the system x. 

And the transfer function from the initial system 

coordinate to the control signal is as follows: 

𝑊∗
𝑓𝑙(𝑠) =

1

𝑠3+𝑘3𝑓𝑙∙𝑠
2+𝑘2𝑓𝑙∙𝑠+𝑘1𝑓𝑙+

∆𝐽2
𝐽2
∙(𝑠3−

𝛽

𝐽2
∙𝑠2)

. 

Then, taking into account the synthesized feedback 

coefficients, the sensitivity function will take the form: 

𝑆𝑒𝑛𝑠𝑓𝑙(𝑠, 𝐽2) =
𝑠3−

𝛽

𝐽2
∙𝑠2

(𝑠+𝜔0)
3+

∆𝐽2
𝐽2
∙(𝑠3−

𝛽

𝐽2
∙𝑠2)

. 

Fig. 4 shows the LPFC of the sensitivity function of the 

control system synthesized by the feedback linearization 

method when tuned to the binomial form of the root 

distribution at 𝜔0 = 1, and the LPFC of such a system. The 

results obtained demonstrate that the synthesized system is 

sensitive to both a decrease and an increase in the moment 

of inertia of the second mass. Moreover, the sensitivity to 

changes in the moment of inertia of the second mass ∆𝐽2 

increases with a decrease in the value of 𝐽2. At the same 

time, the sensitivity of the system decreases with an 

increase in the value of the geometric mean root 0. 

The transfer function of the system after substituting 

the values of the synthesized coefficients of the control 

system will have the form: 

 *

3 2 2 3
0 0 0

2

1

1

1 1 1
3 3

1 1 1 1

flW s

s s s
J



 
  

   


 

            
    

. 

 

 

 
a) J1=1; J2=3; c12=10000;=10;0=1 

 
 

b) J1=1; J2=1; c12=10000;=10;0=1 

 

c) J1=1; J2=3; c12=10000;=10;0=2 

 

d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 4. LPFC of the system synthesized by the feedback linearization method (__) and the sensitivity function of the system 

 when decreasing (__50 %,  __ 25 %) and increasing (__25 % ) moment of inertia of the second mass
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Fig. 5 shows the transient responses of a two-mass 

positioning system synthesized using the feedback 

linearization method under variations in the moment of inertia 

of the second mass. The obtained dependencies confirm the 

conclusion that such a system has significantly lower 

sensitivity to changes in the studied parameter, compared to 

the system synthesized by the modal control method. As in the 

previous system, an increase in the moment of inertia relative 

to the value used for synthesizing the control system 

parameters leads to instability. At the same time, a lower 

moment of inertia compared to the synthesis value increases 

overshoot and reduces the response speed of the system. With 

an increase in the value of the geometric mean root 0, the 

overshoot in the system decreases. 

  

a) J1=1; J2=3; c12=10000; =10; 0=1            b)   J1=1; J2=1; c12=10000; =10; 0=1 

 

 
c) J1=1; J2=3; c12=10000;=10;0=2        d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 5.  Transient characteristics of the positional control system synthesized by the feedback linearization method at a value 

corresponding to the parameters at the stage of system synthesis ( ___), as well as when decreasing (__50 %,  __ 25 %) and 

increasing (__25 % ) the moment of inertia of the second mass 

 

Sensitivity analysis of a system synthesized using the 

feedback linearization method and the use of a PI 

controller. 

In the case of a control system synthesized by the 

feedback linearization method with the use of a PI 

controller [21], a variable representing the integral of the 

position coordinate is applied in forming the feedbacks of 

the system. To implement this control action, a fictitious 

variable 𝜃 is introduced into the system model. Then the 

model of such a system will take the form: 

𝑑

𝑑𝑡

(

 

𝜔1
𝑀12
𝜔2
𝜑
𝜃 )

 

⏟      
𝑿𝟏̇

=

(

 
 
 
 
 

−𝛽 − 𝑎𝑓1

𝐽1

−1

𝐽1
   
𝛽

𝐽1
       0 0

𝑐12 0    −𝑐12     0 0

𝛽

𝐽2
0
0

1

𝐽2
0
0

−𝛽 − 𝑎𝑓2

𝐽2
0 0

1
0

0 0
1 0)

 
 
 
 
 

⏟                        
𝐴𝑓𝑙𝑃𝐼

∙

(

 

𝜔1
𝑀12
𝜔2
𝜑
𝜃 )

 

⏟    
𝑿𝟏

+

(

  
 

1

𝐽1
0
0
0
0)

  
 

⏟  
𝐵𝑓𝑙𝑃𝐼

∙ 𝑀 +

(

 
 
 

0
0
−1

𝐽2
0
0 )

 
 
 

⏟  
𝑩𝟏𝒇𝒍𝑷𝑰

∙ 𝑀𝑐

𝑌 = [𝟎 𝟎 𝟎 𝟏 𝟎]⏟            
𝑪𝒇𝒍𝑷𝑰

∙ 𝑥1
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The matrix transfer function of a closed-loop system 

synthesized by the feedback linearization method and using 

the PI controller is defined as follows: 

𝑻𝒇𝒍𝑷𝑰(𝑠) = 

= (𝑠 ∙ 𝑰 − 𝑨𝒇𝒍𝑷𝑰 + 𝑩𝒇𝒍𝑷𝑰 ∙ (𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰)

−1
×  

× (𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
𝟑 + 𝑘𝑝 ∙ 𝑲𝒇𝒍𝑷𝑰 ∙ 𝒁𝒇𝒍𝑷𝑰 + 𝑘𝐼 ∙ 𝑲𝒇𝒍𝑷𝑰 ∙∙ 𝒁𝟏𝒇𝒍𝑷𝑰)) ×

× 𝑩𝒇𝒍𝑷𝑰 ∙ (𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰)

−1
, 

where s is the Laplace operator; I5x5 is the identity matrix; 

𝑲𝒇𝒍𝑷𝑰 = [𝑘1𝑓𝑙𝑟 𝑘2𝑓𝑙𝑟 𝑘3𝑓𝑙𝑟] is the vector of feedback 

coefficients for the variables 𝑦, 𝑦̇, 𝑦̈; 

 

𝒁𝒇𝒍𝑷𝑰 = [

𝑪𝒇𝒍𝑷𝑰
𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰

𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
𝟐

] 

is the matrix of the connection between the variables 𝑦, 𝑦̇, 𝑦̈ 

and the state vector of the system x; 

𝑪𝟏𝒇𝒍𝑷𝑰 = [𝟎 𝟎 𝟎 𝟎 𝟏] is the matrix of the 

connection between the variables ∫𝑦𝑑𝑡 , 𝑦, 𝑦̇ and the state 

vector of the system x. 

The transfer function from the system initial coordinate 

to the control signal will have the form: 

 

 
   4 3 2

3 3 2 2 1 1   

i p
fl PI

p flr i flr p flr i flr p flr i flr

k k s
W s

s k k s k k k k s k k k k s k k


 


              

. 

 

The synthesis of the control system coefficients, which 

provides a binomial form of the distribution of the roots of 

the characteristic polynomial, is shown in [32]. 

Accordingly, the matrix transfer function, which takes 

into account the change in the moment of inertia of the 

second mass, will have the form: 

𝑻𝒇𝒍𝑷𝑰
∗

𝒇𝒍𝑷𝑰
(𝑠) = 

= (𝑠 ∙ 𝑰 − 𝑨𝒇𝒍𝑷𝑰
∗ + 𝑩𝒇𝒍𝑷𝑰 ∙ (𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰

𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰)
−1
× 

× (𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
𝟑 + 𝑘𝑝 ∙ 𝑲𝒇𝒍𝑷𝑰 ∙ 𝒁𝒇𝒍𝑷𝑰

∗ + 𝑘𝐼 ∙ 𝑲𝒇𝒍𝑷𝑰 ×

× 𝒁𝟏𝒇𝒍𝑷𝑰
∗ )) ∙ 𝑩𝒇𝒍𝑷𝑰 ×

× (𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰)

−1
 

where the matrix of the system  𝑨𝒇𝒍𝑷𝑰
∗  differs from the 

matrix  𝑨𝒇𝒍𝑷𝑰 by changing the moment of inertia of the 

second mass ∆𝐽2, 𝒁𝒇𝒍𝑷𝑰
∗ = [

𝑪𝒇𝒍𝑷𝑰
𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰

∗

𝑪𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
∗𝟐

]  is the matrix 

of the connection between the variables 𝑦, 𝑦̇, 𝑦̈ and the 

state vector of the system x; 𝒁𝟏𝒇𝒍𝑷𝑰
∗ = [

𝑪𝟏𝒇𝒍𝑷𝑰
𝑪𝟏𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰

∗

𝑪𝟏𝒇𝒍𝑷𝑰 ∙ 𝑨𝒇𝒍𝑷𝑰
∗𝟐

] 

is the matrix of the connection between the 

variables ∫ 𝑦𝑑𝑡 , 𝑦, 𝑦̇ and the state vector of the system x. 

At the same time, the transfer function will take the form: 

𝑊∗
𝑓𝑙−𝑃𝐼(𝑠) =

𝑘𝑖 + 𝑘𝑝 ∙ 𝑠

𝑠4 + 𝑘𝑝 ∙ 𝑘3𝑓𝑙𝑟 ∙ 𝑠
3 + (𝑘𝑖 ∙ 𝑘3𝑓𝑙𝑟  + 𝑘𝑝 ∙ 𝑘2𝑓𝑙𝑟) ∙ 𝑠

2 + (𝑘𝑖 ∙ 𝑘2𝑓𝑙𝑟  + 𝑘𝑝 ∙ 𝑘1𝑓𝑙𝑟) ∙ 𝑠+→

→ 𝑘𝑖 ∙ 𝑘1𝑓𝑙𝑟 +
∆𝐽2
𝐽2
∙ (𝑠4−

𝛽
𝐽2
∙ 𝑠3)

 

Then, taking into account the synthesized feedback 

coefficients and PI controller coefficients, the sensitivity 

function will be as follows: 

𝑆𝑒𝑛𝑠𝑓𝑙−𝑃𝐼(𝑠, 𝐽2) =
𝑠4 −

𝛽
𝐽2
∙ 𝑠3

(𝑠 + 𝜔0)
4 +

∆𝐽2
𝐽2
∙ (𝑠4 −

𝛽
𝐽2
∙ 𝑠3)

 

The obtained results of the study of the sensitivity 

function of the system   synthesized   by   the   feedback  

linearization method using the PI controller (Fig. 6) 

demonstrate that up to the cutoff frequency of the system, 

the LPFC of the sensitivity function is in the region of low 

gain coefficients, and therefore the synthesized system is 

also practically insensitive to such a parametric 

disturbance. 

The transfer function of the system after substituting 

the values of the synthesized coefficients of the control 

system will have the form: 

 

𝑊∗
𝑓𝑙−𝑃𝐼(𝑠) =

1
1 + 𝛿

∙ (2 ∙ 𝜔0
3 ∙ 𝑠 + 𝜔0

4)

𝑠4 + (4 ∙
1

1 + 𝛿
∙ 𝜔0 −

𝛽
𝐽2
∙
𝛿

1 + 𝛿
) ∙ 𝑠3 + 6 ∙ 𝜔0

2 ∙
1

1 + 𝛿
∙ 𝑠2 + 4 ∙ 𝜔0

3 ∙
1

1 + 𝛿
∙ 𝑠 + 𝜔0

4 ∙
1

1 + 𝛿

. 
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                   а) J1=1; J2=3; c12=10000;=10;0=1                         b) J1=1; J2=1; c12=10000;=10;0=1 

     

                    c) J1=1; J2=3; c12=10000;=10;0=2                        d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 6. LAFC synthesized by the feedback linearization method using the PI controller of the system (__) and the system 

sensitivity function when decreasing (__50 %,  __ 25 %) and increasing (__25 % ) the moment of inertia of the second mass 

  

                                а) J1=1; J2=3; c12=10000;=10;0=1              b) J1=1; J2=1; c12=10000;=10;0=1 

  
                                   c) J1=1; J2=3; c12=10000;=10;0=2                   d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 7. Transient characteristics of the position control system synthesized by the feedback linearization method using a PI controller 

at a value corresponding to the parameters at the stage of system synthesis ( ___), as well as when decreasing (__50 %,  __ 25 %)  

and increasing (__25 % ) the moment of inertia of the second mass 
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The transient responses shown in Fig. 7 confirm the 

lower sensitivity of the system synthesized by the feedback 

linearization method with the use of a PI controller to an 

increase in the moment of inertia of the second mass, 

compared to the system without a PI controller and the 

modal control system. At the same time, a decrease in the 

moment of inertia relative to the value at which the 

feedback and PI controller coefficients were synthesized 

leads to an increase in overshoot and oscillations. An 

increase in the value of the geometric mean root contributes 

to reducing the system sensitivity to changes in the moment 

of inertia of the second mass. 

Sensitivity analysis of a system synthesized by feedback 

linearization and application of PI-regulator 

 

When using a fractional-order proportional-integral 

controller PIμ in the control system and using the Caputo-

Fabrizio representation to describe the fractional-order 

integral [26]: 

𝐶𝐹𝐼𝜇𝑔(𝑡) =
1

𝜇
∙ ∫ 𝑒

−(1−𝜇)∙(𝑡−𝜏)
𝜇 ∙ 𝑔(𝜏) 𝑑𝜏.

𝑡

0

 

As a result of the Laplace transform we obtain: 

ℒ(𝐶𝐹𝐼𝜇𝑔(𝑡)) =
1

𝜇
∙

1

𝑠+
1−𝜇

𝜇

∙ 𝐺(𝑠) ==
1

𝜇∙𝑠+1−𝜇
∙ 𝐺(𝑠). 

Then the transfer function of the controller 𝑊𝑐𝑜𝑛𝑡𝑟(𝑠) =

= 𝑘𝑝 + 𝑘𝑖
1

𝜇∙𝑠+1−𝜇
 .  To implement integral relations for 

the state variables of the system, we introduce additional 

coordinates 𝑦𝑖𝑛𝑡 , 𝑦̇𝑖𝑛𝑡 , 𝑦̈𝑖𝑛𝑡  into the system matrix. The 

system model will take the following form: 

𝑑

𝑑𝑡

(

 
 
 
 

𝜔1
𝑀12
𝜔2
𝜑
𝑦̈𝑖𝑛𝑡
𝑦̇𝑖𝑛𝑡
𝑦𝑖𝑛𝑡)

 
 
 
 

⏟      
𝑿𝟐̇

= (
𝑨𝟏𝟏 𝑨𝟏𝟐
𝑨𝟐𝟏 𝑨𝟐𝟐

)
⏟        

𝐴𝑓𝑙𝑃𝐼𝜇

∙

(

 
 
 
 

𝜔1
𝑀12
𝜔2
𝜑
𝑦̈𝑖𝑛𝑡
𝑦̇𝑖𝑛𝑡
𝑦𝑖𝑛𝑡)

 
 
 
 

⏟    
𝑿𝟐

+

(

 
 
 
 
 

1

𝐽1
0
0
0
0
0
0)

 
 
 
 
 

⏟  
𝐵𝑓𝑙𝑃𝐼𝜇

∙ 𝑀 +

(

 
 
 
 
 

0
0
−1

𝐽2
0
0
0
0 )

 
 
 
 
 

⏟  
𝑩𝟏𝒇𝒍𝑷𝑰𝜇

∙ 𝑀𝑐

𝑌 = [𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎]⏟                
𝑪𝒇𝒍𝑷𝑰𝜇

∙ 𝑥2

    𝑨𝟏𝟏 =

[
 
 
 
 
 
 
−𝛽 − 𝑎𝑓1

𝐽1

−1

𝐽1
    
𝛽

𝐽1
            0

𝑐12 0   −𝑐12        0

𝛽

𝐽2
0

1

𝐽2
0

  

−𝛽 − 𝑎𝑓2

𝐽2
1

0

0]
 
 
 
 
 
 

     𝑨𝟏𝟐 = [

0 0 0
0 0 0
0
0

0
0

0
0

]

𝑨𝟐𝟏 =

[
 
 
 
 
 
 
𝛽

𝐽2
∙
𝑘𝑖
𝜇

1

𝐽2
∙
𝑘𝑖
𝜇

−𝛽 − 𝑎𝑓2

𝐽2
∙
𝑘𝑖
𝜇

0

0 0             
𝑘𝑖
𝜇

     0

0 0               0      
𝑘𝑖
𝜇 ]
 
 
 
 
 
 

     𝑨𝟐𝟐 =

[
 
 
 
 
 
 
−(1 − 𝜇)

𝜇
0 0

0
−(1 − 𝜇)

𝜇
0

0 0
−(1 − 𝜇)

𝜇 ]
 
 
 
 
 
 

 

 

Matrix transfer function of a closed-loop system synthesized by feedback linearization and using the PI-regulator, is 

defined as follows: 

𝑻𝒇𝒍𝑷𝑰𝝁(𝑠) = (𝑠 ∙ 𝑰 − 𝑨𝒇𝒍𝑷𝑰𝝁 +𝑩𝒇𝒍𝑷𝑰𝝁 ∙ (𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁
𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰𝝁)

−1
∙  (𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁

𝟑 + 𝑘𝑝 ∙ 𝑲𝒇𝒍𝑷𝑰𝝁 × 

× 𝒁𝒇𝒍𝑷𝑰𝝁 +𝑲𝒇𝒍𝑷𝑰𝝁 ∙ 𝒁𝟏𝒇𝒍𝑷𝑰𝝁)) ∙ 𝑩𝒇𝒍𝑷𝑰𝝁 ∙ (𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁
𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰𝝁)

−1
, 

where s is the Laplace operator; І5x5 is the identity matrix; 𝑲𝒇𝒍𝑷𝑰𝝁 = [𝑘1𝑓𝑙𝑟𝑚 𝑘2𝑓𝑙𝑟𝑚 𝑘3𝑓𝑙𝑟𝑚] is the vector of feedback 

coefficients for the variables 𝑦, 𝑦̇, 𝑦,̈ ;   𝒁𝒇𝒍𝑷𝑰𝝁 = [

𝑪𝒇𝒍𝑷𝑰𝝁

𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁

𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁
𝟐

]  is the matrix of the connection between the variables 

𝑦, 𝑦̇, 𝑦,̈  and the state vector of the system x;  
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𝒁𝒇𝒍𝑷𝑰𝝁 = [

𝑪𝒇𝒍𝑷𝑰𝝁

𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁

𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁
𝟐

] is the matrix of the connection between the variables 𝑦, 𝑦̇, 𝑦̈ of the state vector of the 

system x2; and  𝑪𝟏𝒇𝒍𝑷𝑰𝝁 = [𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏], 𝑪𝟐𝒇𝒍𝑷𝑰 = [𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎] ,  𝑪𝟑𝒇𝒍𝑷𝑰 =     =

[𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎]. 
The system transfer function will be as follows: 

𝑊𝑓𝑙−𝑃𝐼𝜇(𝑠) =
𝑘𝑝∙𝑠+(𝑘𝑝∙(1−𝜇)+𝑘𝑖)∙

1

𝜇

𝑠4+(𝑘𝑝∙𝑘3𝑓𝑙𝑟+
1−𝜇

𝜇
)𝑠3+(𝑘𝑝∙𝑘2𝑓𝑙𝑟+(𝑘𝑝∙(1−𝜇)+𝑘𝑖)∙

𝑘3𝑓𝑙𝑟

𝜇
)𝑠2+ →

→+(𝑘𝑝∙𝑘1𝑓𝑙𝑟+(𝑘𝑝∙(1−𝜇)+𝑘𝑖)∙
𝑘2𝑓𝑙𝑟

𝜇
)𝑠+(𝑘𝑝∙(1−𝜇)+𝑘𝑖)∙

𝑘1𝑓𝑙𝑟

𝜇

. 

In the case of setting to the standard binomial form, the system of equations for finding the controller coefficients and 

feedbacks on the state variables will have the following form: 

{
 
 
 
 

 
 
 
 𝑘𝑝 ∙ 𝑘3𝑓𝑙𝑟 +

1 − 𝜇

𝜇
= 4 ∙ 𝜔0

𝑘𝑝 ∙ 𝑘2𝑓𝑙𝑟 + (𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙
𝑘3𝑓𝑙𝑟

𝜇
= 6 ∙ 𝜔0

2   

𝑘𝑝 ∙ 𝑘1𝑓𝑙𝑟 + (𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙
𝑘2𝑓𝑙𝑟

𝜇
= 4 ∙ 𝜔0

3

(𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙
𝑘1𝑓𝑙𝑟

𝜇
= 𝜔0

4

 

This system of equations allows for finding the coefficients of the controller and feedback loops as functions 𝜔0and 𝜇. 

When changing the moment of inertia of the second mass, the system matrix will have the form 

𝑨∗𝒇𝒍𝑷𝑰𝝁 = (
𝑨∗𝟏𝟏 𝑨𝟏𝟐
𝑨∗𝟐𝟏 𝑨𝟐𝟐

)             𝑨∗𝟏𝟏 =

[
 
 
 
 
 
 
−𝛽 − 𝑎𝑓1

𝐽1

−1

𝐽1
    
𝛽

𝐽1
            0

𝑐12 0   −𝑐12        0

𝛽

𝐽2 + ∆𝐽2
0

1

𝐽2 + ∆𝐽2
0

  

−𝛽 − 𝑎𝑓2

𝐽2 + ∆𝐽2
1

0

0]
 
 
 
 
 
 

        

𝑨∗𝟐𝟏 =

[
 
 
 
 
 
 

𝛽

𝐽2 + ∆𝐽2
∙
𝑘𝑖
𝜇

1

𝐽2 + ∆𝐽2
∙
𝑘𝑖
𝜇

−𝛽 − 𝑎𝑓2

𝐽2 + ∆𝐽2
∙
𝑘𝑖
𝜇

0

0 0             
𝑘𝑖
𝜇

     0

0 0               0     
𝑘𝑖
𝜇 ]
 
 
 
 
 
 

 

Accordingly, the matrix transfer function is defined as follows: 

𝑻𝒇𝒍𝑷𝑰𝝁(𝑠) = (𝑠 ∙ 𝑰 − 𝑨
∗
𝒇𝒍𝑷𝑰𝝁 +𝑩𝒇𝒍𝑷𝑰𝝁 ∙ (𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁

𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰𝝁)
−1
∙  (𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁

𝟑 + 𝑘𝑝 ∙ 𝑲𝒇𝒍𝑷𝑰𝝁 × 

× 𝒁∗𝒇𝒍𝑷𝑰𝝁 +𝑲𝒇𝒍𝑷𝑰𝝁 ∙ 𝒁𝟏𝒇𝒍𝑷𝑰𝝁)) ∙ 𝑩𝒇𝒍𝑷𝑰𝝁 ∙ (𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨𝒇𝒍𝑷𝑰𝝁
𝟐 ∙ 𝑩𝒇𝒍𝑷𝑰𝝁)

−1
,  

where 𝒁∗𝒇𝒍𝑷𝑰𝝁 = [

𝑪𝒇𝒍𝑷𝑰𝝁

𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨
∗
𝒇𝒍𝑷𝑰𝝁

𝑪𝒇𝒍𝑷𝑰𝝁 ∙ 𝑨
∗
𝒇𝒍𝑷𝑰𝝁
𝟐

] is the matrix of the connection between the variables 𝑦, 𝑦̇, 𝑦̈ and the state vector of 

the system x2. 
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Researched transfer function is as follows: 

𝑊∗
𝑓𝑙−𝑃𝐼𝜇(𝑠) =

𝑘𝑝 ∙ 𝑠 + (𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙
1
𝜇

𝑠4 + (𝑘𝑝 ∙ 𝑘3𝑓𝑙𝑟 +
1 − 𝜇
𝜇
) 𝑠3 + (𝑘𝑝 ∙ 𝑘2𝑓𝑙𝑟 + (𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙

𝑘3𝑓𝑙𝑟
𝜇
) 𝑠2+ →

→ +(𝑘𝑝 ∙ 𝑘1𝑓𝑙𝑟 + (𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙
𝑘2𝑓𝑙𝑟
𝜇
) 𝑠 + (𝑘𝑝 ∙ (1 − 𝜇) + 𝑘𝑖) ∙

𝑘1𝑓𝑙𝑟
𝜇

+→

→
∆𝐽2
𝐽2
∙ (𝑠4 + (

1 − 𝜇
𝜇

−
𝑏
𝐽2
) 𝑠3 + (−

1 − 𝜇
𝜇

∙
𝑏
𝐽2
) 𝑠2)

 

and the sensitivity function, after substituting the found values of the feedback coefficients and the controller coefficients, 

will have the form: 

𝑆𝑒𝑛𝑠𝑓𝑙−𝑃𝐼𝜇(𝑠, 𝐽2) =
𝑠4+(

1−𝜇

𝜇
−
𝑏

𝐽2
)𝑠3+(−

1−𝜇

𝜇
∙
𝑏

𝐽2
)𝑠2

(𝑠+𝜔0)
4+

∆𝐽2
𝐽2
∙(𝑠4+(

1−𝜇

𝜇
−
𝑏

𝐽2
)𝑠3+(−

1−𝜇

𝜇
∙
𝑏

𝐽2
)𝑠2)

. 

 

The dependencies shown in Fig. 8, 9 allow for stating 

that the use of a proportional-integral fractional-order 

controller PIμ for the parameters ∈ [0.5; 1[ under study 

provides a system whose sensitivity lies in the range from 

the sensitivity of the system synthesized by the feedback 

linearization method to the sensitivity of the system 

synthesized by the feedback linearization method and the 

use of a PI controller.   

 

 
а) J1=1; J2=3; c12=10000;=10;0=1                            b) J1=1; J2=1; c12=10000;=10;0=1 

 

 
c) J1=1; J2=3; c12=10000;=10;0=2                              d) J1=1; J2=1; c12=10000;=10;0=2 

 

Fig. 8. LPFC synthesized by the feedback linearization method using the PI0.6 system controller (__)  

and the system sensitivity function when decreasing (__50 %,  __ 25 %) and increasing (__25 % )  

the moment of inertia of the second mass 
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The transfer function of the system after substituting the calculated coefficients will be as follows 

𝑊∗
𝑓𝑙−𝑃𝐼(𝑠) =

1
1 + 𝛿

∙ ((
4 ∙ 𝜔0

3

3
−
2 ∙ 𝜔0

6

9 ∙ 𝑅
+ 𝑅) ∙ 𝑠 + 𝜔0

4)

𝑠4 + (4 ∙
1

1 + 𝛿
∙ 𝜔0 + (

1 − 𝜇
𝜇

−
𝑏
𝐽2
) ∙

𝛿
1 + 𝛿

) ∙ 𝑠3 + (6 ∙ 𝜔0
2 ∙

1
1 + 𝛿

−
1 − 𝜇
𝜇

∙
𝑏
𝐽2
∙
𝛿

1 + 𝛿
) ∙ 𝑠2 →

→ +4 ∙ 𝜔0
3 ∙

1
1 + 𝛿

∙ 𝑠 + 𝜔0
4 ∙

1
1 + 𝛿

 

where 

 𝑅 =
√10 ∙ 𝜔0

9

27
−

1 − 𝜇
𝜇

∙ 𝜔0
8

2
+
𝜔0

8

2
∙
√2 ∙ (

1 − 𝜇
𝜇

)
2

+ (5 ∙
1 − 𝜇
𝜇

− 4 ∙ 𝜔0)
2

27

3

 

 

  

   а) J1=1; J2=3; c12=10000;=10;0=1                               b) J1=1; J2=1; c12=10000;=10;0=1 

 

  

    c) J1=1; J2=3; c12=10000;=10;0=2                             d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 9. LAFC synthesized by the feedback linearization method using  

the PI0.9-regulator of the system (__) and the sensitivity function  

of the system when decreasing (__50 %,  __ 25 %) and increasing (__25 % )  

the moment of inertia of the second mass 

The transient characteristics of the systems with 

fractional-order proportional-integral controllers PIμ 

shown in Fig. 10, 11 demonstrate the possibility of 

obtaining a system with slightly smaller overshoots when 

the moment of inertia of the second mass is reduced 

compared to a system with a traditional PI controller. This 

is primarily explained by the smaller magnitude of 

overshoot when the systems are precisely tuned. 
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а) J1=1; J2=3; c12=10000;=10;0=1                       b J1=1; J2=1; c12=10000;=10;0=1 

  
c) J1=1; J2=3; c12=10000;=10;0=2                      d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 10. Transient characteristics of the positional control system synthesized by the feedback linearization method using a PI0.6 

controller at a value corresponding to the parameters at the stage of system synthesis ( ___), as well as when decreasing (__50 %,  __ 

25 %) and increasing (__25 % ) the moment of inertia of the second mass 

 
а) J1=1; J2=3; c12=10000;=10;0=1                   b) J1=1; J2=1; c12=10000;=10;0=1 

  
    c) J1=1; J2=3; c12=10000;=10;0=2                   d) J1=1; J2=1; c12=10000;=10;0=2 

Fig. 11.  Transient characteristics of the positional control system synthesized by the feedback linearization method using a PI0.9 

controller at a value corresponding to the parameters at the stage of system synthesis ( ___), as well as when decreasing (__50 %,  __ 

25 %) and increasing (__25 % ) moment of inertia of the second mass. Mu = 0.65 kp = 1.606 
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Conclusions 

The results of the performed studies demonstrate high 

sensitivity to changes in the moment of inertia of the second 

mass of systems synthesized by the modal control method. 

Considering that such a change in the moment of inertia of 

the second mass can be caused both by the features of the 

technological mode and by an error in identifying the 

parameters of the two-mass model of the mechanical 

system, it is more expedient to use the feedback 

linearization method for the synthesis of the control effect. 

Synthesis of the control system by the feedback 

linearization method using a PI controller reduces the 

sensitivity of the system to changes in the moment of inertia 

of the second mass even in comparison with the system 

synthesized by the feedback linearization method, however, 

while providing better dynamic characteristics, it causes 

larger overshoots of the initial system coordinate. 

Application of the proportional-integral fractional-

order controller PIμ allows improving the system 

characteristics in terms of reducing the sensitivity to 

changes in the moment of inertia of the second mass and 

the magnitude of the overshoot of the initial coordinate, 

with a slight deterioration in the dynamic characteristics 

𝜇 ∈ [0.6; 0.7] compared to the system synthesized by the 

method of feedback linearization using a PI controller. 
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АНАЛІЗ ЧУТЛИВОСТІ СИСТЕМ 

КЕРУВАННЯ, СИНТЕЗОВАНИХ 

МЕТОДАМИ FEEDBACK CONTROL,  

ДО ЗМІНИ МОМЕНТУ ІНЕРЦІЇ ДРУГОЇ 

МАСИ ДВОМАСОВОЇ ПОЗИЦІЙНОЇ 

СИСТЕМИ 

Андрій Лозинський, Лідія Каша,  

Степан Пакіш, Роман Садовий 

В роботі запропоновано комплексний підхід до аналізу 

чутливості систем керування за змінними стану. Продемонст-

ровано переваги систем, синтезованих методом feedback 

linearization, перед системою, синтезованою методом 

модального керування як з точки зору чутливості до зміни 

моменту інерції другої маси, так і якості регулювання. 

Проаналізовано вплив застосування ПІ-регулятора та ПІ-

регулятора в системах, синтезованих методом feedback 

linearization, як на чутливість системи до зміни моменту 

інерції другої маси, так і швидкодію та перерегулювання 

вихідної координати. 
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