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Abstract: In this work, a comprehensive approach to
the sensitivity analysis of state-variable control systems is
proposed. The advantages of systems synthesized by a
feedback linearization method are demonstrated being
compared to a system synthesized by the modal control
method, both in terms of sensitivity to changes in the
moment of inertia of the second mass and in terms of
control quality. The influence of applying a PI controller
and a PI*-controller on the sensitivity of the system to
changes in the moment of inertia of the second mass and on
the speed of response and overshoot of the output coor-
dinate in systems synthesized by the feedback linearization
method is analyzed.

Keywords:feedback  linearization — method, Pl
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Introduction

In many modern technological processes, in particular,
the manufacture of metal products on rolling mills, the
paper industry, long shafts are available to connect an
electromechanical converter with an actuator. The
consideration of processes in such electric drives is
traditionally reduced to the analysis of work based on a
two-mass model (Fig. 1) [1-3].
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Fig. 1. Structural diagram of the two-mass system model
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To reduce the order of the system under study when
analyzing processes in the two-mass system and the actuator
on the basis of the theory of different-speed systems,
processes in an electromagnetic circuit are neglected. In
addition to speed control systems, in technological processes
there is often a need to regulate the position. Such problems
are characteristic, in particular, for robotic systems [4], or
steel smelting systems in arc steelmaking furnaces [5]. In

these cases, the two-mass model is also used to consider the
processes. The mathematical description of the two-mass
positional system shown in Fig. 1 in a vector-matrix form has
the form:
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where A, B, B1 are the matrix of the system and the
matrices of the control and disturbing influences,
respectively; C is the observability matrix of the system; M

is the moment on the engine shaft; w; and w, are the
angular velocities of rotation of the first and second masses

of the two-mass system; M, is the elastic moment; ¢ is
the displacement; as ,afp, B are coefficients
characterizing the influence of external and internal viscous
friction; J,, J, are moments of inertia of the first and second
masses; c,, is the shaft stiffness coefficient.

Such a two-mass system is characterized by the presence
of natural shaft oscillations with a frequency

f = 1 jep-(i+d,) [1, 2, 6], as well as changes in
2. J;-J,

parameters during the system operation. Characteristic for

technological processes is the change in the moment of

inertia of the second mass J, [7]. The works [8-10] are

devoted to reducing the influence of oscillatory processes in
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the two-mass systems. A typical approach to the synthesis of
control systems in the two-mass systems is controlling by the
state variables of the system [9, 11-13]. In this case, such
tasks as the synthesis of estimators [11,12] to obtain
information about the state variables of the system and the
synthesis of coupling coefficients by the state variables,
which will ensure robustness to parametric disturbances with
high control quality [13, 14], are solved.

Traditionally, to reduce the sensitivity to parametric
disturbances, sliding control or robust control based on H, ,
H,, norms is used [13-17]. An important element of the
synthesis of feedback coefficients for the state variables of
the system is the placement of the poles of the system
transfer function [18, 19]. In the case of the synthesis of
modal control for the full state vector [5] or control using
the feedback linearization method [20, 21], the feedback
coefficients for the state variables are determined on the
basis of one of the standard linear forms. In this case, the
task of choosing the geometric mean root w, that
determines the cutoff frequency of the system and affects
the value of the feedback coefficients for the state variables
arises. In the case of positional systems, the synthesis of
control effects using the two-mass model of the mechanical

restrictions on the accuracy of working out a given
trajectory of motion or positioning of the actuator, the
absence of overshoot, etc.

Considering the widespread use of control systems
based on the variables of the system state vector and the
presence of parametric disturbances caused by both the
peculiarities of the technological process and the errors in
determining the parameters of the two-mass model of the
mechanical part, it is advisable, in our opinion, to analyze
the parametric sensitivity of various control systems.

Sensitivity analysis of a system synthesized by the
modal control method.

The matrix transfer function of a closed-loop system in
the case of full state vector control is defined as follows:

T(s)=(s-1-A+B-K)"-B,

where s is the Laplace operator; I is the identity matrix;
K :[k1 K, K k4] is the vector of feedback

coefficients on the state variables of the system. Then the
transfer function from the initial coordinate of the system
to the control signal (here and further the influence of
external viscous friction agy = 0 af, = 0 is neglected) is

part [11, 22, 23] may be complicated by additional as follows:
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Accordingly, with the desired location of the roots of
the characteristic polynomial H(s) = s* + a; " wq * s° +
+ ay Wi s? +az-wd s+ a, - w§ given, the vector of
feedback coefficients on the state variables as a solution to
the system of equations formed by equating the coefficients
at the corresponding powers of the polynomials Den(s) and
H(s) is found. In the case of being focused on the binomial
form of the root distribution, the feedback coefficients on
the state variables of the system are respectively equal to:
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On the other hand, in steady state at s = 0:
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where f is the natural frequency of oscillations of the long

shaft.
In the case of changing the moment of inertia of the

second mass AJ, to matrix A of the system, it will take the
following form:
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=B — asy -1 B The matrix transfer function of the closed-loop system
JA I ]_1 0 is determined taking into account the change in the moment
. 1o 0 —Cqy 0 of inertia of the second mass:
A= B 1 -B—a T(s)=(s-I-A"+B-K)™'B,
A A A /2 and the transfer function from the system initial coordinate
J2 ‘B 2 )2 'B 2 ]2 "‘1 P 0 to the control signal is as follows:
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S(s)=AJ, -(Jl-s4+(ﬂ+kl).s3+c12 -(1+k2)-52)_

To analyze the sensitivity of the system to the action
of parametric disturbances, either the distance between the
transfer functions is used [24]:
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VIHIW(Gw)? 1+ WW*(jw)(jw)|?
or the sensitivity function is applied [25]:
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Having constructed the logarithmic amplitude-phase

frequency characteristic (LPFC) of the sensitivity function
and analyzing the value of the system gain to the cutoff
frequency, we can conclude about the sensitivity of the
synthesized system to parametric perturbation.
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The sensitivity function to changes in the moment of
inertia of the second mass taking into account:
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will take the following form:
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and taking into account the synthesized feedback
coefficients on the system state variables:
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Fig. 2. LPFC of the sensitivity function of the control system
for the full state vector when the moment of inertia of the second

mass is decreasing (—,) and increasing (_)

Fig. 2 shows the LPFC of the sensitivity functions
according to the full vector of the state of the control system
synthesized for the binomial form of the root distribution at
wo = 1, obtained for the following system parameters:
moments of inertia of the first and second masses
Ji=1xkr-m? J, =1kr-m?; coefficient of internal
viscous frictionwg = 1,J; = 1 kg -m?, J, = 1 kg -m?,

B = 10; shaft stiffness coefficient c;, = 10000. The
obtained results demonstrate significant sensitivity of the
system to changes in the moment of inertia of the second
mass, especially in the direction of its increase.
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The transfer function of the system when the moment of

inertia of the second mass is being changed and after substitu-
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ting the synthesized feedback coefficients for the system
state variables and replacing:AJ, = § - J, will have the form
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Analysis of the obtained transfer function allows
for concluding that at certain ratios of the system
parameters, the change in the moment of inertia of the
second mass can cause instability of the positional
system. The range of change in the deviations
[6mins Omax] of the moment of inertia of the second

i 6
4 .
©o=7 155 P
det
1 6'w2—]—1'i
O J, 1+6
Step Response
39 il
<
d 2(;0 460 6(I)0 860 1000

Time (seconds)

Fig. 3. Transient characteristics of the positional modal control
system at a value corresponding to the parameters at the stage
of system synthesis (___), as well as when the moment of inertia
of the second mass is decreasing (_ 10% ___ 6% 2 %)
and increasing (__0.1 %)

Fig. 3 shows the transient characteristics of a two-mass
positional system when the moment of inertia of the second
mass and the system parameters given above change.
Analysis of the obtained results makes it possible to state
that a decrease in the moment of inertia of the second mass
in a positional system synthesized by the modal control
method leads to an increase in the oscillations of the
system. At the same time, even a slight increase in this
parameter can lead to unstable operation of such a system.

Thus, the application of the modal control method to
obtain the desired nature of the transient process in a
positional two-mass system requires fairly precise models
of the system.

Sensitivity analysis of a system synthesized by the
feedback linearization method.
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mass, as a function of the system parameters, can be
easily found using the algebraic Hurwitz criterion. To
obtain the range of change, it is enough to find the
second-order determinant of the Hurwitz matrix and,
equating it to zero, find the roots of the quadratic
equation with respect to §:
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With the observationmatrix C=[0 0 0 1],the
matrix transfer function of a closed-loop system
synthesized by the feedback linearization method is defined
as follows:
Ts(s) =
-1
= (s-I—A+B-(C-A2-B)‘1(C-A3+Kﬂ-Z)) x
xB-(C-A%-B)7%,
where s is the Laplace operator; I is the identity matrix;
K = ki1 kapt ksp] is the vector of feedback
c
coefficients in the variables y,y,y; Z = IC A
C- A?
matrix of the connection between the variables y, y, y and
the state vector of the system x. The conversion function
from the initial coordinate of the system to the control
signal will have the form:

is the

1
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Equating the coefficients of the denominator of the
transfer function of the system to the coefficients at the
corresponding powers of the characteristic polynomial,
which provides the desired placement of the roots, we
obtain Wfl(S)Hafl(S) = 53 + 0(1ﬂ *Wo " Sz +

+ayp 0§ S+ azp wiksp = Qg W,
kzﬂ = yp° w%klﬂ = Qzp° a)g. Respectively, the
matrix transfer function, which takes into account the
change in the moment of inertia of the second mass, will
have the form:

Ti(s)=(s-1-A"+B-(C-A* - B)7(C- 4% +

+ Ky - z*))_1 .B-(C-A?-B)™™.
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Here

c
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is the matrix of the connection between the variables y, y, j
and the state vector of the system x.

And the transfer function from the initial system
coordinate to the control signal is as follows:
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Then, taking into account the synthesized feedback
coefficients, the sensitivity function will take the form:
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Fig. 4 shows the LPFC of the sensitivity function of the
control system synthesized by the feedback linearization
method when tuned to the binomial form of the root
distribution at w, = 1, and the LPFC of such a system. The
results obtained demonstrate that the synthesized system is
sensitive to both a decrease and an increase in the moment
of inertia of the second mass. Moreover, the sensitivity to
changes in the moment of inertia of the second mass AJ,
increases with a decrease in the value of J,. At the same
time, the sensitivity of the system decreases with an
increase in the value of the geometric mean root .

The transfer function of the system after substituting
the values of the synthesized coefficients of the control
system will have the form:
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Fig. 4. LPFC of the system synthesized by the feedback linearization method (__) and the sensitivity function of the system
when decreasing (__50 %, __ 25 %) and increasing (__25 % ) moment of inertia of the second mass
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Fig. 5 shows the transient responses of a two-mass
positioning system synthesized wusing the feedback
linearization method under variations in the moment of inertia
of the second mass. The obtained dependencies confirm the
conclusion that such a system has significantly lower
sensitivity to changes in the studied parameter, compared to
the system synthesized by the modal control method. As in the

Andriy Lozynskyy, Lidiya Kasha, Stepan Pakizh, Roman Sadovyi

previous system, an increase in the moment of inertia relative
to the value used for synthesizing the control system
parameters leads to instability. At the same time, a lower
moment of inertia compared to the synthesis value increases
overshoot and reduces the response speed of the system. With
an increase in the value of the geometric mean root oy, the
overshoot in the system decreases.
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Fig. 5. Transient characteristics of the positional control system synthesized by the feedback linearization method at a value
corresponding to the parameters at the stage of system synthesis (), as well as when decreasing (__50 %, __ 25 %) and
increasing (__25 % ) the moment of inertia of the second mass

Sensitivity analysis of a system synthesized using the
feedback linearization method and the use of a PI
controller.

In the case of a control system synthesized by the
feedback linearization method with the use of a PI

controller [21], a variable representing the integral of the
position coordinate is applied in forming the feedbacks of
the system. To implement this control action, a fictitious
variable 6 is introduced into the system model. Then the
model of such a system will take the form:
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The matrix transfer function of a closed-loop system
synthesized by the feedback linearization method and using
the PI controller is defined as follows:

Tgpi(s) =
= (s1—Agpp; + Bgp; - (Cpipr - Abipr Bﬂm)_l X
X (Cpipr* Apr + K * Kpipr  Zpipp + ky  Kpypp  Z151pp)) X
X Bpipr - (Cripr - Afipy - Bflm)_l.
where s is the Laplace operator; 15x5 is the identity matrix;

Kppy = [Kapir kapir kzpir] is the vector of feedback
coefficients for the variables y, y, yi;

Cripr
Zppy = |Crier - A
Crip1* Afipy

is the matrix of the connection between the variables y, y, ¥
and the state vector of the system x;

Clpp;=[0 0 0 0 1] is the matrix of the
connection between the variables [ ydt,y,y and the state
vector of the system x.

The transfer function from the system initial coordinate
to the control signal will have the form:

ki+kp-S

Wii_pi (s)==

The synthesis of the control system coefficients, which
provides a binomial form of the distribution of the roots of
the characteristic polynomial, is shown in [32].

Accordingly, the matrix transfer function, which takes
into account the change in the moment of inertia of the
second mass, will have the form:
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where the matrix of the system Afp, differs from the
matrix Agp; by changing the moment of inertia of the
Cripr
second mass Af,, Zgpy = Cyipr* Afipr | is the matrix
Cripr " Affpr
of the connection between the variables y, Y,V and the
Clspg

state vector of the system x; Z15;p; = Clpipr Afipy

Clpp; - Affpy

is the matrix of the connection between the

variables f ydt,y,y and the state vector of the system x.

At the same time, the transfer function will take the form:
ki + kp - S

W pi(s) =

st + kp . k3fl7” . 53 + (kl : k3flr + kp . kalT) - 52 + (kl : szlr + kp . klflr) ‘S+-

_>kl_.k1ﬂr+%.(s4_]£2.s3>

Then, taking into account the synthesized feedback
coefficients and PI controller coefficients, the sensitivity
function will be as follows:

_B
' -1

(s+w0)4+%-<s4 —]%-53>

. g3

Sensg_pi(s,J2) =

The obtained results of the study of the sensitivity
function of the system synthesized by the feedback

J2

linearization method using the PI controller (Fig. 6)
demonstrate that up to the cutoff frequency of the system,
the LPFC of the sensitivity function is in the region of low
gain coefficients, and therefore the synthesized system is
also practically insensitive to such a parametric
disturbance.

The transfer function of the system after substituting
the values of the synthesized coefficients of the control
system will have the form:

1
—= (2w} s+ wp)
Win-e(s) = — 1 B3 1+36 . 1 .1 .1
$ +(4'm'“’0‘]_2'm>'5 TOrwy g St AWy g s T
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Fig. 6. LAFC synthesized by the feedback linearization method using the PI controller of the system (__) and the system
sensitivity function when decreasing (__50 %, __ 25 %) and increasing (__25 % ) the moment of inertia of the second mass
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Fig. 7. Transient characteristics of the position control system synthesized by the feedback linearization method using a PI controller
at a value corresponding to the parameters at the stage of system synthesis (__), as well as when decreasing (__50 %, __ 25 %)
and increasing (_25 % ) the moment of inertia of the second mass
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The transient responses shown in Fig. 7 confirm the
lower sensitivity of the system synthesized by the feedback
linearization method with the use of a PI controller to an
increase in the moment of inertia of the second mass,
compared to the system without a PI controller and the
modal control system. At the same time, a decrease in the
moment of inertia relative to the value at which the
feedback and PI controller coefficients were synthesized
leads to an increase in overshoot and oscillations. An
increase in the value of the geometric mean root contributes
to reducing the system sensitivity to changes in the moment
of inertia of the second mass.

Sensitivity analysis of a system synthesized by feedback
linearization and application of PI*-regulator

53

When using a fractional-order proportional-integral
controller PI* in the control system and using the Caputo-
Fabrizio representation to describe the fractional-order
integral [26]:
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1 Jo

As a result of the Laplace transform we obtain:
LEFIg(©)) = =+ —m7 G(s) == 2 G(s).
I
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Then the transfer function of the controller W,y (S) =
= kp + ki —H'5+1—H
the state variables of the system, we introduce additional

coordinates Vi, Vine» Vine into the system matrix. The
system model will take the following form:
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Matrix transfer function of a closed-loop system synthesized by feedback linearization and using the PI*-regulator, is

defined as follows:

-1
Tripin(s) = (s 1 —Appp + Bpppe - (Cpipye - A;lplﬂ ‘Bppir) -+ (Cpipe 'A}%[plﬂ + ky - Kgippe X

-1
X Zgipm + Kpippe * Z1gippe))  Bpipye (CflPI” 'Ajzflplﬂ "B flPI”) )

where s is the Laplace operator; Isys is the identity matrix; K sjpu = [Kifirm  Kopirm  K3firm] is the vector of feedback
Crippm

coefficients for the variables y, v, V,; Z flpIt = CflPI" ’ Af IPI* | is the matrix of the connection between the variables

CflPI“ ' A;lmﬂ

y,¥, ¥, and the state vector of the system x;
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Cripim
Z flpir = Cf e A fLPI* | is the matrix of the connection between the variables y, ¥, of the state vector of the

Cripe AJZ‘IPI"
systemx2;and Clppe =[0 0 0 0 0 0 1], C2pp,=[0 0 0 0 0 1 O], C3pp =

[0 0 0 0 1 0 O]
The system transfer function will be as follows:
kp-s+(kp-(1—u)+ki)%

- 3 .
s4+(kp-k3ﬂr+17“)s3 +(kp-kzﬂr+(kp-(1—u)+ki)-%>sz+ .
kari kifi

—>+(kp-klﬂr+(kp-(1—u)+ki)- 2f T>s+(kp~(1—u)+ki)-%

Wii_pu(s) =

u
In the case of setting to the standard binomial form, the system of equations for finding the controller coefficients and

feedbacks on the state variables will have the following form:

( 1—pu
kp'k3f1r+T=4'wo
ksgi

ke kapie + (k- (1= 1) + k) =L = 6 -

1
kalT_ 3
kp kipir + (kp - (1= ) + k;) - =4 w,
kit
k (lp - (1= 1) + ki) - =25 = wg*

This system of equations allows for finding the coefficients of the controller and feedback loops as functions wgand p.
When changing the moment of inertia of the second mass, the system matrix will have the form

F-an 1B 0
1 1 1
A* A c 0 —c 0
A _ ( Et 12) Arer = 12 12
MPE =A%y Ay 1 B 1 —B-a ¢
L+4L +4L  J;+A4), 0
0 0 1

Bk 1 ki —B—ap ki
L2+4AL u J+AL, w ,+AL u

A*Zl = 0 O

ki
u
0

=|F o

Accordingly, the matrix transfer function is defined as follows:

. -1
TflPI“ (s)=(s"1-4 fipir + B flPI*® (C fIPIM 'A,%lPIl‘ ‘B flPI”) - (C flPIH 'A;IPIH + kp K e X

. -1
xZ fipir + K fIPI** Z 1flPI”)) ‘B flPI* " (CflPI” 'Ajzflplﬂ "B flPI”) >

Cripm
¥
where Z* flpIt = Cf tpit " A" f1p1# | s the matrix of the connection between the variables ¥, ¥,y and the state vector of

%2
Cripin - A fipn

the system x2.
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Researched transfer function is as follows:

ky-s+ (ky -(l—u)+ki)-1

W*fl—PI” (s) =

S4+(k 'k3f1r+1uﬂ)53+(k kg + (ky - (1= ) + k) - 3ﬂr> s24+ -

o (kg Oy (@ =00+ 1) )5 (k- (1 )+ )04

(o (D) (L))

and the sensitivity function, after substituting the found values of the feedback coefficients and the controller coefficients,
will have the form:

st )5+ (T )s?

Sens-pun (512 = e o BBy )
uwoJ2 H

The dependencies shown in Fig. 8, 9 allow for stating  the sensitivity of the system synthesized by the feedback
that the use of a proportional-integral fractional-order linearization method to the sensitivity of the system
controller PI* for the parameters € [0.5; 1[ under study  synthesized by the feedback linearization method and the
provides a system whose sensitivity lies in the range from  use of a PI controller.
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Fig. 8. LPFC synthesized by the feedback linearization method using the PI0.6 system controller ()
and the system sensitivity function when decreasing (__50 %, __ 25 %) and increasing (_25 %)
the moment of inertia of the second mass
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The transfer function of the system after substituting the calculated coefficients will be as follows

1 (4-w03_
T+6 3

o6
2 W +R>-s+w3>

©) 9-R
w s) =
fi=pl 1 1-u b 5 1 1-u b &
4 S, 1-H_D), _90 \. 3 e 2. _ L . o2
st (4 735 w0 + ( m ]2) r5) s° + (6 0f s TR rv5) St
1 1
RN B 4
- +4 - w; 1_|_6s+cu0 %5
where
3 1— 1— w2 1—u z
8 —_ .
. 10 - wy° 1 Wy +w08 2 ( 7 ) +(5 m 4 wo)
- 27 2 2 27
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Fig. 9. LAFC synthesized by the feedback linearization method using
the PI0.9-regulator of the system () and the sensitivity function
of the system when decreasing (__50 %, __ 25 %) and increasing (__25 %)
the moment of inertia of the second mass

The transient characteristics of the systems with
PIn
shown in Fig. 10, 11 demonstrate the possibility of

fractional-order proportional-integral ~controllers

obtaining a system with slightly smaller overshoots when

the moment of inertia of the second mass is reduced
compared to a system with a traditional PI controller. This
is primarily explained by the smaller magnitude of
overshoot when the systems are precisely tuned.
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Fig. 10. Transient characteristics of the positional control system synthesized by the feedback linearization method using a P10.6
controller at a value corresponding to the parameters at the stage of system synthesis (), as well as when decreasing (__50 %, __
25 %) and increasing (__25 % ) the moment of inertia of the second mass
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Fig. 11. Transient characteristics of the positional control system synthesized by the feedback linearization method using a PI10.9
controller at a value corresponding to the parameters at the stage of system synthesis (__), as well as when decreasing (__50 %, __
25 %) and increasing (__25 % ) moment of inertia of the second mass. Mu = 0.65 kp = 1.606
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Conclusions

The results of the performed studies demonstrate high
sensitivity to changes in the moment of inertia of the second
mass of systems synthesized by the modal control method.
Considering that such a change in the moment of inertia of
the second mass can be caused both by the features of the
technological mode and by an error in identifying the
parameters of the two-mass model of the mechanical
system, it is more expedient to use the feedback
linearization method for the synthesis of the control effect.

Synthesis of the control system by the feedback
linearization method using a PI controller reduces the
sensitivity of the system to changes in the moment of inertia
of the second mass even in comparison with the system
synthesized by the feedback linearization method, however,
while providing better dynamic characteristics, it causes
larger overshoots of the initial system coordinate.

Application of the proportional-integral fractional-
order controller PIu allows improving the system
characteristics in terms of reducing the sensitivity to
changes in the moment of inertia of the second mass and
the magnitude of the overshoot of the initial coordinate,
with a slight deterioration in the dynamic characteristics
u € [0.6; 0.7] compared to the system synthesized by the
method of feedback linearization using a PI controller.
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AHAJII3 YYTJIMBOCTI CUCTEM
KEPYBAHHSI, CUHTE30BAHUX
METOJIAMM FEEDBACK CONTROL,
JIO 3SMIHM MOMEHTY IHEPIII IPYTOI
MACH IBOMACOBOI HO3UIINHOI
CUCTEMH

Amnppiit Jlosuracekuit, Jlinis Kama,
Crenan Ilakim, Poman CagoBuii

B po6oTi 3anmponoHOBaHO KOMIDIEKCHHH MiJIXi 0 aHaTizy
YyTJIMBOCTi CUCTEM KepYBaHHs 33 SMiHHHMH CTaHy. [IpoaeMoHcT-
pPOBaHO TMepeBark CHCTeM, CHHTe30BaHHX MeronoM feedback
linearization, mepen CHCTEMOIO, CHHTE30BaHOIO METOJOM
MOJIAJIGHOTO KePYBaHHS SIK 3 TOUKH 30pY UyTIMBOCTI J0 3MiHH
MOMEHTY iHepwil Apyroi Macu, TaK 1 SIKOCTI pPEryJrOBaHHI.
IIpoanamizoBano BrumB 3actocyBanHs [ll-perymstopa Ta ITIM-
perymsaTopa B cHUCTeMaX, CHHTe30BaHMX Meromom feedback
linearization, sIK Ha YyTJMBICTP CHCTEMH A0 3MiHH MOMEHTY
iHepIii Apyroi mMacu, Tak i IIBHIKOMIIO Ta INepeperyioBaHHS
BUIXIJTHOT KOOP/IMHATH.
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