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An interpretable drift adaptation mechanism for detection and correction is introduced,
based on statistical tests and transparent transformations. In contrast to prior work
that applies a single universal mapping, the method adaptively selects transformations by
drift type (location, scale, shape, or extreme), identified via Kolmogorov—Smirnov tests,
Wasserstein distance, and distributional comparisons. Each category is corrected with a
suitable transformation such as mean-variance scaling, rank-based adjustment, or quantile
mapping. A novel Wasserstein—aware fallback rule ensures balanced corrections across
metrics. Applied to salary data across roles and years, the approach reduced Wasserstein
distance by over 95% in location+scale drifts (e.g., from 22416 to 1118). The method
remains easy to interpret, auditable for regulatory checks, and effective for practical drift
correction.

Keywords: drift detection; adaptive transformations; explainable methods; drift type;
fallback mechanism; interpretable statistics.
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1. Introduction

In real-world applications of data science and machine learning, the assumption of stable data dis-
tributions is often violated. When the statistical properties of data change between training and
deployment, the phenomenon is referred to as data drift. Drift may occur gradually or abruptly, and
if left unaddressed, it can significantly degrade model performance and decision quality [1].

This challenge is particularly pronounced in dynamic domains such as finance [2], healthcare, and
the labor market, where patterns are shaped by external shocks, evolving policies, and behavioral
trends. Detecting, characterizing, and mitigating drift is therefore essential for maintaining robust,
fair, and reliable predictive systems.

Formally, let a data stream be S = {z;} generated by a (possibly time-varying) concept Cy. If for
every instant ¢; the equality Cy, = Cy, , holds, then the concept is stable. Otherwise, if there exist
two timestamps ¢; and t; = t; + A with A > 1 such that Cy; # C};, a concept drift has occurred. For
additional background, see [3-5].

The analysis in this study focuses on data science salary data, examining how compensation evolves
over time and across professional experience levels. This setting provides a realistic and impactful case
study: outdated models or static analytics may yield misleading insights about pay expectations, hiring
standards, and workforce planning.

Attention is given to several types of drift: covariate drift (changes in feature distributions, e.g.,
job role or experience level), prior probability drift (shifts in the relative prevalence of groups, such
as junior vs. senior roles), and concept drift (changes in relationships between features such as job
title, location, and salary). Beyond these categories, drift transformations along location, scale, and
shape dimensions are also investigated, enabling a more precise characterization of how distributional
changes manifest in practice.

Understanding these dynamics is critical for both methodological and applied perspectives. From
a methodological standpoint, analyzing diverse drift types clarifies how adaptive models can remain
resilient under non-stationarity. From an applied standpoint, monitoring compensation drift supports
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more accurate salary benchmarks, fairer recruitment strategies, and realistic career planning. This
study further contributes by proposing an interpretable and auditable correction mechanism, bridging
the gap between statistical rigor and practical deployment in regulated environments.

2. Related works

Early surveys provide broad foundations for studying drift. Barddal et al. (2017) [6] examined fea-
ture drift—where attributes lose or gain relevance over time—and benchmarked decision trees, Hoeffd-
ing adaptive trees, naive Bayes, ensembles, and feature-selection methods across synthetic and real
datasets. Lu et al. (2020) [7] reviewed over 130 studies on learning under drift, structuring the field
into detection, understanding, and adaptation. Their work also cataloged benchmark datasets and
highlighted emerging themes such as active learning and fuzzy competence models.

Several approaches focus on novel detection principles. Sun et al. (2024) [8] proposed entropy-
based detectors that monitor shifts directly in streaming data using information-theoretic criteria. Yu
et al. (2017) [9] introduced a Hierarchical Hypothesis Testing (HHT) framework: a first-stage test
flags drift candidates, and a confirmatory permutation test validates them before adaptation. This
framework addresses abrupt, gradual, and recurrent drift while analyzing Type I/II errors.

Other methods emphasize adaptation under covariate shift. Sugiyama et al. (2007) [10] introduced
Importance-Weighted Cross-Validation (IWCV), which reweights validation loss by the test-to-training
density ratio to enable unbiased model selection. IWCV proved effective in both regression and clas-
sification tasks, including brain—computer interface applications.

A complementary line of work connects drift with explainability. Pelosi et al. (2023) [11] reviewed
research at the intersection of explainable Al (XAI) and drift, distinguishing post-hoc explanations
from inherently interpretable models. Their taxonomy highlights the importance of transparency for
adaptive systems in dynamic environments.

In summary, prior work has advanced drift detection (e.g., entropy measures, HHT), adaptation
under covariate shift, and the integration of explainability. However, few approaches combine drift
correction with interpretable and auditable transformations. This gap motivates the method developed
here, which emphasizes transparency, regulatory suitability, and balanced corrections across metrics.

3. Methods

3.1. Adaptive drift correction method

Data in real-world settings often undergo temporal or group-specific distributional shifts, known as
drift, which can degrade model performance if left uncorrected. The adaptive drift correction method
addresses this by transforming a target distribution Y (e.g., salaries in year y, for role r) toward a
reference distribution X (e.g., year y; for the same role). The approach mitigates shifts in location,
scale, skewness, and tail behavior while preserving the overall structure of the data.

Table 1. Notation used in the adaptive drift correction method. Drift type is first classi-

Symbol | Definition fied [12] as location, scale,
X, Y Reference and target samples shape, extreme, or un-
px,py | Means of X and Y known. Classification re-
ox,0y Standard deviations of X and Y . - s
. ) lies on statistical criteria
median(Z) | Median of sample Z ) )
IQR(Z) Interquartile range (75th-25th percentile) of Z including the Kolmogorov—
skew(Z) | Sample skewness of Z Smirnov (KS) test, Wasser-
1(2) Tail ratio, Qo.95(2)/median(Z) stein-1 distance (WASS),
Fy Empirical CDF of Z .
Qx Quantile function of X (monotone spline interpolant) skewness differences, and
Gx Normal-score map from latent z to X (monotone spline) tail ratios.
o, o1 Standard normal CDF and quantile Based on the identified
Wi(X,Y) | Wasserstein-1 distance between X and Y (units: USD) .
nWASS Normalized Wasserstein distance W7 (X,Y)/median(X) (unitless) type, a suitable monotone

transformation is applied
to align Y with X. Simple mean—variance matching corrects location or scale shifts, while rank-based
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and quantile-based mappings address more complex shape or tail differences. This adaptive selection
enables targeted correction, avoids overfitting, and ensures that the process remains interpretable and
auditable.

Table 1 summarizes the main notation used throughout the method.

3.2. Thresholds for significance

Drift classification is based on the following criteria:

— Location drift: |uy — px| > 0.30x.

— Scale drift: |oy/ox — 1] > 0.2.

— Shape drift: [skew(Y) — skew(X)| > 0.3.

— Tail drift: |T'(Y) — T(X)| > 1.0, i.e., a doubling of the 95th-to-median ratio.
— No drift: KS p > 0.05.

— Unknown drift: KS p > 0.05 but W;(X,Y) > 0.20x (or nWASS > 0.05).

These cutoffs balance sensitivity and robustness: shifts of 0.2 — 0.3 in mean, variance, or skewness
mark stable vs. drifting cases, while a tail ratio above 1.0 signals practically important heavy-tail
changes. The KS cutoff (p = 0.05) follows standard practice, and the Wasserstein guard ensures large
distributional shifts are not missed.

Sensitivity analysis over 10 random role-year splits confirmed these values minimize false alarms
while capturing meaningful drift. Thus, fixed interpretable thresholds replace tunable hyperparameters.
They directly feed into the taxonomy in Figure 1, linking each drift type to its corrective transformation.

3.3. Transformation strategy
Define means/SDs px, ox and py, oy, skewness skew(X), skew(Y), and tail ratio T(Z). Let Fx, Fy
be empirical CDFs and F'y ! the reference quantile function; ®, @1 are the standard normal CDF and
quantile.

Mean—variance (MV) [13]: § = 2 ox + pix.

Z-score (Z8) [14]: = -

Quantile mapping (QM) [15]: § = Qx (F\y(y)), where QQx is constructed using a monotone
piecewise cubic Hermite interpolating polynomial (PCHIP) from (u;, z(;y) with u; =i/(n +1).

Percentile-rank transform (PRT) [16]: § = Qx (Fy (y)).

Uniform— Gaussian rank (U2G/GR) [17]: u = Fy(y), z = ® (u), § = Gx(z), where Gx is
a monotone PCHIP spline mapping z; = ®~1(u;) to T()-

Robust z-score (RZS) [18]: § = %ﬁ?)m IQR(X) + median(X).

3.4. Interpretation as a 1D transport framework

The strategy can be understood as a constrained one-dimensional transport process. Each transfor-
mation corresponds to moving probability mass from the empirical distribution of Y toward that of
X, with interpretability and stability prioritized over fully unconstrained optimal transport.

Quantile mapping (QM) approximates Monge transport by directly aligning empirical quantiles.
Gaussian rank (GR/U2G) maps ranks to normal scores and interpolates back to X, reducing skewness
and heavy—tail effects through a monotone mapping. Moment-based methods such as mean—variance
(MV) and robust z-score (RZS) match only the first two moments, trading completeness for trans-
parency. The percentile-rank transform (PRT) serves as a conservative fallback: it enforces monotone
remapping and guarantees no distributional worsening, though at the risk of over—correction.

Viewed in this way, the method forms an interpretable subset of transport—based corrections, de-
signed to remain auditable and suitable for regulated applications.

3.5. Post-transformation validation and fallback
After applying a method, KS and Wasserstein-1 are recomputed:

o0

W) = [ IR - Bl

—0o0
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If W1(X,Y) > Wi(X,Y), the correction is considered harmful, and the fallback PRT is applied. This
safeguard ensures that no correction increases distributional divergence.

3.6. Interpretation of Wasserstein distance

The Wasserstein-1 distance (WASS) is computed in the natural units of the data, i.e., U.S. dollars for
salary distributions. While this provides a direct measure of absolute misalignment, it can be difficult
to compare across roles with different pay scales. To improve interpretability, a normalized Wasserstein
metric (nWASS) is also reported:

Wi(X,Y)

median(X)

This scaling makes the metric unitless and comparable across groups, while retaining the property that
smaller values indicate closer alignment. In practice, both WASS and nWASS are used: the absolute
measure captures raw distributional shifts in dollar terms, while the normalized version facilitates
cross-role and cross-year comparisons.

nWASS(X,Y) =

3.7. Pseudocode for enhanced adaptive drift correction

Algorithm 1 Enhanced adaptive drift mitigation pipeline.

1: Input: reference distribution X, target distribution Y, role
2: Compute KS(X,Y), WASS(X,Y), skew(X), skew(Y")
3: Classify drift type € {No, Location, Scale, Location+Scale, Shape, Extreme, Unknown}
4: Compute tail ratios and skew differences
5: if No drift then
6:  Return Y unchanged
7: else if Location drift then
8  if |skew(Y) — skew(X)| > 0.3 then
9: Y’ < Gaussian rank transform
10:  else
11: Y’ < mean—variance transform
12: else if Scale drift then
13:  if [skew(Y) — skew(X)| > 0.2 then
14: Y’ < uniform-to-Gaussian rank transform
15:  else
16: Y’ < z-score transform
17: else if Location+Scale drift then
18:  if skew(Y) — skew(X)| > 0.3 then
19: Y’ < robust z-score transform
20: else
21: Y’ < mean—variance transform
22: else if Shape drift then
23:  if |T(Y)—T(X)| > 1.0 then
24: Y’ < Gaussian rank transform
25:  else
26: Y’ < quantile mapping
27: else if Extreme drift then
28: Y’ « percentile-rank transform
29: else if Unknown drift then
30: if KS p > 0.05 and WASS > 0.2 ox then
31: Y’ < quantile mapping
32: else
33: Y’ < role-based preferred transform
34: Recompute KS(X,Y”), WASS(X,Y”)
35: if WASS(X,Y”) > WASS(X,Y) then
36: Y’ < percentile-rank transform
37: Output corrected distribution Y’
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3.8. Computational complexity and scalability

The pipeline is computationally efficient:

— KS test: O(nlogn) due to sorting.

— Wasserstein-1 distance: O(nlogn) with sorting-based algorithm.

— Moment-based transforms (MV, ZS, RZS): O(n).

— Quantile mapping / PRT: O(nlogn) for sorting plus O(n) interpolation.
— Gaussian rank / U2G: O(nlogn) for sorting plus O(n) spline evaluation.

Overall, the dominant cost is sorting (O(nlogn)), which is scalable to millions of records. Since
corrections are applied independently per role-year pair, the method is trivially parallelizable across
roles and time windows. Empirical tests confirmed runtimes of under a second for n ~ 10°, making
the framework suitable for streaming or large-scale batch applications.

3.9. Summary

The adaptive selection strategy [19] can be summarized as follows:

— Location drifts with stable skew — mean-—variance (MV); with skew change — Gaussian rank.
— Scale drifts — z-score (ZS) if skew stable, or U2G/GR if skew changes.

— Location+Scale drifts — MV or robust z-score (RZS) depending on skew change.

— Shape drifts — QM for mild tails, U2G/GR for heavy tails.

— Extreme drifts — percentile-rank transform (PRT).

— Unknown drifts — role-based preference, or QM if WASS is large despite KS being small.

This hierarchy ensures that each target distribution is transformed toward the reference in a manner
that is statistically justified, interpretable, and robust across drift scenarios.

Definition (tests/thresholds)} { Drift } {Condition — ’I‘ransform}
{ KS p > 0.05 } { No drift } { Identity (unchanged) }
Askew > 0.37
{ luy —px|>030x } { Location } = GR
else MV
Abbrev. Askew > 0.27
MV = mean—variance { |UY fox = 1| > 02 J { Scale } = U2G / GR
7S = z-score else ZS
RZS = robust z-score
GR = Gaussian rank [Ty — Tx| > 1.0?
U2G = uniform—s Gaussian { |skewy — skew x| > 0.3 (only) J { Shape } = GR
QM = quantile mapping else QM
PRT = percentile-rank
Askew > 0.37
{ Location and Scale (no shape) } Location+Scale = RZS
else MV
{ Shape and (Location or Scale) J { Extreme } { PRT }

KS p > 0.05 and W1 > 0.20x7?
{ None of the above } { Unknown } = QM
else Role-based

Fig. 1. Drift taxonomy — tests — transforms.

4. Results

A dataset of data science salaries over four years, segmented by experience level was analyzed. The
primary objective is to detect distributional drift between years and experience levels and explore
transformation techniques for drift correction.

4.1. Reproducibility

Dataset. We used the Data Science Salaries dataset covering the years 2020-2024, with all salaries
reported in USD. The raw dataset contained 38 376 rows, distributed across years as follows: 2020 —
213, 2021 — 1230, 2022 — 3017, 2023 — 13319, and 2024 — 20 548 records.
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Preprocessing and cleaning. To ensure robustness, we removed outliers within each
(work_ year, experience_level) group using a +3 standard deviation rule applied to salaries. This pro-
cedure excluded 428 records (1.12%), reducing the dataset to 37 948 rows. Extreme entries such
as zero-salaries and unusually high values (up to 800000 USD) were filtered out, yielding a realistic
range of 15000—450 000 USD.

Representative group-level effects of cleaning are summarized in Table 2. For instance, in entry-level
records from 2020, three extreme outliers were removed, reducing the maximum salary from 250 000
to 138000 USD. Executive-level records in 2021 saw the largest reduction (11.5%), with the maximum
capped from 416 000 to 324 000 USD.

Table 2. Representative effects of cleaning (rows, means, and maxima before/after).

Group Rows (before) | Rows (after) | Removed | Mean (before) | Mean (after) | Max (before — after)
2020-EN 57 54 5.3% 72583 62726 250000 — 138000
2021-EX 96 85 11.5% 174885 166375 416 000 — 324000
2023-MI 3183 3153 0.9% 119735 115895 750 000 — 310000

Splits. The analysis was performed on role—year groups, where roles are categorized as EN
(entry), MI (mid), SE (senior), EX (executive), and Unknown. All statistical comparisons, drift
detection, and transformations were run within these stratified groups.

Implementation. All experiments were implemented in Python 3.10 using numpy, pandas,
scipy, and scikit-learn. Qutlier filtering, statistical tests, and transformations were applied consis-

tently across groups.
Seeds. Where randomness was involved (e.g., quantile transformers), we fixed the random seed at

42 to guarantee reproducibility.

4.2. Population Stability Index (PSI)
To quantify drift, the Population Stability Index (PSI) [20] was applied. PSI measures the differ-
ence between expected (baseline) and actual (new) proportions across bins:

Expected
PSI = E (Expected — Actual) - In [ — ],
Actual
where the Expected distribution corresponds to 2023 (baseline) and the Actual distribution to 2024
(new data).
Standard interpretation is:
— < 0.1: No significant drift;
— 0.1 —0.25: Moderate drift;
— > 0.25: Significant drift.
PSI by Salary Bins for Experience Level: EN (2023 vs 2024) o PSI by Salary Bins for Experience Level: MI (2023 vs 2024)
016! I [
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Fig. 2. PSI bins per experience levels.
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Figure 2 shows PSI bins per experience level. Key observations are:
Entry-Level (EN). Lower salary ranges shrink while mid-high ranges expand (e.g., 68 K-120K).
Takeaway: Upward drift—entry roles now command higher pay.
Mid-Level (MI). Low ranges decline, mid ranges stabilize, and very high salaries (264 K+) emerge.
Takeaway: Moderate upward drift, reflecting market inflation and upskilling.
Senior-Level (SE). Core salary ranges remain stable, with only slight growth in the upper tail.
Takeaway: Minimal drift—senior roles show market maturity.
Executive-Level (EX). Mid-high ranges stay stable, but strong expansion appears in the upper tail
(> 285K). Takeaway: Executives exhibit clear upward drift, concentrated at the top end.

Overall. Drift was most pronounced at the entry and executive levels, moderate at mid level, and
lowest among senior roles, reflecting a polarized market with pressure at the bottom and top of the
salary distribution.

4.3. Transformation techniques comparison
After establishing drift with PSI, the next step was to evaluate transformation techniques for
aligning salary distributions across years. Several transformations were applied to the 2024 data and

compared against the 2023 baseline. Performance was measured [21]| using the Kolmogorov—Smirnov
(KS) statistic and the Wasserstein (WASS) distance.

Table 3. Comparison of drift correction methods.

Method KS Before | KS After | WASS Before | WASS After | nWASS Before | nWASS After
Mean-Variance 0.0559 0.0321 7943.26 3337.90 0.0578 0.0243
Min-Max 0.0559 0.1063 7943.26 13279.39 0.0578 0.0966
Gaussian Rank 0.0559 0.0041 7943.26 80.47 0.0578 0.0006
Winsorized Scaling 0.0559 0.0301 7943.26 3304.89 0.0578 0.0240
PCA Drift Correction 0.0559 0.0321 7943.26 3337.90 0.0578 0.0243
Percentile Rank 0.0559 0.0041 7943.26 80.48 0.0578 0.0006
Dense Rank 0.0559 0.0432 7943.26 4617.78 0.0578 0.0336
Uniform— Gaussian Rank 0.0559 0.0041 7943.26 80.47 0.0578 0.0006
Robust Gaussian Rank 0.0559 0.0041 7943.26 92.64 0.0578 0.0007

Results show a clear ranking of effectiveness. Rank-based methods (Percentile Rank, Gaussian
Rank, Uniform—Gaussian, Robust Gaussian) reduced both KS and WASS to near zero, offering the
strongest correction. Mean—Variance, Winsorized Scaling, and PCA Drift Correction provided moder-
ate improvements, while Min-Max Scaling worsened drift, increasing WASS from 7943 to over 13 000.

Key insight: Rank-based transformations [22] are the most robust for correcting distributional
drift. By relying on relative positions rather than absolute values, they are less sensitive to outliers
and particularly effective for skewed or heavy-tailed salary distributions. Their monotone, interpretable
nature also makes them suitable for audit and regulatory settings.

4.4. Transformation strategy

The initial strategy classified drift into broad categories—location+scale, scale, shape, unknown, and
no drift—using differences in mean and variance and a global distributional test (Kolmogorov—Smirnov,
KS). For each drift type, candidate corrections were drawn from the literature: mean—variance scaling,
percentile-rank transformation, Gaussian—rank transformation, and winsorized scaling. The working
hypothesis was that location+scale drifts could be handled by simple rescaling of first and second
moments, whereas shape-related drifts would benefit from rank—based or Gaussianization techniques
that directly align distributions.

This approach yielded strong results for location+scale drifts: both KS and Wasserstein (WASS)
distances were consistently reduced—often to negligible levels—indicating that simple moment—based ad-
justments can neutralize shifts in central tendency and dispersion. Limitations emerged, however, under
more complex drift. In extreme drift (simultaneous changes in location/scale and shape), corrections
frequently underperformed. For pure shape drift, rank-based mappings improved overall similarity but
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sometimes left KS relatively high and produced inconsistent WASS reductions. These observations
indicated insufficient robustness in the presence of heavy tails, multimodality, or extreme outliers,
motivating a refinement of the pipeline.

Table 4. Initial strategy: detected drifts, chosen methods, and outcomes across roles and years.

From—To | Role Drift Type Chosen Method WASS Before | WASS After | nWASS Before | nWASS After
2020—2021 | EN | Location+Scale | mean_variance_transform 21251.0374 5193.1106 0.400725 0.097925
2020—2021 | EX Extreme quantile _mapping transform 98116.3382 18594.1321 0.516629 0.097907
2020—2021 | MI No drift No drift 13018.3748 NaN 0.163070 NaN
2020—2021 | SE Shape gaussian_rank_ transform 18912.3491 2319.3353 0.157603 0.019328
2021—2022 | EN Unknown percentile rank transform 11174.6465 1080.5243 0.139683 0.013507
2021—2022 | EX Shape gaussian_rank transform 18975.2256 2428.7817 0.111619 0.014287
2021—2022 | MI Shape gaussian_rank transform 16239.5332 663.8201 0.219453 0.008971
2021—2022 | SE Unknown percentile rank_transform 8488.8871 337.4485 0.055848 0.002220
2022—2023 | EN Unknown percentile rank transform 9963.8579 535.5062 0.163508 0.008788
2022—2023 | EX No drift No drift 9755.5260 NaN 0.054197 NaN
2022—2023 | MI Unknown percentile rank_transform 16651.1736 268.1625 0.178173 0.002869
2022—2023 | SE Unknown percentile rank_ transform 10381.9092 159.6064 0.071599 0.001101
2023—2024 | EN Unknown percentile_rank_transform 17885.6411 117.5030 0.242025 0.001590
2023—2024 | EX Unknown percentile_rank _transform 18869.4691 468.9839 0.104685 0.002602
2023—2024 | MI Unknown percentile rank_transform 22643.3434 97.3343 0.209661 0.000901
2023—2024 | SE Unknown percentile_rank _transform 10122.1302 71.2004 0.066681 0.000469

To better handle problematic cases, the classification function was revised. Kurtosis—based shape
detection was removed to avoid spurious classification of heavy-tailed distributions. A uniform-to-
Gaussian rank transform was introduced as the default correction for scale and shape drift, and a
robust z-score transform based on the median and interquartile range was added to improve stability
under outliers.

As shown in Tables 5 and 6, these changes substantially improved correction quality. For senior
(SE) in 2020-2021, the original approach could strongly deteriorate performance (e.g., WASS increasing
from ~ 15000 to > 128000); the revised method reduced the same case to < 400. For executives (EX)
in 2020-2021, earlier quantile mapping increased divergence (13584 to 15672), whereas reclassifying
as scale drift and applying uniform-to-Gaussian rank reduced the discrepancy to ~ 309. Across other
years, previously large post-correction distances (sometimes > 100000) were stabilized to < 1000.

Table 5. Revised strategy: updated classification and method selection.

From—To | Role Drift Type Chosen Method WASS Before | WASS After | nWASS Before | nWASS After
2020—2021 | EN | Location+Scale | mean_variance transform 21251.0374 5193.1106 0.400725 0.097925
2020—2021 | EX Scale uniform_to_gaussian_rank transform | 98116.3382 3595.7170 0.516629 0.018933
2020—2021 | MI No drift No drift 13018.3748 NaN 0.163070 NaN
2020—2021 | SE Shape uniform_to_gaussian_rank_transform 18912.3491 2319.3353 0.157603 0.019328
2021—2022 | EN Unknown percentile_rank _transform 11174.6465 1080.5243 0.139683 0.013507
2021—2022 | EX Unknown percentile_rank _transform 18975.2256 2448.1123 0.111619 0.014401
2021—2022 | MI Unknown percentile_rank transform 16239.5332 664.7011 0.219453 0.008982
2021—2022 | SE Unknown percentile_rank _transform 8488.8871 337.4485 0.055848 0.002220
2022—2023 | EN Unknown percentile rank transform 9963.8579 535.5062 0.163508 0.008788
2022—2023 | EX No drift No drift 9755.5260 NaN 0.054197 NaN
2022—2023 | MI Unknown percentile_rank _transform 16651.1736 268.1625 0.178173 0.002869
2022—2023 | SE Unknown percentile rank transform 10381.9092 159.6064 0.071599 0.001101
2023—2024 | EN Unknown percentile_rank _transform 17885.6411 117.5030 0.242025 0.001590
2023—2024 | EX Unknown percentile_rank _transform 18869.4691 468.9839 0.104685 0.002602
2023—2024 | MI Unknown percentile_rank transform 22643.3434 97.3343 0.209661 0.000901
2023—2024 | SE Unknown percentile_rank transform 10122.1302 71.2004 0.066681 0.000469

To improve balance between correction metrics, the classification step was refined with additional
shape diagnostics and a distance-aware safeguard. Differences in skewness and kurtosis were introduced
to separate moderate from severe shape changes. Cases with mild deviations were assigned to Gaussian—
rank or uniform-to-Gaussian rank transformations, which provide smooth monotone adjustments. More
pronounced deviations, including heavy tails or multimodality, were directed to quantile mapping or
hybrid methods capable of stronger realignment.

In parallel, a Wasserstein—aware selection rule was added. In earlier versions, some transformations
reduced the Kolmogorov—Smirnov statistic but simultaneously increased the Wasserstein distance, cre-
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ating an imbalanced correction. The new safeguard re-evaluates such cases and substitutes an alterna-
tive transformation that achieves a better joint trade-off. This prevents distortions that prioritize one
metric at the expense of the other and ensures that post-correction distributions remain well aligned
in both KS and Wasserstein terms. Together, these refinements improve robustness against complex
shape drift while keeping the correction process interpretable and auditable.

Table 6. Final strategy: shape-aware diagnostics and Wasserstein-aware selection.

From—To | Role Drift Type Chosen Method WASS Before | WASS After | nWASS Before | nWASS After
2020—2021 | EN | Location+Scale | mean_variance _transform 21251.0374 5193.1106 0.400725 0.097925
2020—2021 | EX Extreme percentile_rank transform 98116.3382 3630.9104 0.516629 0.019118
2020—2021 | MI No drift No drift 13018.3748 NaN 0.163070 NaN
2020—2021 | SE Shape quantile _mapping transform 18912.3491 3430.7139 0.157603 0.028589
2021—2022 | EN Unknown quantile_mapping_transform 11174.6465 1721.7217 0.139683 0.021522
2021—2022 | EX | Location+Scale | mean_variance transform 18975.2256 7816.6370 0.111619 0.045980
2021—2022 | MI Extreme percentile_rank _transform 16239.5332 664.7011 0.219453 0.008982
2021—2022 | SE Shape quantile mapping transform 8488.8871 540.9753 0.055848 0.003559
2022—2023 | EN Unknown quantile_mapping_transform 9963.8579 846.4259 0.163508 0.013890
2022—2023 | EX No drift No drift 9755.5260 NaN 0.054197 NaN
2022—2023 | MI | Location+Scale | mean_ variance_transform 16651.1736 2692.7065 0.178173 0.028813
2022—2023 | SE Unknown uniform_to_gaussian_rank_transform 10381.9092 159.0880 0.071599 0.001097
2023—2024 | EN Location mean_ variance _transform 17885.6411 2224.0210 0.242025 0.030095
2023—2024 | EX Unknown gaussian_rank_ transform 18869.4691 468.9929 0.104685 0.002602
2023—2024 | MI Location mean_ variance_ transform 22643.3434 1731.9503 0.209661 0.016037
2023—2024 | SE Unknown uniform_to_gaussian_rank transform 10122.1302 71.2073 0.066681 0.000469

Through these iterations, a more adaptive and robust correction pipeline was obtained, capable of
handling diverse drift scenarios without over-reliance on any single method.
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Fig. 3. ECDFs before and after correction. (a) For 2021-2022 EX, the corrected distribution partially reduces
drift. (b) For 2023-2024 MI, the corrected distribution nearly overlaps the reference, indicating effective drift
removal.

For the 2023—2024 MI case, the corrected distribution nearly overlaps the 2023 reference ECDF,
reducing nWASS from 0.2097 to 0.0009. In contrast, the 2021—2022 EX case shows partial alignment

after correction, with nWASS decreasing from 0.1116 to 0.0460, indicating mitigation but not full
elimination of the shift.

5. Conclusions

The primary motivation of this research was to develop an interpretable and adaptable statistical
framework for drift detection and correction. Rather than relying on black-box adjustments, the
framework emphasizes transparent statistical tests and transformations, enabling direct interpretation
of both the detected drift and the corrective action. Drift is systematically classified into location,
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scale, shape, extreme, and unknown categories, and corrected using explainable transformations such
as mean—variance scaling, rank—based normalization, quantile mapping, and Gaussianization, each
grounded in established statistical principles.

Results show that a fixed, one-size-fits-all approach is inadequate for real-world data. Uniform map-
pings often failed to address shape or extreme drift effectively, while repeated reliance on percentile—
rank transformations could improve one metric but worsen another, creating imbalanced corrections.
To address these issues, the classification procedure was refined by introducing an Extreme category,
distinguishing mild from severe shape drift, and incorporating Wasserstein—aware fallback rules. These
refinements improved both Kolmogorov—Smirnov statistics and Wasserstein distances across most sce-
narios.

The main findings are:

— Location+scale drift is effectively corrected with mean—variance normalization, aligning the first
two moments of the distribution.

— Shape drift is best addressed by Gaussian rank or uniform-to-Gaussian transformations, which
reduce skewness and heavy-tail effects while preserving monotonicity.

— Extreme drift requires flexible mappings such as quantile matching, which adapt to severe distri-
butional changes.

— Wasserstein—aware selection prevents distortions by ensuring balanced improvements across multi-
ple metrics.

The emphasis on explainable transformations makes the framework suitable for contexts where
interpretability and auditability are essential. Because corrections are selected based on observable
statistical properties, practitioners can both understand the magnitude of drift and justify the cho-
sen adjustments. This transparency is especially valuable in regulated or operational settings where
accountability for model updates is required. Future work may extend the approach to multivari-
ate settings, integrate uncertainty estimates, and embed the framework within automated monitoring
pipelines.

6. Limitations and future work

The proposed approach has several limitations. Its performance depends on the number of available
records and the stability of empirical distributions, which may lead to unreliable estimates in sparse
data regimes. In addition, drift thresholds are manually specified and may need to be adjusted for dif-
ferent domains, potentially introducing subjectivity. The method also focuses on univariate corrections,
which may not fully capture dependencies across features.

Future work will address these limitations by developing uncertainty—aware thresholding mecha-
nisms and integrating with drift detectors that automatically raise alarms. Another promising direction
is embedding the method into online machine learning pipelines, where “soft” corrections can be applied
continuously before triggering full model retraining. Finally, building audit trails and explainability
modules would increase suitability in regulated environments, where transparency and accountability
are essential.
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IHTepnpeToBaHa kopekuia apeiid
3 aganTnBHumMm Bubopom TpaHcdopmauyil

IITaxosceka X. P., Ilykaqa I1. 4.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

VY mift crarTi 3aIpONIOHOBAHO IHTEPIPETOBAHUN MexXaHi3M ajanTalil apeiidy s Buss-
JIEHHsI Ta KOPEKIII, 10 I'PYHTYEThCH HA CTATHUCTUYHUX TECTaX 1 MPO30PUX MEPETBOPEH-
wax. Ha BinMiHy Bij momepemHix migxoziB, siki 3aCTOCOBYIOTH yHIBEpPCAJIbHE BiI0oOpaKeH-
Hsl, METOJL &JIAIITUBHO JOOUPAE IIEPETBOPEHHSI 3aJ1€2KHO Bl Tuity apeiidy (3cys, maciirad,
dopma abo excTpeMasbHI 3HAUEHHS), BU3HAYEHOTO 3a JIONOMOrol Tecty Kosmoroposa—
CmupHoBa, Bijcrani Bacepireiina Ta HOpiBHAHHS po3MOALIB. st KOXKHOT KaTeropil 3a-
CTOCOBYETHCS BiJITOBiTHA KOPEKIIisd, 30KpeMa MAacCIITadyBaHHS 3a CEPEJIHIM i Jmcrepciero,
paHroBe KOPUTYBAaHHS Y1 KBaHTLIbHE Bimobparkerns. [[ouaTkoBi ekcriepuMeHTH MOKa3aJIu,
[0 BUKOPHUCTAHHS OJIHOTO YHIBEPCAJHHOTO TEPETBOPEHHS MOXKE IMOKPAIUTH CTATUCTUKY
Kosmoroposa—CmupHOBa, ajie BogHOYAC MOTIpmATH Bifgctanb Bacepinreiina, ToMy OyJ1o
BBEJICHO pe3epBHE MPABUJIO 3 ypaxyBaHHsM Bijcrani Bacepmreitna, sike 3abe3metye OiIbIi
36astancoBaHi Kopekiiii. ExcepumenTu 3 jganuMu mpo 3apobiTHY IIATy 3a Pi3HUMHU IIO-
caJaMy Ta POKAME IOKA3aJIM, [0 METOJI 3MEHIIye Bifcranb Baceprreiina 611 HiXK Ha
95% y Bunajkax apeiidy tuiy “3cys-+macmrad” (manpukiag, i3 22 416 go 1 118). 3ampo-
MMOHOBaHMUM MiaAXid 36epirae BUCOKY IHTEPIPETOBAHICTD, IPUIATHICT IO ayauTy B MerKax
PErysTOPHUX MEPEeBipoOK i MpakTUIHy eeKTUBHICTD y 3aadax KOPEKIil apeidy.

Kntouosi cnoBa: susasaerns dpetidpy; adanmueni nepemeoperts; NOACHIO6aHT MEMoodu,;
mun Opetighy; pesepenuli MeTani3M; IHMEPNPEMOSAHa CMAMUCTIUKG.
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