
MATHEMATICAL MODELING AND COMPUTING, Vol. 12, No. 4, pp. 1077–1086 (2025)
Mathematical

M
odeling

Computing

Advanced Approaches for Vulnerability Detection in Solidity-Based
Smart Contracts: A Comparative Review

El Inani N.1,∗, Benabbou F.1, Sabiri K.2, Zaouch A.1

1Artificial Intelligence and Systems Laboratory, University Hassan II of Casablanca,
Faculty of Sciences Ben M’Sik, Morocco

2Collaborative Laboratory Mountains of Research (MORE), Portugal
∗Corresponding author: najwa.elinani-etu@etu.univh2c.ma

(Received 28 March 2025; Revised 4 October 2025; Accepted 8 October 2025)

With the advancement of blockchain technology, Solidity-based smart contracts have be-
come essential for automating and securing digital transactions across various sectors,
from finance to supply chain management. These contracts enable decentralized exchanges
without intermediaries, enhancing transparency. However, their immutable nature poses
security challenges: any flaw in the code becomes permanent, exposing contracts to at-
tacks and leading to financial and reputational losses. This paper provides a comparative
analysis of recent machine learning (ML) and deep learning (DL) techniques developed
for detecting vulnerabilities in Solidity based smart contracts. By evaluating various ap-
proaches, we assess their effectiveness in identifying common threats such as reentrancy
attacks and integer overflows. Finally, we highlight the importance of scalable, AI driven
security solutions to address the growing complexity of vulnerabilities.

Keywords: blockchain; vulnerability; smart contract; machine learning; deep learning.

2010 MSC: 91B40, 68M14, 93A14, 97P10, 97R40 DOI: 10.23939/mmc2025.04.1077

1. Introduction

Blockchain technology has rapidly evolved, revolutionizing industries by providing secure, decentralized
solutions for various applications. Originally utilized primarily within the realm of cryptocurrencies,
blockchain technology has since branched out significantly, particularly with the advent of smart con-
tracts on second generation platforms like Ethereum. Smart contracts are autonomous programs that
execute predefined actions when certain conditions are met. Their use has expanded beyond financial
transactions to applications in sectors such as healthcare, supply chain, and governance [1, 2]. Given
their ability to manage and transfer substantial value without intermediaries, the security of these con-
tracts has become a critical concern. Vulnerabilities in smart contracts can lead to significant financial
losses, undermining trust in blockchain systems and potentially harming the users and organizations
that rely on them [3].

These vulnerabilities can generally be categorized into three main areas. First, there are vulnerabil-
ities within the blockchain dafase itself, where issues such as the ‘51% attack’ [4] can compromise data
integrity by allowing attackers to control the majority of mining power, thus manipulating transaction
records. Second, there are risks associated with the execution environment, such as Ethereum’s EVM
(Ethereum Virtual Machine), where attackers may exploit transaction ordering or gas usage to gain
an unfair advantage. Lastly, vulnerabilities also exist within the source code, particularly in the So-
lidity programming language used for writing smart contracts [5] . Despite their potential, Ethereum
blockchain-based smart contracts are particularly susceptible to various vulnerabilities, primarily due
to the complexity of coding and the immutable nature of the blockchain [6]. Common vulnerabilities
include reentrancy attacks, integer overflows, and others that can have severe repercussions, including
unauthorized fund transfers and smart contract failure. These flaws occur at three levels, starting from
the code development stage where incorrect coding practices lead to security risks to how these con-
tracts interact with the Ethereum Virtual Machine (EVM) and, subsequently, the blockchain database.

c© 2025 Lviv Polytechnic National University 1077



1078 El Inani N., Benabbou F., Sabiri K., Zaouch A.

Traditional methods of vulnerability detection, such as manual code audits and static analysis tools,
often fall short due to the evolving nature of smart contracts and their susceptibility to increasingly
sophisticated attacks [7, 8]. Approaches based on Machine Learning (ML) and Deep Learning (DL)
models have emerged as promising tools for the detection of vulnerabilities in Solidity code. By
leveraging large datasets and learning patterns within smart contract code, ML and DL approaches
provide enhanced capabilities for identifying weaknesses that traditional methods may overlook. These
models can efficiently adapt to new types of attacks by learning from past vulnerabilities.

This review paper explores the application of ML and DL models in detecting vulnerabilities within
Solidity-based smart contracts. It aims to analyze the effectiveness of these advanced models compared
to traditional methods and evaluate how they can improve security measures. The paper is structured
as follows: Section 2 reviews related works, tracing the evolution and recent progress in using ML
and DL to analyze smart contracts. Section 3 provides a comparative analysis of existing ML and DL
models, assessing their effectiveness and limitations. Section 4 concludes with key findings, discusses
the implications for future security enhancements in smart contracts, and offers recommendations for
ongoing research.

2. Literature review

This literature review interests in recent methods based on ML an DL. The detection of vulnerabilities
in smart contracts leverages a combination of ma-chine learning (ML) and deep learning (DL) ap-
proaches. These techniques are used to learn and recognize patterns within the contract code, with the
goal of identifying potential security issues more effectively than conventional approaches. However,
many models still incorporate traditional methods.

Feng et al. [9] combined a static technic and Machine learning model to develop an interpretable
model for detecting vulnerabilities in large scale smart contracts. Specifically, the model leverages
static analysis of opcode sequences, followed by feature engineering, and building a detection model
using XGBoost. The dataset con-sists of 40 000 Ethereum smart contracts, and the model achieved
notable perfor-mance with accuracies between 93% and 100% in detecting six common vulnerabilities.
Similarly, Jie et al. [10], used static analysis at the function level through Slither, which extracts
features from the compiled code of smart contracts. The framework organized tasks into intramodal and
intermodal settings, using Bi-LSTM, textCNN models, and Random Forest (RF) for feature selection
and fusion. By integrating the modalities, the framework achieves an accuracy of 99.71% and an F1-
score of 99.50%. Xie et al. [11] introduced the Blockgram model to analyze and extract features by
segmenting opcode sequences into blocks. The features are used with machine learning models such
as XGBoost, RF, and K-Nearest Neighbors (KNN) to classify vulnerabilities. Evaluated on the NKSC
and ContractWard datasets, the RF model achieved an accuracy of 94.36%, a recall of 98.92%, and an
F1-score of 96.80%, with a significant reduction in latency compared to N-gram features. In a related
research, Ren et al. [12] proposed using program slicing technique to isolates code portions relevant
to potential vulnerabilities, and the Bi-LSTM-Att model analyzes these slices, using bidirectional
processing and an attention mechanism to effectively extract sequential and contextual information’s.

This approach consistently outperformed the other models across all vulnerability categories. For
integer overflow vulnerability, Bi-LSTM-Att achieved a recall of 80.85%, a precision of 87.04%, and
an F1-score of 83.83%, which was significantly higher than the baseline LSTM and GRU models. For
re-entrancy vulnerabilities, Bi-LSTM-Att attained the highest recall (86.53%), precision (87.45%), and
F1-score (86.99%). Similarly, for dangerous delegatecall, Bi-LSTM-Att showed improved recall, preci-
sion, and F1-score, reaching values of 79.46%, 83.05%, and 81.22%, respectively. The best achieved per-
formance is for timestamp dependence vulnerabilities, where Bi-LSTM-Att achieved a recall of 89.48%,
precision of 94.40%, and an F1-score of 91.87%, Zhang et al. [13] proposed the Serial-Parallel Convo-
lutional Bidirectional Gated Recurrent Network Model incorporating Ensemble Classifier (SPCBIG-
EC), which, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
based models, to enhance accuracy and robustness. The methodology begins with feature extraction,

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



Advanced Approaches for Vulnerability Detection in Solidity-Based Smart Contracts: . . . 1079

where smart contract code is converted into vector representations before building the model using.
Multiple datasets containing different types of vulnerabilities. This approach demonstrated interesting
results, achieving an F1-score of 96.74% for reentrancy vulnerabilities, 91.62% for timestamp depen-
dency, and 95.00% for infinite loop vulnerabilities, with overall accuracy and F1-scores above 85% for
hybrid datasets. Another work of Zhang et al. [14] introduced a SVScanner method, a novel deep
learning based approach. Global semantic features are extracted using a Bi-LSTM model from the
code tokens, while deep structural semantics are captured through an attention mechanism applied to
the Abstract Syntax Tree (AST). These combined features are then fed into a TextCNN to classify con-
tracts as either vulnerable or non-vulnerable. This approach achieved an accuracy of 94.77%, a recall
of 90.72%, and an F1-score of 94.64%, demonstrating its effec-tiveness in smart contract vulnerability
detection.

Additionally Zhou et al. [15] pre-sented Multiple Objective Detection Neural Network (MODNN),
that involves using pre-trained models BERT to extract explicit features from sequences of operations
and constructing co-occurrence matrices for implicit feature learning. The MODNN was trained on a
dataset of over 18 000 smart contracts, and its performance was evaluated using metrics like the F1-
score. It demonstrated a high accuracy rate, reaching 96.15% for detecting underflow vulnerabilities,
and a recall rate of 99.16%. Another methodology proposed by Osei et al. [16] introduced Wide and
Deep Neural Network (WIDENNET), an approach based on deep learning model including linear wide
model to capture simple patterns with a deep neural network to learn complex, hierarchical features,
optimized together using a joint loss function. The model uses Stochastic Gradient Descent (SGD) for
backpropagation and softmax for final classification, to address existing vulnerability’s. In experimental
evaluations, WIDENNET archieved an accuracy of 80.06%. Similarly Sun et al. [17] introduces Active
and Semi-Supervised Bert (ASSBert), a novel framework that combines active and semi-supervised
learning techniques to address the limitations in smart contract vulnerability detection. The ASSBert
model was validated using a benchmark dataset of 20 829 smart contracts, containing six types of
vulnerabilities, and demonstrated superior results compared to traditional baseline methods with a
F1-score of 89%. Cheng et al. [18] propose a new framework called Enhanced Graph Feature Learning
(EGFL). That represents smart contract bytecode as a Control Flow Graph (CFG) and constructs
a linear node feature matrix to provide global context. To manage long-range dependencies, it uses
feature-aware and relationship-aware modules, while a graph neural network extracts local features.
These global and local features are then combined through a self-attention mechanism, and classifi-
cation is performed using a Multi Layer Perceptron (MLP). The approach was compared to against
14 state-of-the-art methods using a benchmark dataset, achieving an accuracy, recall, precision, and
F1-score (ranging from 83.67% to 90.47% varing across different types of vulnerabilities). Cai et al. [19]
proposed a new dataset statement-level annotations derived from security best practices in smart con-
tract code. The proposed approach Syntax-Sensitive Graph Neural Network (SS-GNN) combines tree
based learning via Child-Sum Tree-LSTM, Graph Convolutional Networks (GCN), and attention mech-
anisms to capture comprehensive code relationships. A Multi Layer Perceptron (MLP) classifier is used
for final prediction. The SS-GNN outperformed other tools such as Slither, Smartcheck, and TMP [20],
with an F1-score of 90.57%, as well as interesting accuracy, recall, and precision, demonstrating its
superiority in vulnerability detection at a detailed statement-level. While traditional methods are still
utilized, advanced models leveraging a combination of static analysis, feature extraction, and neural
networks have demonstrated superior performance, making them crucial for addressing the growing
complexity and security challenges in blockchain technologies. In following section, a deep comparison
is conducted.

3. Comparison and analysis

The literature offers a comprehensive overview of smart contract vulnerabilities and detection models.
However, a comparative approach is necessary to pinpoint strengths and weaknesses across different

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



1080 El Inani N., Benabbou F., Sabiri K., Zaouch A.

vulnerability levels. In this section, we will delve deeper into these levels, with a particular focus on
vulnerabilities at the Solidity level.

Furthermore, while ML and DL models have seen application across various domains, their com-
parative effectiveness in detecting vulnerabilities remains underexplored, a gap this section seeks to
address.

3.1. Vulnerability levels

In Ethereum blockchain technology, vulnerabilities can exist at various levels, each presenting unique
challenges to the security of decentralized applications. In this section, Table 1 presents multiple types
of vulnerabilities within the Ethereum platform at each level.

At the Blockchain level, issues like Block Timestamp Dependency, can be exploited by manipulating
the block time to alter the contract’s behavior, while Unsecured Balance may allow attackers to drain
funds from inadequately protected accounts. Moving to the Ethereum Virtual Machine (EVM) level,
vulnerabilities include the Call Stack Depth Limitation, which can prevent critical functions from
executing correctly if the stack becomes too deep, and Unchecked and Failed Send, where insufficient
checks on fund transfers could lead to losses. Issues like Short Address Attack exploit incomplete
transaction data, and using tx.origin for authentication creates risks of impersonation attacks [21].

Solidity-level vulnerabilities are highly prevalent due to the direct exposure of smart contract code
to attackers. These vulnerabilities are divided into two categories: heavy and light harm. Heavy harm
vulnerabilities include issues like Integer Over/Under Flow, which alters arithmetic operation results,
Re-Entrancy Problems, where attackers repeatedly call functions to drain funds, and Greedy Contracts,
where assets become permanently locked. Detection of these vulnerabilities involves advanced models
such as SPCBIG-EC, SVScanner, and WIDENNET, which leverage deep learning techniques like CNN,
RNN, and Bi-LSTM to analyze patterns in op-code or feature data. For instance, Ren et al.’s Bi-LSTM-
Att model captures both contextual and sequential information, improving the detection of re-entrancy
and arithmetic problems by analyzing contract semantics in detail. On the other hand, light harm
vulnerabilities, such as Denial of Service, Gas Overspent, Transaction Ordering, and other risks like
Prodigal Contracts and Suicidal Contracts, represent less severe but still impactful threats. These
vulnerabilities are efficiently detected using models like Feng et al.’s XGBoost-based approach, which
uses static analysis and feature engineering to reduce false positives and improve detection efficiency.
Jie et al. also utilize Slither for function-level static analysis, followed by textCNN and bi-LSTM for
deeper feature examination, achieving high accuracy in identifying common vulnerabilities. Overall,
Solidity-level vulnerabilities are critical due to their direct impact on smart contract behavior and
fund security. By combining ma-chine learning techniques like XGBoost and Random Forest with deep
learning models such as CNN and Bi-LSTM, detection models aim to improve accuracy, interpretability,
and speed, helping developers secure smart contracts more effectively. Table 1 presents the types of
vulnerabilities across each category. In the following section, we focus specifically on the Solidity level
to explore advanced tools for vulnerability detection.

3.2. Approaches performance comparison

This section presents the various models and their performance to detect the issues in solidity level.
Table 2 provides a comprehensive synthesis of multiple methods used for detecting vulnerabilities in
smart contracts based on: name of the approach, ML/DL used, Feature extraction technique based on,
Dataset and the achieved performance using metrics such as: accuracy (A), F1-score (F1), Precision
(P) or Recall (R).

3.2.1. Datasets

Among the various datasets and models discussed, the CESC + UCESC dataset, the largest with
203 716 contracts, is likely to contribute to the most powerful performance. Models trained on such
large datasets, including advanced deep learning models like SPCBIG-EC and Bi-LSTM-Att, consis-
tently achieve superior results. For example, Bi-LSTM-Att outperformed other models with F1-scores

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



Advanced Approaches for Vulnerability Detection in Solidity-Based Smart Contracts: . . . 1081

Table 1. Table of vulnerability levels.

Levels Types Sub-type Description

Solidity

Heavy Harm Vulnerabilities
Integer Over/Under Flow Errors from exceeding numeric

limits in arithmetic operations.
Re-Entrancy Problem External contract calls can alter

the original contract’s state un-
expectedly, leading to exploits.

Greedy Contract Reliance on external libraries can
render a contract inoperable if
those libraries are terminated by
attackers.

Light Harm Vulnerabilities
Denial of Service Reliance on external function re-

sults for state transfer.
Gas Overspent Unnecessary code increases gas

costs, wasting resources.
Transaction Ordering Execution order is unpredictable

due to mining order, causing po-
tential exploits.

Prodigal Contract Incorrectly refunds or transfers
funds to unintended parties.

Destroyable/Suicidal Contract Contracts can be destructed,
sometimes by unauthorized
users, causing loss of functional-
ity.

Table 2. Summary of models, approaches, and performances in vulnerability detection.

Refю Approach Model Feature

Extraction

Dataset Performance

[9] Static analysis with
feature selection and
XGBoost

XGBoost Slither Ethereum
platform

F: 93%–100%

[11] Feature reduction with
Block-gram and ML
models

XGBoost, RF,
KNN

N-gram NKSC A: 94.36%, R: 98.92%,
F: 96.80%

[12] Bi-LSTM-Att Bi-LSTM Bi-LSTM-
Att

Collected
from GitHub

R: 80.85%–89.48%, F:
81.22%–91.87%

[14] SPCBIG-EC Hybrid CNN-
RNN

RNN CESC +
UCESC

F: 91.62%–96.74%

[13] SVScanner Bi-LSTM RNN+LSTM Ethereum
platform

A: 94.77%, F: 94.64%

[15] MODNN BERT deep
neural network

Bert Ethereum
platform

A: 96.15%, F: 94.8%

[16] WIDENNET BERT Bert Ethereum
platform

A: 80.06%

[17] ASSBert BERT Bert SC-Base +
SC-Val

F: 89%

[18] EGFL GNN GNN XBlock plat-
form

F: 83.67%–90.47%

[19] SS-GNN GNN GNN VNT Chain
smart con-
tract

F: 90.57%

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



1082 El Inani N., Benabbou F., Sabiri K., Zaouch A.

above 90% across multiple vulnerability categories. Additionally, the Ethereum platform dataset, with
40 000 contracts, has also demonstrated high performance in models like XGBoost and SVScanner,
achieving accuracies between 93% and 100%. These models show strong performance in detecting

Fig. 1. Dataset size and model performance.

common vulnerabilities like reen-
trancy and timestamp dependence.
Although NKSC is a smaller dataset
with 33 885 contracts, the Block-gram
model trained on it has performed ex-
ceptionally well. It achieved 94.36%
accuracy and substantial reductions
in latency, showing that specialized
models can still deliver high perfor-
mance even with smaller datasets.
This figure provides an overview of
the dataset’s size and distribution,
showcasing how many smart con-
tracts were examined for vulnerabil-
ity detection. By depicting the vol-

ume of contracts processed, Figure 1 highlights the scale of the analysis, which supports the reliability
and generalizability of the findings related to model performance in detecting vulnerabilities across
different types of smart contracts.

3.2.2. Preprocessing techniques

The detection process includes multiple stages to prepare the data after collection and prior to modeling.
The process begins with data cleaning to eliminate unnecessary elements, followed by tokenization, and
concludes with the extraction of essential features. Figure 2 illustrates the Preprocessing Tasks.

Fig. 2. Chart of preprocessing pipeline.

— Cleansing

Effective vulnerability detection in smart contracts relies heavily on robust data cleansing and
preprocessing strategies to ensure high-quality input data for ML/DL models [22]. Most state-of-
the-art approaches utilize static analysis tools to remove irrelevant features, filter noisy data, and
prepare structured datasets. For instance, Slither, widely employed for static analysis, provides
feature extraction by analyzing opcode sequences and detecting potential vulnerabilities at the
code level. Similarly, N-gram techniques, as seen in Xie et al.’s Blockgram model, further enhance
cleansing by segmenting opcode sequences into meaningful blocks for feature reduction. Moreover,
program slicing techniques, as utilized in the Bi-LSTM-Att model, isolate only the relevant portions
of code, thus reducing dataset complexity and improving training efficiency.
These methods underscore the importance of tailored cleansing techniques for specific vulnerability
detection tasks. Among the various tools and techniques, Slither emerges as a standout choice

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



Advanced Approaches for Vulnerability Detection in Solidity-Based Smart Contracts: . . . 1083

due to its consistent integration with ML/DL models like XGBoost and its ability to preprocess
Ethereum smart contracts effectively. This tool has shown to support high-performing models,
achieving accuracies ranging from 93% to 100% across multiple vulnerability categories, thereby
making it a reliable and efficient solution for the dataset cleansing stage.

— Tokenization

Tokenization is a critical step in preparing smart contract code for machine learning and deep
learning models [23]. It involves breaking down code into smaller, interpretable units, such as
tokens or embeddings, that can be processed by the models. Different tokenization strategies are
utilized depending on the model architecture and feature extraction requirements. For instance, N-
gram techniques, used in Xie et al.’s Blockgram model, tokenize opcode sequences into fixed-length
segments, allowing machine learning models like XGBoost, RF, and KNN to capture local pat-
terns effectively. Similarly, transformer-based models such as BERT rely on advanced tokenization
methods like WordPiece embeddings, which capture both subword-level semantics and contextual
relationships within the code.
Graph-based models, such as Syntax-Sensitive Graph Neural Networks (SS-GNN) and Enhanced
Graph Feature Learning (EGFL), tokenize the smart contract bytecode by representing it as Control
Flow Graphs (CFGs) or Abstract Syntax Trees (ASTs). These structural tokenization approaches
enable the models to extract hierarchical and contextual information, leading to enhanced perfor-
mance in detecting vulnerabilities like reentrancy and integer overflows.
Among the various tokenization strategies, WordPiece tokenization used in BERT-based models
has demonstrated superior performance in several studies. For example, MODNN and ASSBert,
which leverage BERT embeddings, achieved exceptional F1-scores of 96.15% and 89%, respectively,
highlighting the effectiveness of transformer-based tokenization in capturing complex patterns in
smart contract data.

— Feature extraction methods in smart contract vulnerability detection

Feature extraction serves as the foundation for building high-performing models, enabling the
identification of key patterns and relationships within smart contract code [24]. Different models
leverage unique strategies to extract features that are most relevant to detecting vulnerabilities.
Traditional approaches, such as static analysis (e.g., Slither), are often employed to extract opcode
sequences, which are then transformed into meaningful representations using techniques like N-gram
segmentation. For instance, the Blockgram model utilizes segmented opcode sequences to capture
sequential relationships, enabling machine learning models such as XGBoost, RF, and KNN to
deliver high accuracy, as demonstrated by the RF model’s F1-score of 96.80%.
Advanced methods, particularly in deep learning frameworks, focus on leveraging both contextual
and semantic information. The Bi-LSTM-Att model, for example, employs an attention mechanism
to extract sequential and contextual patterns, achieving remarkable precision and recall rates, such
as 89.48% recall and 94.40% precision for timestamp dependency vulnerabilities. Similarly, graph-
based models, including EGFL and SS-GNN, utilize Control Flow Graphs (CFGs) and Abstract
Syntax Trees (ASTs) to extract both local and global features, ensuring comprehensive vulnerability
detection. The EGFL framework’s ability to achieve accuracies ranging from 83.67% to 90.47%
across various vulnerability types underscores the effectiveness of graph-based feature extraction.
Moreover, transformer-based models like BERT have revolutionized feature extraction by providing
pre-trained embeddings that encapsulate both structural and contextual information. For example,
the MODNN model utilizes BERT embeddings combined with co-occurrence matrices, achieving
an impressive F1-score of 96.15% for underflow vulnerability detection.
Among these methods, the use of graph-based feature extraction (e.g., CFGs, ASTs) stands out for
its ability to capture intricate relationships within the code. However, the superior performance of
BERT-based embeddings, as seen in MODNN and ASSBert, highlights the transformative potential
of pre-trained models in capturing rich, multi-dimensional features for vulnerability detection.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



1084 El Inani N., Benabbou F., Sabiri K., Zaouch A.

3.2.3. ML and DL used, the most used, and the best performing in each category

The machine learning models utilize a hybrid approach, integrating static opcode sequence analysis
with XGBoost and hyperparameter optimization, achieving accuracy rates ranging from 93% to 100%.
Additionally, the Block-gram model focuses on efficiency and feature reduction, delivering strong results
with an accuracy of 94.36% and a recall of 98.92%. In contrast, deep learning models exhibit supe-
rior performance in vulnerability detection tasks. One model introduces Bi-LSTM-Att, which uses
program slicing and achieves recall rates exceeding 80%, outperforming LSTM and GRU baselines.
Another proposes SPCBIG-EC, a hybrid CNN-RNN model, achieving impressive F1-scores (96.74%,
91.62%, 95.00%) across different vulnerabilities. Similarly, SVScanner combines Bi-LSTM and at-
tention mechanisms, delivering an accuracy of 94.77% and an F1-score of 94.64%. Another model
presents MODNN, using BERT for feature extraction, achieving an F1-score of 94.8% and an accuracy
of 96.15%. Other models like WIDENNET achieve 80.06% accuracy, while ASSBert integrates active
and semi-supervised learning for enhanced accuracy. The EGFL model, which incorporates Graph
Neural Networks (GNNs) with self-attention, demonstrates substantial improvements, with F1-score
gains of up to 60.28%. Lastly, SS-GNN, a graph based learning approach, outperforms existing tools
like Slither and Smartcheck with an F1-score of 90.57%. Figure 3 provides a comparison of various
models used for identifying vulnerabilities within smart contracts using the F1-score metrics. The
F1-score is chosen for problems like vulnerability detection in smart contracts because it effectively
balances the model’s ability to identify vulnerabilities accurately (high recall) while ensuring those
detections are reliable (high precision).

Fig. 3. General vulnerability metrics for each ML/DL model.

Comparing these models,
deep learning techniques outper-
form traditional machine learn-
ing approaches, particularly in
handling complex vulnerability
patterns. Among the deep
learning models, SPCBIG-EC
and MODNN stand out due
to their robust performance
across various vulnerabilities,
with SPCBIG-EC demonstrat-
ing balanced performance in
precision, recall, and F1-scores.
EGFL also shows significant
improvements, particularly in
managing long-range dependen-
cies. SPCBIG-EC emerges as
the most effective approach, pro-
viding a comprehensive solution
with high generalizability, while

MODNN is also highly effective in detecting both known and novel vulnerabilities. In conclusion,
deep learning, particularly hybrid models like SPCBIG-EC, represents the most promising direction
for smart contract vulnerability detection, given the increasing complexity of blockchain technologies.

4. Conclusion

The rapid advancement of blockchain technology, particularly with the integration of smart contracts,
has brought significant opportunities but also substantial risks due to vulnerabilities inherent in the
code. This paper has reviewed a variety of machine learning and deep learning models that have
been developed to detect vulnerabilities in smart contracts, highlighting the advantages of hybrid
approaches that combine static and ML, DL approaches. Our analysis shows that models such as

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



Advanced Approaches for Vulnerability Detection in Solidity-Based Smart Contracts: . . . 1085

bi-LSTM, XGBoost, and graph neural networks (GNNs) significantly outperform traditional methods,
offering higher accuracy and better generalization in vulnerability detection. While the current ma-
chine learning models provide promising results, challenges remain, especially in ensuring scalability
and adapting to the fast-evolving landscape of blockchain technologies. Future research should focus on
enhancing the robustness of these models and expanding their ability to detect new and more sophis-
ticated vulnerabilities. By leveraging AI advancements, blockchain security can be greatly improved,
ensuring that smart contracts become even more reliable and secure in critical applications such as
decentralized finance (DeFi) and beyond.

[1] Sarmah S. S. Understanding Blockchain Technology. Computer Science and Engineering (2018).

[2] Tripathi G., Ahad M. A., Casalino G. A comprehensive review of blockchain technology: Underlying prin-
ciples and historical background with future challenges. Decision Analytics Journal. 9, 100344 (2023).

[3] Kushwaha S. S., Joshi S., Singh D., Kaur M., Lee H.-N. Systematic Review of Security Vulnerabilities in
Ethereum Blockchain Smart Contract. IEEE Access. 10, 6605–6621 (2022).

[4] Aponte-Novoa F. A., Orozco A. L. S., Villanueva-Polanco R., Wightman P. The 51% Attack on
Blockchains: A Mining Behavior Study. IEEE Access. 9, 1405491–40564 (2021).

[5] Jamwal S., Cano J., Lee G. M., Tran N. H., Truong N. A survey on Ethereum pseudonymity: Techniques,
challenges, and future directions. Journal of Network and Computer Applications. 232, 104019 (2024).

[6] Hu B., Zhang Z., Liu J. et al. A comprehensive survey on smart contract construction and execution:
paradigms, tools, and systems. Patterns. 2 (2), 100179 (2021).

[7] Taş R. Smart Contract Security Vulnerabilities. Erzincan University Journal of Science and Technology.
16 (1), 196–211 (2023).

[8] Tang X., Zhou K., Cheng J., Li H., Yuan Y. The Vulnerabilities in Smart Contracts: A Survey. Advances
in Artificial Intelligence and Security. 177–190 (2021).

[9] Feng X., Liu H., Wang L., Zhu H., Sheng V. S. An interpretable model for large-scale smart contract vul-
nerability detection. Blockchain: Research and Applications. 5 (3), 100209 (2024).

[10] Jie W., Chen Q., Wang J., Koe A. S. V. et al. A novel extended multimodal AI framework towards vul-
nerability detection in smart contracts. Information Sciences. 636, 118907 (2023).

[11] Xie X., Wang H., Jian Z., Fang Y., Wang Z., Li T. Block-gram: Mining knowledgeable features for ef-
ficiently smart contract vulnerability detection. Digital Communications and Networks. 11 (1), 1–12
(2023).

[12] Ren X., Wu Y., Li J., Hao D., Alam M. Smart contract vulnerability detection based on a semantic code
structure and a self-designed neural network. Computers and Electrical Engineering. 109 (B), 108766
(2023).

[13] Zhang H., Zhang W., Feng Y., Liu Y. SVScanner: Detecting smart contract vulnerabilities via deep se-
mantic extraction. Journal of Information Security and Applications. 75, 103484 (2023).

[14] Zhang L., Li Y., Jin T., Wang W. et al. SPCBIG-EC: A Robust Serial Hybrid Model for Smart Contract
Vulnerability Detection. Sensors. 22 (12), 4621 (2022).

[15] Zhou K., Huang J., Han H., Gong B. et al. Smart contracts vulnerability detection model based on adver-
sarial multi-task learning. Journal of Information Security and Applications. 77, 103555 (2023).

[16] Osei S. B., Ma Z., Huang R. Smart contract vulnerability detection using wide and deep neural network.
Science of Computer Programming. 238, 103172 (2024).

[17] Sun X., Tu L., Zhang J., Cai J., Li B., Wang Y. ASSBert: Active and semi-supervised bert for smart
contract vulnerability detection. Journal of Information Security and Applications. 73, 103423 (2023).

[18] Cheng J., Chen Y., Cao Y., Wang H. A vulnerability detection framework with enhanced graph feature
learning. Journal of Systems and Software. 216, 112118 (2024).

[19] Cai J., Li B., Zhang T., Zhang J., Sun X. Fine-grained smart contract vulnerability detection by heteroge-
neous code feature learning and automated dataset construction. Journal of Systems and Software. 209,
111919 (2024).

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)



1086 El Inani N., Benabbou F., Sabiri K., Zaouch A.

[20] Wu G., Wang H., Lai X., Wang M., He D., Chan S. A comprehensive survey of smart contract security:
State of the art and research directions. Journal of Network and Computer Applications. 226, 103882
(2024).

[21] Vidal F. R., Ivaki N., Laranjeiro N. Vulnerability detection techniques for smart contracts: A systematic
literature review. Journal of Systems and Software. 217, 111919 (2024).

[22] Hu K., Zhu J., Ding Y., Bai X., Huang J. Smart contract engineering. Electronics. 9 (12), 2042 (2020).

[23] Aziz R. M., Mahto R., Goel K., Das A., Kumar P., Saxena A. Modified Genetic Algorithm with Deep
Learning for Fraud Transactions of Ethereum Smart Contract. Applied Sciences. 13 (2), 697 (2023).

[24] Xu G., Liu L., Dong J. Vulnerability Detection of Ethereum Smart Contract Based on SolBERT-BiGRU-
Attention Hybrid Neural Model. CMES – Computer Modeling in Engineering and Sciences. 137 (1),
903–922 (2023).

Передовi пiдходи до виявлення вразливостей у смарт-контрактах
на основi Solidity: порiвняльний огляд

Ель Iнанi Н.1, Бенаббу Ф.1, Сабiрi К.2, Заух А.1

1Лабораторiя штучного iнтелекту та систем,
Унiверситет Хасана II Касабланки,

Факультет природничих наук Бен Мсiк, Марокко
2Спiльна лабораторiя дослiджень у горах (MORE), Португалiя

З розвитком технологiї блокчейн, смарт-контракти на основi Solidity стали важливи-
ми для автоматизацiї та захисту цифрових транзакцiй у рiзних секторах, вiд фiнансiв
до управлiння ланцюгами поставок. Цi контракти дозволяють здiйснювати децен-
тралiзованi обмiни без посередникiв, пiдвищуючи прозорiсть. Однак їхня незмiнна
природа створює проблеми безпеки: будь-який недолiк у кодi стає постiйним, нара-
жаючи контракти на ризик атак та призводячи до фiнансових та репутацiйних втрат.
У цiй статтi наведено порiвняльний аналiз нещодавнiх методiв машинного навчання
(ML) та глибокого навчання (DL), розроблених для виявлення вразливостей у смарт-
контрактах на основi Solidity. Аналiзуючи рiзнi пiдходи, оцiнено їхню ефективнiсть
у виявленнi поширених загроз, таких як атаки повторного входу та переповнення
цiлих чисел. Накiнець, пiдкреслено важливiсть масштабованих рiшень безпеки на ос-
новi штучного iнтелекту для вирiшення зростаючої складностi вразливостей.

Ключовi слова: блокчейн; вразливiсть; смарт-контракт; машинне навчання; гли-
боке навчання.

Mathematical Modeling and Computing, Vol. 12, No. 4, pp. 1077–1086 (2025)


